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Abstract

This paper describes novel methods for extracting a subgraph that
best captures the relationships between k given nodes of interest (or
seed nodes) in a graph. We introduce a betweenness measure based
on random walks connecting distinct nodes of interest. Expected node
and edge passage times along these walks can be efficiently computed.
These quantities, which are defined here relatively to the choice of
seed nodes, overcome limitations of shortest paths or maximal flow
approaches. The proposed technique applies both to directed or undi-
rected connected graphs. Additional variants of our approach include
the consideration of all walks of a given length, or up to a maximal
length, and extension to groups of a priori related seed nodes.
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1 Introduction

We address here the problem of extracting a subgraph that best explains the
relationships between k (≥ 2) given nodes of interest in a graph. We are
considering for instance a large metabolic network which can be represented
as a directed connected graph1 of reactions and bioentities involved in these
reactions.

Figure 1: Methionine Biosynthesis of E. Coli.

More specifically, we could analyze the Methionine Biosynthesis of Es-
cherichia Coli. A simplified view of this metabolic pathway2 is depicted on
Figure 1. One could study in particular the influence of the metR Activator

on the production of Homocysteine from L-Homoserine in this pathway. In
this case, there are 3 nodes of interest (depicted in yellow) and we would like

1Several representations exist for metabolic networks (see e.g. [Deville, 03]). The ap-
proach described here can be applied whether the network is represented as a directed or
undirected graph, bipartite or not, and as long as it is connected. The unconnected case
is briefly discussed in section 5.

2This figure has been kindly provided to us by J. Van Helden from the Service de

Conformation des Macromolécules Biologiques et de Bioinformatique of the Université

Libre de Bruxelles.
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to extract a relevant subgraph explaining the relationships between these 3
nodes.

Another typical application of the proposed methods is the traffic analysis
of vehicles running between several locations. The road network can be
modeled as a graph in which nodes represent locations. Each road between
any pair of adjacent locations can be characterized by an edge weight. The
higher the weight between two nodes the easier the immediate connection
between them. A connection weight is typically inversely proportional to the
time to travel from one node to the other or to the distance between them.
According to the chosen modeling hypothesis, the corresponding weighted
graph can either be directed or undirected. In the latter case, the weight
also corresponds to the notion of conductance in an electrical network as
detailed in section 7.

While analyzing the traffic over the whole network, one would like to
extract the most relevant routes to connect a predefined subset of k, non-
necessarily adjacent, locations. The extracted subgraph should not only re-
flect the shortest path(s) between any pair of locations of interest but how
the overall traffic can be distributed while connecting them.

Consider, for instance, the graph3 depicted on Figure 2. The nodes rep-
resent particular locations on a roadmap. Edge weights correspond here to
the inverse distance between nodes. Since distances are symmetric the graph
is undirected. In this particular example, the weight of any (existing) edge
is assumed to be equal to 1. For the simplicity of the reasoning, we consider
firstly only two nodes of interest (1 and 9). They typically identify two dis-
tinct locations, each one belonging for example to a specific suburb (a highly
connected cluster of locations). The best route between 1 and 9 corresponds
here to the shortest distance path 1-3-6-9 or, equivalently, 9-6-3-1.
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Figure 2: A roadmap describing the possible routes between a set of locations.

Suppose we would like to know the second best route (in case of a potential
traffic jam along the 3-6 edge, for instance). If one considers the second

3This example is inspired from [Newman, 05].
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shortest path(s), there are many routes having the same total distance (equal
to 4 in this case): 1-4-3-6-9, 1-3-6-8-9, 1-3-11-6-9, . . . One can thus apply an
algorithm for finding the m-shortest paths [Eppstein, 99, Jiménez, 99] but
this algorithm would consider all routes of length 4 as equally important.

The unique second best route in this particular example is arguably
1-3-11-6-9 as it forms the unique best alternative to the direct edge 3-6 con-
necting two cut nodes. In other words, a random walker starting from node 1
and reaching eventually node 9 (or the converse) is more likely to go through
node 11 than any other node as an alternative to the best route. Conversely,
a random walker following the 1-2 edge instead of 1-3 is less likely to choose
2-3 as the next edge, simply because there are many other options to leave
node 2. The proposed approach is precisely based on the expected number of
times a given node or a given edge is used along any random walk connecting
the nodes of interest.

The resulting graph is depicted on Figure 3 where each edge width denotes
its relative frequency of use along these walks. This relative frequency is
interpreted as its relevance to explain the relationships between the nodes of
interest. Discarding any edge the relevance of which falls below a threshold
defines a relevant subgraph. A more stringent threshold would result in a
smaller subgraph, e.g. the subgraph induced by the nodes {1, 3, 6, 9, 11}. The
resulting subgraph obtained by such a thresholding needs not be connected
however. This connectivity issue is further discussed in section 5.
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Figure 3: Relative edge relevance based on random walks between nodes 1
and 9.

The random walk method proposed here also overcomes limitations intro-
duced by a maximal flow approach. Consider for instance another roadmap4

depicted on Figure 4. We are interested in relevant ways to connect nodes 1
and 8, each one belonging to a separate cluster5. All (existing) edge weights
are again assumed to be equal to 1. These weights can also be interpreted as

4This example is also inspired from [Newman, 05].
5These clusters form cliques in the present case but this is not a mandatory feature.
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the flow capacity between any pair of adjacent nodes. There are alternatives
routes to connect the two clusters but there is a maximal flow of 2 units from
one cluster to the other. Nodes such as 12 or 15 can each one capture one
unit of flow (for instance, from left to right) and thus would be considered
as important to connect the two nodes (or clusters) of interest. The node 17
would not be considered as important since flowing through this node would
limit the total flow between the two clusters to 1 unit. This is not necessar-
ily appropriate since there are routes through 17 which can be considered as
good alternatives to the “straight” routes. In particular, 1-3-11-17-16-10-8
also defines a relevant shortest path.
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Figure 4: Another roadmap example.

Relative edge relevances based on the proposed random walk approach
is depicted on Figure 5. The edges 3-11 and 16-10 are the most important
since any left-to-right route between the two clusters must at least pick one
of them, sometimes both. The edges 11-17 and 17-16 are non negligible as
they are part of important alternative routes.
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Figure 5: Relative edge relevance based on random walks between nodes 1
and 8.

The proposed approach relies on an interpretation of the graph as a
Markov chain. The states of such a model correspond to the nodes in the
original graph and the transition probabilities are defined proportionally to
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the edge weights. Markov chain theory [Kemeny, 83, Norris, 97] allows one
to compute the nodes and edges most frequently visited while performing
random walks between any pair of distinct nodes of interest. The walks are
random but the probability distribution over all possible walks is generally
far from uniform. Hence the likelihood of any given walk actually matters in
the relevance computation. These notions are formally presented in section 2
detailing the proposed k-walk approach.

The edge or node relevance measures used here are betweenness cen-

trality indices [Brandes, 05]. Shortest-path betweenness has been proposed
in [Freeman, 77]. Random walk betweenness [Newman, 05] was introduced
more recently. Our approach can be considered as offering several extensions
to Newman’s work. In particular, we do not restrict our attention to undi-
rected unweighted graphs. More importantly, edge and node relevances are
here evaluated relatively to the choice of k (≥ 2) nodes of interest rather than
defined as a fixed characterization of a given graph. For instance, Figure 6
depicts the edge relevances of the graph of Figure 2 when nodes 3, 7 and 10
are selected as nodes of interest. The result is clearly distinct from the graph
depicted on Figure 3.
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Figure 6: Edge relevances relatively to the nodes 3, 7 and 10.

Moreover, as pointed by Newman, shortest-path betweenness and random
walk betweenness can be considered at the opposite end of a spectrum of
possibilities in terms of the number of walk steps. Indeed a random walker
has no idea of where she is heading to while a shortest-path walker intends
to follow a straightest path from source to destination6. Section 3 presents
the limited k-walk approach, which can be considered as an intermediate
along this spectrum. Here the walker travels also at random but only those
walks of a prescribed length L are considered. A slightly distinct variant
considers all random walks up to a maximal length Lmax. When Lmax tends
to infinity this methods becomes equivalent to the original k-walk approach.

6Whenever unit weights are assigned to the edges, shortest distance paths are also
minimal in number of steps.
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Both algorithms are however distinct from a computational viewpoint as
discussed in section 3.

Section 4 describes another extension where the nodes of interest are no
longer considered individually but as groups of a priori related nodes.

We discussed so far how to define a relevance measure on the edges and
nodes of a graph to best explain the relationships between k nodes of inter-
est. Keeping only those edges the relevance of which is above a prescribed
threshold is a direct way to extract a non-necessarily connected subgraph.
Section 5 elaborates on the subgraph extraction itself.

A relevant subgraph should be, in many cases, as small as possible while
capturing most of the information to explain the relationships between the
nodes of interest. In other words, one would like to discriminate between
important and less important edges (or nodes). The k-walk or limited k-
walk approaches are not necessarily highly discriminant since their relevance
measures are based on a large, possibly infinite, set of walks in the graph.
Many walks in this set can largely overlap while partially sharing the captured
information. Whether or not the extracted subgraph is small relative to the
initial graph also depends on the graph topology, the initial edge weights and
the chosen nodes of interest. In any case, one can enforce more discrimination
by inflating the differences between the edges as detailed in section 6.

An inspiring approach to the problem of extracting a relevant subgraph
is described in [Faloutsos, 04]. To the best of our knowledge, this is the only
previous work where the problem of extracting a relevant subgraph from a
given set of nodes of interest has been stated. The problem was however
restricted to 2 nodes of interest in an undirected graph. In that approach,
the 2 nodes of interest are respectively considered to be the source and the
sink of an electrical current. The algorithm searches the paths followed by
the current flow and maximizes the sum of current flow in the extracted
subgraph. In addition, each node includes some current loss in order to
penalize long paths and very highly connected nodes (hubs). A comparison
with this approach is further discussed in section 7 where we present an
electrical equivalent of the k-walk approach for undirected graphs.

Practical evaluations of the k-walk and limited k-walk approaches are
detailed in section 8. We conclude our discussion and present the perspectives
of this work in section 9.

2 K-walks in a graph

Let G = (V, E) denote a graph formed by a set V of vertices (or nodes) and
a set E of edges, with E ⊆ V × V . Let n = |V | denotes the graph order.
We consider in particular connected graphs represented by their weighted
n × n adjacency matrix A. The aij entry of A denotes the weight of the
edge connecting node i to node j. Weights are assumed to be zero if and
only if their corresponding edge does not belong to the graph. Otherwise,
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the weight between any pair of connected nodes is assumed strictly positive.
Moreover edge weights should be defined such that the larger the weight aij

the easier the connection (or communication or information flow) from i to
j. We consider both directed and undirected graphs. An undirected graph is
simply represented by a symmetric matrix A. In the directed case, the graph
is assumed weakly connected and there must exist a directed path from any
node to at least one node of interest.

The diagonal degree matrix is defined as D = diag(d1, . . . , dn) with di =
∑n

j=1 aij. Whenever A reduces to a binary adjacency matrix (weights are

either 0 or 1), di simply denotes the degree7 of node i. In general, di is
interpreted as the weighted degree of node i. A related quantity is the graph

volume DG =
∑n

i=1 di.
Given a weighted adjacency matrix A associated to a graph G = (V, E)

and a subset K ⊆ V (|K| ≥ 2) of nodes of interest, we define relevance
indices on the edges or nodes of G. They measure how much each node or
edge contributes to the relationships between the nodes of K. The number
k = |K| of nodes of interest is typically much smaller than n. Formally, we
define a node relevance function nrA,K : V → R

+ which maps any node to its
relevance. We define an edge relevance function erA,K : E → R

+, similarly.
As motivated in section 1, the relevances should rely on all possible ways

to connect the k nodes of interest (each way having a certain likelihood) and
not only shortest distance or maximal flow paths. Technically, we propose
to define the relevance of a node or an edge to be proportional to the ex-

pected number of times it is used when randomly walking through the graph,
starting from one node of interest and eventually reaching a distinct node of
interest. The theory of absorbing Markov chains allows us to compute these
quantities efficiently [Kemeny, 83].

A random walk in a graph can be modeled by a Markov chain describing
the sequence of nodes visited during the walk. A state of the Markov chain
is associated with each node of the graph. Hence the terms nodes and states

are used interchangeably in the rest of this paper. A random variable X(t)
represents the current state of the Markov chain at time t. The probability
of transiting to state j at time t + 1, given that the current state is i at time
t, is given by:

P [X(t + 1) = j|X(t) = i] = pij =
aij

di

. (1)

Thus, from any state i, the (stationary) probability to jump to state j is
proportional to the weight aij of the edge from i to j. The transition matrix
P = [pij] of the Markov chain is related to the degree and adjacency ma-
trices as P = D−1A. Note that even when A is symmetric, P is generally
asymmetric since the degrees of adjacent nodes need not be equal. P is a
row-stochastic matrix since, by construction, 0 ≤ pij ≤ 1 and

∑n

j=1 pij = 1.
We restrict first our attention to random walks starting from a given

7di denotes the outgoing degree of node i whenever the graph is directed.
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node x of interest and ending in any other nodes of interest K \ {x}. Equa-
tion (6) below defines the same computations weighted over all possible start-
ing nodes.

A state of a Markov chain is absorbing if and only if any walk reaching
this state will stay forever on this state with probability 1. Let xP denote
a modified transition matrix for which all nodes of interest but x have been
transformed to be absorbing. It is defined from P as follows.

xPij =







1 if i ∈ K \ {x} and i = j,

0 if i ∈ K \ {x} and i 6= j,

Pij otherwise.
(2)

As the original graph is assumed to be connected8, there is no absorbing state
in the Markov chain defined by the original transition matrix P. Hence, only
the states of interest but x are absorbing according to xP. The other states,
including x itself, forms the set VT of transient states from which there is a
strictly positive probability to leave. Without loss of generality, the states
can be reordered such that xP has the following canonical block structure.

xP =

[

xQ xR

0 I

]

(3)

Here xQ denotes the (n− k + 1)× (n− k + 1) transition submatrix between
transient states, I is the identity matrix of order k − 1 and xR is a (n − k +
1) × (k − 1) matrix. In particular, xRir denotes the probability of a walk
being in a transient state i to be absorbed in state r in one step.

In an absorbing Markov chain, the node passage time n(x, i) is defined
as the number of times a random walk starting in x goes through state i

before getting absorbed. This quantity only depends on the transition matrix
xQ between transient states9. Indeed, since one is not interested in which
state r the walk is absorbed, only the sum of the probabilities of absorption
xRi =

∑

r
xRir matters to define the total probability of absorption from

a given state i. Moreover, since xP is row-stochastic, this sum is equal to
1 −

∑

j
xQij = 1 − xQi. The probability of transiting from state x to state

i in a single step is given by xQxi. Let (xQ)l denote the lth power (l ≥ 0)
of the matrix xQ. The quantity [(xQ)l]xi, which denotes the xi entry of the
matrix (xQ)l, defines the probability of transiting from state x to state i in
l steps.

8In the directed case, the graph is assumed weakly connected. Moreover, there must
exist a path from any node to at least one node of interest. If, for a particular node of
interest x, there exist only directed paths to itself but not to any other node of interest,
we do not consider the transformed MC xP and simply iterate the construction over the
other nodes of interest.

9The discussion in this paragraph is valid for any absorbing Markov chain with a
transition matrix Q between transient states. We use here the notation xQ to refer
explicitly to the Markov chain defined in equations (2) and (3).
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Let {Xl = i|X0 = x} denote the random event of visiting state i in the
lth step of a random walk starting in x. The expectation of n(x, i) is the
expected number of times such events occur, in other words their respective
probabilities, for any time index l:

E[n(x, i)] =
∞

∑

l=0

P [Xl = i|X0 = x] =
∞

∑

l=0

[

(xQ)l
]

xi
=

[

I − xQ
]−1

xi
(4)

The infinite sum of the successive powers of the matrix xQ in equation (4) is
known as the Neumann series and the last equality follows from the theory

of stochastic matrices [Meyer, 00]. The matrix xN =
[

I − xQ
]−1

is called
the fundamental matrix of an absorbing Markov chain. In particular, xNxi

is the expected number of times a walk starting in the node of interest x

goes through state i before getting absorbed in any node of K \ {x}, that is,
before reaching a distinct node of interest. Finally, the expected length nx

of any walk starting in x and ending in another node of interest is also the
node passage times summed over all transient states:

nx =
∑

i∈VT

xNxi (5)

The previous computations are restricted to a particular node of interest
x being used as starting state of the random walks. Considering k nodes of in-
terest as starting nodes reduces to computing the same quantities separately
for each possible starting node. Typically, an initial probability distribution,
represented by the vector ι, is defined with ιx > 0 ⇔ x ∈ K. This probabil-
ity distribution allows to encode some prior preference between the nodes of
interest. By default, all nodes of interest are assumed equally important and
ιx = 1

k
, ∀x ∈ K. The node relevances are given globally by the mean node

passage times nr : V → R
+ defined as follows:

∀i ∈ V, nr(i) =

{
∑

x∈K ιx
xNxi if i ∈ V \ K,

ιi
iNii otherwise.

(6)

The sum in the above formula is replaced by a single term whenever i is a
node of interest since it is considered only once as a transient state, precisely
when it is used as starting state.

The edge passage time e(x, i, j) is defined as the number of times a ran-
dom walk starting in x is using the transition from i to j. The expectation
of this quantity directly follows from the above computations:

E[e(x, i, j)] =







xNxi
xPij if i ∈ V \ K,

iNii
iPij if x = i and i ∈ K,

0 if x 6= i and i ∈ K.

(7)
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The edge relevances are given by the mean edge passage times er : E → R
+,

defined according to the directed or undirected nature of the original graph:

∀(i, j) ∈ E,

er(i, j) =







∑

x∈K

ιx E[e(x, i, j)] if G is directed,
∑

x∈K

ιx |E[e(x, i, j)] − E[e(x, j, i)]| if G is undirected.
(8)

The absolute difference guarantees that edge relevances are symmetric in the
undirected case. It is also motivated by an electrical interpretation detailed
in section 7.

To sum up, the application of the k-walk approach to compute node and
edge relevances essentially amounts to interpret the graph as a Markov chain.
The transition probability matrix P of this chain can be computed in Θ(m)
time with m = |E|. Next, k particular submatrices xQ (one matrix for each
node x of interest) need to be considered. For each of them, the fundamental
matrix xN is computed. This amounts to invert the matrix I − xQ, which
can be done in O(n3). This is the core of the computational load of this
approach. Node and edge relevances can be derived from the fundamental
matrices in Θ(m) time. Overall, the time complexity of the k-walk approach
is O(kn3).

3 Limited K-walks in a graph

In the k-walk approach, presented in section 2, any walk connecting the nodes
of interest is considered, no matter its length. Alternatively, the relationships
between the nodes of interest can be explained by walks of a fixed length L

or up to a maximal length Lmax. This is the purpose of the limited k-walk
approach.

Any node of interest is again considered in turn as the unique starting
node in a transformed Markov chain characterized by the xP transition ma-
trix. We are now interested in the conditional expectations E[n(x, i)|L] and
E[e(x, i, j)|L], the expected number of times the node i, respectively the edge
(i, j), is visited while starting the walk in x given that the walk length is L.
Conditional expectations can be computed on the edges as follows:

E[e(x, i, j)|L] =
L−1
∑

l=0

P [Xl = i, Xl+1 = j, L|X0 = x]

P [L|X0 = x]
(9)

In equation (9), Xl is a random variable denoting the state visited at step l

of the walk. P [L|X0 = x] denotes the probability of a walk of length L given
that the walk started in state x. Similarly, P [Xl = i, Xl+1 = j, L|X0 = x]
denotes the joint probability of visiting the edge (i, j), between step l and
step l + 1, and having a total walk length of L, given that the walk started
in state x.
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These probabilities can be computed from the xQ and xR matrices as-
sociated to xP (see the block structure of xP described in equation (3)). In
particular, the probability of a walk of length L starting in x is given by

P [L|X0 = x] =
∑

r∈K\{x}

[

(xQ)L−1 (xR)
]

xr
, (10)

since such a walk transits L−1 times through transient states before getting
absorbed in any state r in K \ {x}. The probability of visiting edge (i, j) in
such a walk, if j is a transient state, is given by

P [Xl = i, Xl+1 = j, L|X0 = x] =
∑

r∈K\{x}

[

(xQ)l
]

xi
[xQ]ij

[

(xQ)L−l−2 (xR)
]

jr
.

(11)
Indeed, such a walk transits l times through transient states while reaching
the transient state i in the lth step, transits from state i to state j with
probability [xQ]ij, transits again L − l − 2 times through transient states
before getting absorbed in any state r in K \ {x}. Whenever the destination
state j of the edge (i, j) is absorbing, the probability of visiting this edge is
given by

P [XL−1 = i, XL = j, L|X0 = x] =
[

(xQ)L−1
]

xi
[(xR)]ij , ∀j ∈ K \ {x} (12)

since, for the walk length to be equal to L before getting absorbed, such an
edge can only be visited at the last step of the walk.

The limited mean edge passage times E[e(x, i, j) | L ≤ Lmax] are defined
for a maximal walk length Lmax:

E[e(x, i, j) | L ≤ Lmax] =
Lmax
∑

L=1

E[e(x, i, j)|L] (13)

Globally, the edge relevances also depend on the definition of an initial
probability distribution ι weighting the relative importance of each node
of interest (ιx > 0 ⇔ x ∈ K). Edge relevances are computed accord-
ing to equation (8) by replacing the unconditional expectations E[e(x, i, j)]
by conditional expectations. If one is interested only in the relationships
between the nodes of interest for a fixed walk length L, the expectations
E[e(x, i, j)|L] are considered. For all walks up to length Lmax, the expecta-
tions E[e(x, i, j) | L ≤ Lmax] are used instead.

Node relevances are assigned according to the limited node passage times

computed as the sum of the limited passage times on all outgoing edges from
each node:

∀i ∈ V, nr(i) =
∑

x∈K

Lmax
∑

L=1

ιxE[n(x, i)|L], with E[n(x, i)|L] =
∑

j∈V

E[e(x, i, j)|L].

(14)
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One can also consider limited walks while letting Lmax tends to infinity.
This offers an alternative way to compute the non limited k-walks since

E[n(x, i)] =
∞

∑

L=1

E[n(x, i)|L] P [L|X0 = x] (15)

Practical computation of the limited k-walks can be performed efficiently
with two recurrences similar to those of the forward-backward algorithm used
to estimate the parameters of a Hidden Markov Model [Rabiner, 93].

The forward recurrence computes the probability α(i, l) of starting the
walk in x and reaching state i in l steps. It uses a left-to-right lattice structure
with |V | = n lines and Lmax columns, each column being associated with a
specific time index. The value of the ith line at time l is precisely α(i, l). The
transient states are assigned to the first n − k + 1 lines in this lattice, with
α(i, l) =

[

(xQ)l
]

xi
in this case. Any such α(i, l) only depends on the previous

column since (xQ)l = (xQ)l−1 (xQ). The absorbing states are assigned to
the last k − 1 lines and the corresponding entries are given by α(i, l) =
[

(xQ)l−1 xR
]

xi
. These entries also depend only on the previous column.

Since the walks must start in state x, the basis of the forward recurrence is
α(x, 0) = 1 and α(i, 0) = 0 if i 6= x.

A second lattice structure of the same size is used to compute a backward
recurrence β(i, L − l), which represents the probability of getting absorbed
in L − l steps, if the process is in state i after l steps. Hence β(i, L − l) =
∑

r∈K\{x}

[

(xQ)L−l−1 (xR)
]

ir
. The recurrence is computed backward in time,

from l = L to l = 0. Since the walks must end in an absorbing state, the
basis of the backward recurrence is β(i, 0) = 1 if i ∈ K \ {x}, and β(i, 0) = 0
otherwise.

The time complexity of the forward and backward recurrences for one
transformed Markov chain is Θ(mLmax), with m = |E|. Equation (9) can be
reformulated using these recurrences:

E[e(x, i, j)|L] =



















L−1
P

l=0

α(i,l) [xQ]ij β(j,L−l−1)

β(x,L)
if j ∈ {x} ∪ V \ K

α(i,L−1) [xR]ij
β(x,L)

if j ∈ K \ {x}

(16)

Equation (16) can be evaluated, from the two lattices, in Θ(mL) which, when
summed over all possible lengths up to Lmax (equations (13) and (14)), can
also be performed globally in Θ(mLmax). Finally, as the above computations
need to be repeated for k Markov chains, the overall time complexity of
the limited k-walk approach is Θ(kmLmax). An equivalent upper bound is
O(kn2Lmax), but this upper bound is tight only if the graph is dense.
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4 Groups of nodes of interest

The nodes of interest were considered so far independently of each other. In
a more general setting, the elements of K can be partitioned into p clusters:
K = {C1, . . . , Cp} with 2 ≤ p ≤ k. The node or edge relevances should
now explain the relationships between the clusters rather than between the
individual nodes.

If the k-walk approach is run while ignoring the cluster structure, node
and edge relevances depend on the relationships between nodes of interest
belonging to the same cluster, which is generally inappropriate. An alterna-
tive would be to construct a modified graph in which all nodes belonging to
the same cluster are merged. This modified graph can however be an overly
simplified view of the original graph.

A simple extension of the k-walk approach considers the cluster structure
explicitly. A transformed Markov chain is built relatively to each cluster
rather than each node of interest. When the cluster Cx is considered, all
nodes belonging to K \Cx are transformed to be absorbing. Hence the walks
start in any node of Cx and ends in any node of K \ Cx. Let CxN denote
the fundamental matrix of this transformed Markov chain. The mean node
passage times are now defined as:

∀i ∈ V, nr(i) =

{
∑

x∈K ιx
CxNxi if i ∈ V \ K,

ιi
CiNii otherwise.

(17)

The expected edge passage times are defined analogously (see equation (7)).
A similar reasoning can also apply to the limited k-walk approach.

5 Subgraph extraction

The k-walk and limited k-walk approaches essentially amount to define edge
(or node) relevances proportionally to their frequencies of use along walks
connecting the nodes of interest. A relevant subgraph can subsequently be
extracted in several ways.

The simplest approach requires a positive edge relevance threshold θe

and includes the edge (i, j) in the extracted subgraph whenever er(i, j) > θe.
This procedure defines a subgraph induced by the selected edges, the larger
θe the smaller the induced subgraph.

A positive node relevance threshold θn can also be defined to include the
node i whenever nr(i) > θn. The use of edge and node thresholds gives more
flexibility. In particular, a specific node may be selected even though none of
its incident edges are selected. Whether such a situation is desirable depends
on the application context.

In the k-walk approach, the extracted subgraph need not be (weakly)
connected even when thresholding is applied only on the edges. Whenever
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connectedness is required, one can search for the maximal θe such that the in-
duced subgraph is connected. Since the original graph is assumed connected,
there must exist a critical threshold θ∗e such that the extracted subgraph is
connected for any θe ≤ θ∗e . Fixing automatically θe to this critical value
defines a parameter-free subgraph extraction approach.

The above approach is a greedy edge selection procedure which is efficient
and locally minimal, in terms of the number of edges of the induced subgraph.
In the undirected case, one could also define edge costs inversely proportional
to their respective relevances and look for the subgraph connecting the nodes
of interest with a minimal total edge cost. This is a particular instance of
the Steiner tree problem for undirected weighted graphs [Hwang, 92]. The
optimal subgraph is indeed necessarily a tree in this case. This problem
was shown NP-complete [Garey, 79] but exact algorithms exist in restricted
cases [Warme, 00].

The limited k-walk approach offers another alternative to construct a
connected subgraph. Only the subset of walks of a given length L, or up to
a maximal length Lmax, are considered. In any case, a given edge relevance
is strictly positive if and only if it is used in at least one walk of this subset.
One can thus simply discard all edges with a null relevance. The resulting
subgraph, if not empty, is connected by construction. It is also the smallest
subgraph representing all walks of the prescribed length(s) between the nodes
of interest.

So far, the (limited) k-walk approaches require the original graph to be
connected. In the directed case, the graph is assumed weakly connected and
there must exist a directed path from any node to at least one node of interest.
A possible extension would consider separately each connected component
of the original directed or undirected graph and restrict the analysis in each
component to the nodes of interest belonging to it.

6 Inflation

The k-walk approach offers a global view of the ways nodes of interest are
connected between each other. It is however not necessarily very discrimina-
tive between highly relevant edges (or nodes) versus less relevant ones. The
relevance measures are indeed based on a large, possibly infinite, set of walks.
Many of these walks overlap at least partially and the captured information
is spread between them. This may be not optimal if the goal is to extract a
small subgraph summarizing most of this information.

To some extent the limited k-walk approach is more discriminative, espe-
cially for low Lmax. In particular when k = 2, if Lmax is fixed to the minimal
number of steps between the 2 nodes of interest, only nodes or edges belong-
ing to shortest paths, in terms of number of steps, have a strictly positive
relevance. The larger Lmax the more walks are considered with a less dis-
criminant result. Tuning Lmax is thus a way to control discrimination.
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In general, the discriminative character of the k-walk approach (or the
limited k-walk approach for a large Lmax) depends on the edge weights in
the original graph, the chosen nodes of interest and the graph topology. If
necessary, it is easy to inflate the differences between edge (or node) rele-
vances by applying the k-walk approach recursively. This notion of inflation
is inspired from [vD, 00] where it used for defining graph clusters. The very
simple way inflation is implemented in our approach is however different.

Figure 7 illustrates this idea. In the original graph on top, all edge weights
are assumed equal to 1. The graph obtained after one execution of the k-walk
approach is depicted in the middle. Here, the edge widths are their relative
edge relevance. Edge relevances can be considered as new weights associ-
ated to edges and the same approach can be applied recursively. The result
obtained after the second iteration is depicted at the bottom of Figure 7.
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7 An electrical interpretation

An undirected graph is represented by a symmetric weighted adjacency ma-
trix A. In this case, the graph can be seen as an electrical network, the weight
aij being the conductance between nodes i and j [Doyle, 84]. According to
equation (1), this symmetry implies a relationship between the transition
probabilities (in the associated Markov chain) assigned to each direction for
traversing an edge:

diPij = djPji. (18)

The degree di is now interpreted as the sum of the conductances of the edges
incident to node i.

When a node of interest x is used as starting state of the walks, the
network is represented by a transformed Markov chain with transition matrix
xP. Positively charged particles are assumed to enter the network at node x

and to leave the network at any node in K \{x}. The node x is thus assumed
to be the source of an electrical current and the other nodes of interest form
current sinks. It could be even more realistic to consider negatively charged
particles flowing in the opposite direction towards x but the reasoning below
is essentially equivalent. The currents observed between any nodes i and
j are directly related to the edge passage times in the k-walk approach as
described below.

By Ohm’s Law, the current Iij from i to j is determined by the voltages
Vi and Vj and the conductance between i and j:

Iij = (Vi − Vj)aij (19)

Kirchoff’s Current Law requires that the total current flowing through any
node (but the current source and sinks) is 0:

∀i, j ∈ V \ K,
∑

j

Iij = 0. (20)

The relationships between node voltages follows from the combination of
equations (19) and (20):

∀i, j ∈ V \ K, Vi =
∑

j

Vj
xPij (21)

In the k-walk approach, xNxi is the expected number of times node i is
visited for a walk starting in x. This quantity can also be defined from the
expected number of times any node j is visited:

xNxi =
∑

j

xNxj
xPji (22)

The relationship between these expected times and the voltages follows from
the combination of equations (18) and (22):

∀i, j ∈ V \ K,
xNxi

di

=
∑

j

xNxj

dj

xPij (23)
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Equations (21) and (23) are exactly equivalent when Vi =
xNxi

di
showing that

the voltages in this electrical network correspond to the node passage times
normalized by the node degrees. Moreover, by equation (19), the current
from i to j is given by

Iij = (
xNxi

di

−
xNxj

dj

)aij = xNxi
xPij −

xNxj
xPji (24)

The current Iij is the current along the edge (i, j) actually flowing from i

to j whenever it is positive, or flowing in the opposite direction otherwise.
Hence the net current along the edge (i, j), independently of its direction, is
the absolute value |Iij|. This absolute value is exactly the net edge passage
times considered in equation (8) in the case of an undirected graph. The edge
relevances in the k-walk approach correspond to the sum of the net currents
obtained for k electrical networks when each node x of interest is used in
turn as a current source of ιx current unit.

The electrical interpretation of the k-walk method illustrate some links
and differences with the method proposed in [Faloutsos, 04]. The latter is
restricted to 2 nodes of interest, respectively called the source and the desti-
nation, in an undirected graph. A one unit voltage is applied to the source
and the destination is grounded. The voltages in all other nodes are com-
puted by solving the system of linear equations (21). The electrical analogy
is slightly different in the k-walk approach since a unit current is injected in
the source node rather than fixing its voltage. The respective currents and
voltages are however identical in both electrical circuits up to a multiplica-
tive constant equal to the effective resistance of the network [Doyle, 84]. In
other words, the expected edge passage times are identical in relative terms,
for one starting node. The k-walk approach generalizes this methodology to
any number of nodes of interest by considering k electrical networks.

Both approaches also differ when considering the actual subgraph extrac-
tion. The algorithm proposed by Faloutsos et al. searches the paths followed
by the current flow, from source to destination, and maximizes the sum of
current flow in the extracted subgraph. This approach is based on the ex-
traction of successive paths using dynamic programming. Such an approach
is more difficult to extend to any number of nodes of interest since the paths
to consider should be defined according to the k nodes.

In contrast, the k-walk approach does not compute explicitly some paths
but defines edge relevance according to their use in all possible walks. Walks,
as opposed to paths, also include possible round trips along a given edge but
the edge relevances are defined, for an undirected graph, as the net differences
in both directions. Note that if the graph is directed or, more precisely, if A

is no longer symmetric, the electrical analogy presented here does not hold
anymore since physical laws require the conductance to be symmetric. The
k-walk approach can still be applied however.

A universal sink node, which absorbs a fraction of the current delivered to
each node, is also introduced in [Faloutsos, 04]. The purpose of this current
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loss is to penalize very long paths between the two nodes of interest and
paths going through highly connected nodes (hubs). The (limited) k-walk
approaches do not include such current losses. Discarding very long walks is
the purpose of the limited k-walks approach. We argue that this is a more
direct and principled way of limiting the maximal walk length considered
between the nodes of interest. Discarding hubs can be obtained by defining
the weighted adjacency matrix in such a way that any edge connected to a
hub has a low conductance.

Finally, solving the system of linear equations (21) can be done in O(n3)
but iterative methods can often perform faster for sparse graphs. As detailed
in section 3, the limited k-walk approach can be seen as an approximation to
the k-walk approach for a large Lmax. The resulting time complexity reduces
to Θ(mLmax) for a single source node. The possible sparsity of the graph
directly pays off here since this complexity is linear with m, the number of
graph edges.

8 Experiments

An experimental study of the (limited) k-walk approaches is conducted in
the present section. The objectives of this study are summarized hereafter:

1. evaluate the discrimination efficiency of the proposed methods, that is,
their ability to extract small relevant subgraphs,

2. observe the benefits of inflation (see section 6) with respect to
the discrimination efficiency,

3. measure practical run times and validate them against the
theoretical complexity,

4. evaluate how well the limited k-walk approach can approximate
the k-walk approach for increasing Lmax values.

Randomly generated graphs are considered as well as two strongly con-
nected components of the metabolic network representing the KEGG LIG-
AND database [Goto, 00]. Random graphs were generated using the algo-
rithm presented in [Viger, 05]. This technique allows one to generate an
undirected and unweighted graph with a prescribed degree sequence drawn
from a power law10. In our experiments, the exponent of the power law γ is
set to 2.5 and the µ parameter is tuned such that the mean degree equals 4,
which are typical parameters used in [Viger, 05]. Graphs were generated with
sizes ranging from 100 to 20,000 nodes. The two strongly connected compo-
nents extracted from KEGG contain respectively 7,695 and 18,297 nodes and
their respective mean degrees are 2.7 and 2.9. Randomly generated graphs

10The probability that a node has a degree equal to d is P [d] = (d + µ)−γ .
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are undirected while the KEGG network forms a directed graph. Further-
more, we have defined weights on the graph edges such that aij = 2

di+dj
where

di and dj are respectively the out degrees of nodes i and j.
Each experiment is carried out using random sets of nodes of interest of

size |K| = 2, 5, 10 and 20. For each size, 10 sets are sampled out in order to
produce averaged results with standard deviations.

8.1 Discrimination efficiency

The (limited) k-walk approaches outputs relevance weights on the edges and
nodes of the input graph. The total amount of information is defined as the
sum of these relevances over all edges. Section 5 proposes several techniques
to extract a relevant subgraph. In our experiments, a subgraph is extracted
by keeping every edges with a relevance above a given threshold θe. The
information captured by a subgraph is simply defined as the sum of the
relevances over all edges in the subgraph. Dividing this quantity by the
total information provides the relative captured information. Similarly, the
subgraph relative size is obtained by dividing the number of edges in the
subgraph by the number of edges in the input graph. Figure 8 shows the
relative captured information for increasing relative subgraph sizes using the
k-walk method.
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Figure 8: The relative captured information averaged over 10 random sets
of nodes of interest for increasing relative subgraph sizes using the k-walk
approach.
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The k-walk technique seems to offer a good discrimination efficiency since
a large amount of information can be captured with small subgraphs. This
is especially true when a small set of nodes of interest is considered. For
instance, for an input graph with 1,000 nodes and |K| = 2, a 10% subgraph
captures in average 82% of information. In contrast, when |K| = 20, it only
captures 64% of information. The rationale is that a larger set of (randomly
chosen) nodes of interest is more likely to cover many regions of the input
graph, spreading the information in the graph. Furthermore, considering
larger input graphs also reduces the covering of the nodes of interest, making
the approach more discriminative.

We consider now the limited k-walk approach. Figure 9 shows the relative
discrimination efficiency for several Lmax values using an input graph with
1,000 nodes. This technique is more discriminative for small Lmax values. In-
deed short walks only explore frequently a small portion of the input graphs,
while concentrating the captured information. Note that using Lmax = 50
provides almost the same results as the standard k-walk approach (see the
bottom left of Figure 8). Using Lmax greater than 50 does not modify the
discrimination efficiency. As for the k-walk approach, a better discrimination
is obtained with a smaller number of nodes of interest.
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Figure 9: The relative captured information averaged over 10 samples of seed
nodes for increasing Lmax values using the limited k-walk approach.

We consider next the KEGG directed network. The plot of captured in-
formation against extracted subgraph relative size using the k-walk approach
is presented on the left side of Figure 10. Relatively small portions of the
input graph already contain a majority of the information of the graph. For
instance, 10% of the input graph captures 67% of the total information. Note
also that the captured information does not vary with the number of nodes
of interest. We interpret this result as a consequence of the strong connected-
ness of the component extracted from the whole network. The information
rapidly diffuses throughout such a graph and limited walks should reveal
much better the influence of the specific nodes of interest chosen. The right
side of Figure 10 illustrates that the captured information increases signifi-
cantly faster with Lmax = 10, with a slight dependence on |K|. The behavior
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of the limited approach tends rapidly to the unlimited case for larger Lmax

values. The same phenomenon is observed for the KEGG strongly connected
component containing 18,297 nodes.
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Figure 10: The relative captured information in a strongly connected com-
ponent of the KEGG network containing 7,695 nodes. Left: The relative
captured information using the k-walk approach. Right: The relative cap-
tured information using the limited k-walk approach with Lmax = 10.

8.2 Impact of inflation
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Figure 11: The influence of inflation on the discriminative efficiency using
the k-walk approach. Curves are provided using no inflation and using 1 and
2 inflation iterations.

Figure 11 shows the influence of inflation on the k-walk approach using a
random graph of size 1,000 and two nodes of interest. As expected, infla-
tion allows one to improve the discriminative efficiency. For instance, a 10%
subgraph captures in average 82% of information. Inflating the k-walk ap-
proach once or twice captures respectively 91% and 96% of information with
the same subgraph size. Similar observations are made when studying the
impact of inflation on the limited k-walk approach.
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8.3 CPU time

The time complexity of the k-walk approach is O(|K|n3) (see section 2). We
have assessed that our implementation fits this theoretical complexity. The
left side of Figure 12 presents running times per node of interest for growing
random graph sizes. The plotted times are computed by dividing the CPU
time by the number of nodes of interest. Since the expected complexity is
linear in |K|, these normalized times should be cubic in n. The plot presented
on the left side of Figure 12 is a cubic curve fitting very well our experimental
measures.
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Figure 12: Left: running time results for the k-walk approach. The running
time divided by |K| is presented for various values of |K| and for increasing
graph sizes. Right: Running time results for the limited k-walk approach.
The running time divided by |K|Lmax is presented for various values of |K|
and Lmax for increasing graph sizes.

The time complexity of the limited k-walk approach is Θ(|K|mLmax).
The right side of Figure 12 presents the CPU time normalized per walk step
and number of nodes of interest. The right side of Figure 12 presents a
least-square fit of a linear function to our experimental data.

In a nutshell, the limited k-walk approach can handle an input graph
of 100,000 nodes, with 10 nodes of interest and Lmax = 1, 000 in about 30
minutes on a standard PC. The actual useful maximal length to consider is
often significantly smaller as discussed in the next section.

8.4 Approximating k-walks with limited k-walks

As mentioned in the previous paragraph, the limited k-walk offers a signif-
icant reduction of CPU time as compared to the k-walk approach. Such a
reduction allows one to handle much larger graphs. We study now whether
the limited k-walk approach can approximate well the subgraph extracted
by the k-walk approach. The limited approach is guaranteed to become
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equivalent to the unlimited case when Lmax tends to infinity (see section 3).
We shall see that a good approximation is already obtained in practice with
relatively small Lmax values.

A first indicator of the quality of the approximation is the cumulated
absorption probability:

1

|K|

∑

x∈K

Lmax
∑

L=1

P [L|X0 = x]

For a given starting node x, the inner sum computes the cumulative proba-
bility of walks up to length Lmax. When all walk lengths are considered (i.e.
Lmax → ∞), this quantity sums up to one. This cumulative probability is
averaged over all starting nodes in K. Hence, if this average is close to one
for a finite Lmax value, the limited k-walk is expected to approximate well
the k-walk approach.
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Figure 13: The cumulated absorption probability for increasing Lmax values,
using the limited k-walk approach.

Figure 13 displays the cumulated absorption probability with respect to
the Lmax value for two input graphs containing respectively 5,000 and 20,000
nodes. A higher mass of absorption probability is obtained with a larger
number of nodes of interest. For instance, for an input graph containing
20,000 nodes, an absorption probability of 0.91 is obtained with Lmax =
5, 000 and 20 nodes of interest while this probability mass is only 0.12 for
2 nodes of interest. The rationale is that the distance, in terms of number
of steps, between two distinct nodes of interest becomes smaller in average
with a larger number of nodes of interest. Therefore, smaller walk lengths
are required to get a high absorption probability mass.

The above analysis shows that only a small fraction of the total probabil-
ity mass may be captured even for relatively large Lmax values. The extracted
subgraph is however not necessarily very different with respect to the unlim-
ited case. Indeed, relative edge relevances may be already well approximated
with a small Lmax. The following experiment confirms this statement.
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Several subgraphs are extracted with the k-walk approach. Each sub-
graph corresponds to a fixed proportion (5%, 10% and 20%) of the same
input graph. They serve as reference subgraphs. Next, the limited k-walk
approach is used to extract subgraphs. Figure 14 reports precision/recall
figures of the edges included in these subgraphs with respect to the refer-
ences. The curves are obtained while varying the selection threshold of the
edge relevances computed with the limited approach. The plots correspond
to several Lmax values with an input graph of 5,000 nodes and 5 nodes of
interest.
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for the k-walk approach. Precision/recall curves are computed by increasing
the threshold on the edge relevance weight obtained with the limited k-walk.

Unsurprisingly, the higher the Lmax value, the better the precision/recall.
A very good precision/recall curve is already obtained using Lmax = 50.
This curve is almost ideal while the cumulated absorption probability is only
equal to 0.2 in this case. In conclusion, the standard k-walk approach can
be approximated accurately with the limited k-walk approach using a small
Lmax value and at a much lower computational cost.

9 Conclusion and research perspectives

This work describes novel methods to extract a relevant subgraph that best
captures the relationships between k given nodes of interest in a connected
graph. The number k of nodes of interest is typically assumed much smaller
than the graph order n. The proposed approaches are based on random walks
between the nodes of interest to define node and edge relevances proportion-
ally to their expected frequency of use along these walks. Such quantities
can be computed efficiently after transforming the graph successively into k
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absorbing Markov chains. In particular, the time complexity of the k-walk
approach is O(kn3) since it essentially amounts to invert k matrices of size
O(n) ×O(n).

The k-walk approach relies on walks of any length between the nodes of
interest. In contrast, a method relying only on shortest paths between these
nodes would offer a much more restrictive view. The limited k-walk approach
offers an intermediate view (in number of walk steps) since it considers ran-
dom walks up to a maximal length Lmax. It can be efficiently implemented
with two recurrences similar to those of the forward-backward algorithm used
for estimating the parameters of a Hidden Markov Model [Rabiner, 93]. The
resulting time complexity is Θ(kmLmax), where m denotes the number of
graph edges.

The limited k-walk method offers an efficient way to approximate unlim-
ited k-walks even when a relatively small Lmax is chosen. The quality of
this approximation is discussed in section 8. Practical experiments also illus-
trate that the proposed methods are well suited to extract relatively small
subgraphs while capturing most of the information between the nodes of in-
terest. Even more discriminative results can be obtained while inflating edge
relevances.

The limited k-walk approach is clearly superior to the unlimited k-walk
with respect to CPU time. It can process a graph of 100,000 nodes with 10
nodes of interest and a maximal walk length of 1,000 steps in 30 minutes
on a standard PC. Relevant subgraphs of the largest connected component
(18,297 nodes and 53,248 edges) of the KEGG metabolic network [Goto, 00]
can be extracted in 3 seconds, while considering 5 randomly chosen nodes of
interest and Lmax = 50. This walk length is also shown to approximate very
well the unlimited case.

Additional variants of the proposed methods consider clusters of nodes of
interest. Our future work includes several aspects described below.

Some of the practical experiments described in section 8 were conducted
on metabolic networks. These experiments answer questions related to the
amount of captured information in the extracted subgraphs or the respective
results of the limited versus unlimited k-walk methods. Average results were
reported here with nodes of interest chosen at random. From a biological
viewpoint the nodes of interest are far from random though. The proposed
methods could be tested with carefully chosen nodes of interest. The ex-
tracted subgraphs could then be compared with known metabolic pathways.
Interestingly, these pathways are not necessarily restricted to single paths
but several alternatives are often considered to define a biologically relevant
subgraph. The initial edge weights should be defined in a meaningful way in
this context, possibly according to the enthalpy of the various reactions rep-
resented by the nodes of the network. Such an approach would then help to
predict relevant subgraphs which are not yet identified as known pathways.

The limited k-walk approach is efficient since it scales linearly with k, the
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graph size and the maximal walk length. Yet it may require to be adapted for
very large graphs by decomposing the computation over several predefined
subgraphs and by combining the results. One could investigate whether some
edges with very high relevances can be rapidly detected and serve as seeds
of this process.

Another open issue is the sensitivity of the k-walk approach to the inser-
tion or removal of an edge in the graph or, more finely, to some modification
of its weight. Fast computation of the extracted subgraph after such a mod-
ification is a related issue.

Up to now, the nodes of interest in the original graph are assumed to be
given. The sensitivity analysis mentioned above could determine for which
nodes of interest the results are more or less stable. A different but related
problem is to find which nodes of interest have the highest influence overall
in the graph. Some existing works precisely address this issue, motivated by
the design of viral marketing strategies in social networks [Richardso, 02].
Finding the most influential nodes, according to standard models of infor-
mation diffusion in social networks, is known to be a NP-hard optimization
problem. However an efficient greedy strategy providing a good approximate
solution has been proposed [Kempe, 03]. It would be interesting to study
whether the k-walk approach could be adapted to this objective.

Information diffusion in graphs has also been studied with kernel meth-
ods [Kondor, 02]. Such a kernel defines a similarity measure between graph
nodes. This kernel is related to a lazy random walk model. The random
walker in this model has a certain probability, at each time step, to stay in
place (even if the graph does not include self loops) rather than pursuing
her walk. One could possibly extend this approach by defining a similarity
measure between graph nodes which would become relative to some nodes of
interest.

A diffusion kernel is also strongly related to the graph Laplacian which
plays a central role in spectral graph theory [Chung, 97]. In particular, Shi
and Malik introduced a normalized cut criterion to define an optimal biparti-
tioning of a graph [Shi, 00]. They proposed a spectral segmentation approach
based on the normalized Laplacian to approximate this problem. Meila and
Shi also present links between this spectral segmentation and random walks
in a Markov chain [Meila, 01]. Random walks are also used in the MCL
algorithm for graph clustering [vD, 00]. Another line of work would extend
these works by considering an optimal partitioning or clustering of a graph
relative to some predefined nodes of interest.
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