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Abstract. In this paper?, we propose a way of incorporating additional
knowledge in probabilistic automata inference, by using typed automata.
We compare two kinds of knowledge that are introduced into the learn-
ing algorithms. A statistical clustering algorithm and a part-of-speech
tagger are used to label the data according to statistical or syntactic in-
formation automatically obtained from the data. The labeled data is then
used to infer correctly typed automata. The inference of typed automata
with statistically labeled data provides language models competitive with
state-of-the-art m-grams on the Air Travel Information System (ATIS)
task.

1 Introduction

Grammatical inference consists in learning formal grammars for unknown lan-
guages when provided with examples of strings belonging (or not) to the lan-
guage. Regular grammatical inference, in which the target grammar is supposed
to be regular, has received most of the attention. If one is provided with pos-
itive and negative examples, the RPNI algorithm [OG92] can be used to infer
deterministic finite automata.

In the case where only positive examples are available, theoretical results
[Gol67] show that the task becomes considerably harder. An alternative is to
learn a probabilistic finite automaton from the data, learning the regularities of
the distribution rather than those of the language: several algorithms have been
proposed [C094,5094, TDAIHO0] for this task.

These algorithms generally perform well on small tasks but are not currently
able to obtain significant results on real world tasks where the size of the alphabet
and the noise are serious obstacles. Furthermore, very often the complexity of
the intended model is such that the quantity of learning data is insufficient. The
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success of a model and a learning algorithm depends on their ability to include
prior knowledge, in order to compensate for the lack of data. Alternatively, with
only a fixed set of data, prior knowledge allows to learn more complex functions.

In the specific context of probabilistic model learning, the success of HmMs
in several application domains, like speech recognition or computational biology,
is partly due to the use of additional knowledge to design the structure of the
models: in speech recognition, the knowledge on the phonemic structure of ut-
terances and in computational biology, additional knowledge regarding the mean
length of proteins and additional distribution of amino acids are used to design
the models.

We believe that the use of additional knowledge in grammatical inference
can bring a number of advantages. Firstly to reduce the search space by exclud-
ing automata which do not conform with this knowledge; secondly to complete
the learning data with additional knowledge, for example by providing implicit
counter-examples: strings known not to belong to the target language; thirdly
to introduce in a simple way real world constraints that the induced formal
language must satisfy.

Kermorvant & de la Higuera [KdIH02| have proposed a framework based
on state typing to include additional knowledge into the automaton inference
process. State typing both reduces the search space of the probabilistic finite au-
tomata (PFA) induction (hence decreasing the practical complexity of learning),
and guarantees the compatibility of the learned models with this knowledge.
The additional knowledge considered in the present paper either comes from
statistical clusters or part-of-speech tags.

We compare the use of these two kinds of additional knowledge in the frame-
work of language modeling: on the Air Travel Information System (ATIS) task,
the results we report are comparable with those achieved by state-of-the art
n-grams models.

2 Regular Language Learning from Tagged Data

The search space for the problem of regular languages inference is finite but huge
[DMV94]: it is a partition lattice defined by the set of states of the prefix tree
acceptor (PTA). The PTA is the smallest tree-shaped deterministic automaton
accepting exactly I,. Under the hypothesis of the presence of a structurally
complete sample (i.e. a set of strings that makes use of all edges, nodes and
final states of the target), the target automaton is guaranteed to belong to this
lattice. A negative sample is generally used to control the generalization while
searching for the target. However, since the size of the lattice is exponential in
the size of the sample set, a good strategy is required to explore this lattice. We
choose to learn probabilistic finite automata so that we can, in principle, handle
two additional difficulties raised by real data: the lack of negative information
and the presence of noise. Besides, background knowledge of the application
domain is often available. In [KdIH02] a framework that includes additional
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knowledge in the automaton inference algorithms is proposed. This framework is
the application of typing, as known for terms and trees, to finite state automata.

2.1 Typed Probabilistic Finite State Automata

We consider probabilistic finite state automata (PFA), which provide a proba-
bilistic extension of finite state automata. A PFA 4 is a tuple < @, X, 9, T, qo, F' >
where: @ is a finite set of states, X' is an alphabet, 6 : Q x X — (@ is a transition
function, 7 : @ x X' —]0..1] is a function which returns the probability associated
with a transition; go is the initial state, F' : Q — [0..1] is a function which returns
the probability for a state to be final. A typed Pra [KdIH02] is defined with the
addition of S, a set of types and o, a typing function which associates a single
type to each state of the automaton.

Furthermore, we only consider PFA which are structurally deterministic and
which define define a probability distribution on X* (trimmed and satisfy the
consistency constraint: Vg € Q, [ ,cx 7(¢,a)] + F(g) = 1) The probability
assigned by the automaton to a string is classically the product of the transition
probabilities along any accepting path and the final probability.

There are several ways to define the typing function o. In [KdIH02], it was
proposed to define the typing function o by a type automaton constructed by
an expert, on the basis of some knowledge he may have of the domain. In this
paper, we propose to automatically infer the typing function from strings where
the symbols are tagged for example according to a part-of-speech tagger for
natural language sentences.

Typing functions could, in theory, be as complex as one may want. Practically
we do not want typing to be a burden to learning. Our current choice is to make
type-checking easy, even if this limits the expressiveness of the typing function.
The typing function (o) must be able to type all states, and therefore possible
strings in a regular manner. Therefore two conditions must be met:

— if L is the set of all possible strings: Vu € L, o(u) is defined;
— if we denote by oy, (u) the label of prefix u in the context of string ww:
Yuv,uw € L = 0yy(u) = oy (w).

A typing function o is admissible if the above conditions hold.

Hence one can associate various types to a symbol, but only one type to a
string. It should be noticed that this is a strong condition: in usual cases tags are
computed by taking into account both left and right-hand contexts. In section 4
we discuss various ways of relaxing this condition.

2.2 Learning Typed Automata from Automatically Labeled Data

Several algorithms have been proposed to infer PFA from examples using fre-
quencies [CO94,RST95,TDAIH00]. All these algorithms are based on a similar
scheme, which is presented in algorithm 1. Our inference algorithm for typed
automata from labeled data is also derived from this scheme that we explicit
below.
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Algorithm 1 Generic PrA induction algorithm
Require:

I, training set (sequences)

«, a precision parameter
Ensure: a probabilistic finite state automaton

A « build_PPTA(1)

while (g;, g;) < choose_ states(A) do

if is_ compatible(g;,qj, ) then
merge(A,gi, 4;)
return A

Given a set of labeled positive examples I, the algorithm first builds the
typed probabilistic prefix tree acceptor (PPTA). The typed PpPTA is an automa-
ton accepting all examples of I, in which the states corresponding to common
prefixes are merged and such that a training count is attached to each state and
each transition. This count denotes the number of times this state, or transition,
is used while parsing the sample.Let C(q) (respectively C(g,a) and Cf(q)) de-
notes the number of times the state g (respectively the transition (q,a) and the
final state ) is used while parsing I, . An estimate 7 (resp. F') of the function 7
(resp. F) can be computed from these counts:

Vae 5,7(g,0) = L Fl@) = G

The typing function of the typed PPTA is defined by the labels of the strings in
I,. When a string with label [ is used to reach a state g of the typed PPTA, the
label ! is the type of the state g: o(q) = l. Note that the fact that the typing
function is admissible implies that a typed PPTA can always be built from a
given labeling.

The second step of the algorithm consists in visiting the states of the PPTaA
(function choose _states(A)), and testing whether the states are compatible and
can be merged. The compatibility criterion (defined in algorithm 1) by function
is_ compatible(g;, g;, &) depends on a precision parameter a. If the states are
compatible, they are merged (function merge(4,q;,g;)). Usually, several con-
secutive merging operations are made in order to maintain the deterministic
structure of the automaton. The algorithm halts when no more merging is pos-
sible. In the case of algorithm ALERGIA [CO94], the compatibility of two states
is based on testing the compatibility of their associated provabilities.

By using only admissible typing functions, the introduction of type con-
straints in the learning algorithm is straightforward. Every time a merging op-
eration is considered, we check whether the states have the same type. This
constraint can easily be implemented in constant time: it is sufficient to test the
equality of the types of ¢; and ¢; in function is_ compatible(q;, g;, o). With this
constraint, the type of any string in the inferred language is guaranteed to be
consistent with the types of the strings in the learning set.



Improving probabilistic automata learning with Additional Knowledge 5

3 Experiments

We have tested our approaches on a language modeling task with the Air Travel
Information System (ATiS) corpus. This corpus has been widely used in the
speech recognition community and specifically for probabilistic automaton in-
duction tasks (see e.g. [DC98,TDdIH00,LVC02]). This corpus consists in infor-
mation requests performed in American English.

We use the ATIS-2 sub corpus which is composed of a training set containing
13,044 utterances (130,773 tokens) and two test sets containing respectively 974
utterances (10,636 tokens) and 1001 utterances (11,703 tokens). The task vocab-
ulary is composed of 1,296 different words. All the automata are inferred on the
train set, the parameters are tuned on the first test set (named validation set),
and the second test set (named test set) is used for independent final evaluation.

The usual quality measure in language modeling tasks is test set perplexity:

PP =292LL = 27ﬁ Y wes logy P(w)

where P(w) denotes the predicted probability of word w and ||S|| denotes the
number of words in the test set. The smaller the perplexity the better the au-
tomaton can predict the strings observed in the test set. It is generally agreed
that perplexity is a good quality criterion for language models.

In order to guarantee that every word can be predicted with a non null proba-
bility, the inferred automaton must be smoothed. We interpolate the automaton
with a unigram model, which defines the probability P; (w) of each word w in the
training set, independently of its context. The probability of a word w assigned
by the smoothed automaton is then:

P(w) = BPpra(w) + (1 — B)P1(w)

This smoothing technique is very rudimentary but, as such, it best reflects the
quality of the induced PFA alone. Finally, as some words of the application
vocabulary may not occur in the training set®, the unigram probability itself is
smoothed by absolute discounting [KN95].

3.1 Comparison of two Typing Functions for Automata Inference

In this section, we compare the use of two kind of additional knowledge for
typed automata inference : P0Os tags and statistical clustering. Our baseline is
a standard PFA inference algorithm (ALERGIA) not using state typing.

The Pos information was obtained by tagging the training set using the Brill
tagger [Bri92]. As a first approach, each word was tagged with its most likely
tag, disregarding the context rules. The resulting tagged training set contains
32 different Pos types.

The statistical information leading to the class tagging was obtained by the
clustering algorithm presented in [DC98|. For a given number of clusters, the

5 This is the case for 131 out of 1,296 words.
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Fig. 1. Results on the validation set : Percentage of sentences correctly parsed versus
the number of parameters of the automaton 1(a), perplexity of the sentences correctly
parsed 1(b), and perplexity with inferred typed automaton and unigram interpolation

1(c).

clustering algorithm iteratively constructs the classes so that the average mutual
information between the classes is maximized. Values for the number of clusters
ranging from 10 to 1000 have been tested.

The best standard automata inferred with ALERGIA yields a perplexity of
66 on the ATIS test set. On the same test set, typed automaton inferred using
POS tags typing yields a perplexity of 57 and the best perplexity score, 42, is
obtained with the typed automaton using statistical clusters. The influence of 3
learning parameters was studied on the ATis development set :

— the precision parameter a which controls the compatibility criterion and
therefore the number of compatible merging operations,

— the number k of distinct types,

— the interpolation parameter 3.

Note that k can only be tuned when the types correspond to statistically
induced classes. In this case, the optimal number of classes is 90. In the case of
Pos tagging, the number of distinct types is defined a priori by the tagger and
cannot be tuned. The parameters « and k control the degree of generalization
allowed during the typed automaton induction. Hence these parameters control
the number of parameters of the inferred model (number of states and transitions
of the PFA). The parameter 3 controls the weight of the induced PFA in the
combined smoothed automaton.

Figure 1(a) shows the percentage of sentences from the validation set fully
parsed by the inferred typed automaton for the two kind of additional knowledge
with respect to the number of parameters of the typed automaton (number of
states and number of transitions). In this case, no smoothing is used. The typed
PrrA parses only 7% of the validation set whereas the universal automaton
which accepts all the sentences built with words of the training set, parses 94%
of the sentences in the validation set (6% of the sentences are not fully parsed
since they contain out-of-vocabulary words). For a fixed number of parameters,
the use of typed automata increase the number of sentences that can be parsed
compared to standard automata inferred with ALERGIA.
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Figure 1(b) presents the perplexity obtained by the inferred typed automata
with respect to the number of sentences parsed. The best results are situated
in the bottom right corner of figure 1(b) as they correspond to high coverage
and small perplexity. The smoothed unigram parses 100% of the sentences but
yields a perplexity of 145. For a given number of parsed sentences, both the
Pos-based and cluster-based typed automata yield a smaller perplexity and the
typed automaton inferred with statistical classes yields the smallest perplexity. It
should be stressed that, as no smoothing is performed in this case, the perplexity
is only partial as it is computed over those strings that can be parsed.

Figure 1(c) shows the perplexity obtained by the inferred typed automaton
interpolated with the smoothed unigram. The best perplexity reduction (39%
as compared with standard Alergia) is obtained when using typed inference
with 90 statistically defined classes with inference parameter o = 1.10~* and
interpolation parameter § = 0.8.

3.2 Comparison with Class-Based Inference

In this section we compare our approach with a method previously introduced
to improve automata inference.

Dupont & Chase [DC98] proposed to use statistical clustering of symbols
to improve grammatical inference on large vocabularies. The first step of their
approach consists in building classes of symbols from the learning samples. Once
the classes are defined, each symbol is associated to a class and the probability of
each symbol w in its class g(w), denoted by P(w|g(w)), can easily be computed.
The learning samples are then relabeled in terms of classes and an automaton is
inferred on the class labels using a classical inference algorithm such as ALERGIA.
Finally the automaton is expanded by replacing each class by all the symbols
it contains. More formally, once an automaton is inferred on the classes, each
transition (¢, G) from a state ¢ with label G is replaced by as many transitions
as there are symbols w such that g(w) = G. The probability estimates 7(q,w)
of these transitions are given by 7(¢,w) = 7(g, G) - P(w|G).

We propose to use the same scheme but with Part-of-Speech classes instead
of statistical clusters. The class automaton is inferred with ALERGIA on Pos
tags and expanded to words afterward. This yields to compare four approaches
that are summarized in Table 1. The perplexity results of these four approaches
is also shown on Table 1. Our approach, based on typed automata yields better
results than the approach based on class inference, both when using Pos tags
or statistical clusters.

3.3 Improved Smoothing Methods

The smoothing technique used in the evaluations described in section 3.1 and 3.2
is rudimentary. We argued that interpolation with a smoothed unigram guar-
antees to bound the perplexity while best reflecting the predictive power of the
inferred PFA alone. However, if the objective is to minimize test set perplexity,
more sophisticated smoothing techniques are required.
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typed automata inference on
inference classes + expansion
Pos tags| Pos-typed Pos-class
automata automata
perplexity : 57 | perplexity : 112
Statistical| cluster-typed cluster-class
clusters automata automata
perplexity : 42 perplexity : 52

Table 1. Two approaches to use two different kinds of information and their best
perplexity results on the test set with interpolation to unigram.

A very competitive language model on the ATIS task is a trigram model with
Kneser-Ney back-off smoothing [KN95]. This smoothed trigram model combines
a trigram model and two back-off distributions, respectively based on a bigram
and a unigram model. The ATIS test set perplexity of this combined model is
14.

Current results for the best typed automata inferred with 90 statistically
defined classes and smoothed with a simple back-off to unigram (a simplified
version of the smoothing scheme described in [LVC02]) gives a perplexity of
20. The trigram model smoothed with the same method (back-off to unigram)
gives a perplexity of 17. Further improvements of the smoothing techniques for
automata should therefore decrease the perplexity.

It should be noted that the number of parameters needed by the best typed
automata combined with a smoothed unigram is 1.1 * 10°. The trigram model
with Kneser-Ney smoothing to both bigram and unigram needs 6 * 10% param-
eters. The smoothed typed automata needs less parameters to obtain a similar
perplexity on this task.

4 Discussion

It has been shown in [DC98] that the use of statistical class information improves
the quality of probabilistic automata used as language models. The present work
illustrates that this is even more true when statistically induced classes are com-
bined with typed PFA inference.

The results obtained when using P0OS tag information are less convincing,
even though it has been shown that grammatical information can help language
models. Let us stress however that we did not use here the full information
provided by the Pos tagger as each word was tagged according to its most
likely tag, disregarding the contextual rules. This approximation was required to
construct a typed PPTA, which is a deterministic PFA as explained in section 2.2.
In order to fully take into account Pos information, several extensions of the
present approach are possible. Firstly inference algorithms could be developed to
infer (possibly) non-deterministic structures. Secondly extended typing functions
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allowing several types per states and inducing multi-typed automata could be
developed.

Finally, the framework of typed automata is general and could easily be
adapted to other grammatical inference algorithms which have been shown to
have better performances than ALERGIA.

5 Conclusion

We have proposed a way to use additional knowledge in grammatical inference
with typed automata. When manually or automatically labeled data is available,
the labels can be used as types and the inference algorithm we have proposed
guarantees that the inferred automaton is compatible with the labeled data. We
have compared the use of two kinds of labeling for probabilistic typed automata
inference. Part-of-speech labeling provided by a Po0s tagger and statistical clus-
tering of words have been compared as labeling for natural language data. The
use of statistical word classes information allows us to infer better automata. Our
approach provides models which are competitive with state-of-the-art n-grams
with similar smoothing techniques while being more compact and needing less
parameters.
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