1

Symmetry Breaking in Subgraph Pattern Matching

Stephane Zampelli, Yves Deville, and Pierre Dupont

Université Catholique de Louvain,
Department of Computing Science and Engineering,
2, Place Sainte-Barbe
1348 Louvain-la-Neuve (Belgium)
{sz,yde,pdupon@info.ucl.ac.be

Abstract

Graph pattern matching, a central application in

many fields, can be modelled as a CSP. This CSP
approach can be competitive with dedicated algo-
rithms. In this paper, we develop symmetry break-

ing techniques for subgraph matching in order to

increase the number of tractable instances. Spe-
cific detection techniques are first developed for the
classical variables symmetries and value symme-
tries. It is also shown how these symmetries can be
broken when solving subgraph matching. We also

show how conditional value symmetries can be au-
tomatically detected and handled in the search pro-
cess. Then, the concept of local value symmetries is
introduced; it is shown how these symmetries can

be computed and exploited. Finally, experimental

results show that symmetry breaking is an effective

way to increase the number of tractable instances
of the subgraph matching problem.

Introduction

metries. We will show how to detect and handle those condi-
tional symmetries.

Related Works Handling symmetries to reduce search
space has been a subject of research in constraint program-
ming for many years. Crawford and a[Crawfordet al,
1994 showed that computing the set of predicates breaking
the symmetries of an instance is NP-hard in general. Differ-
ent approaches exist for exploiting symmetries. Symmetrie
can be broken during search either by posting additional con
straints (SBDS)Gent and Smith, 2041 Gentet al., 2002
or by pruning the tree below a state symmetrical to a pre-
vious one (SBDD)Gentet al, 2003. Symmetries can be
broken by taking into account the symmetries into the heuris
tic [Meseguer and Torras, 2001Symmetries can be broken
by adding constraints to the initial problem at its root node
[Crawfordet al,, 19949 [ Gent, 200). Symmetries can also be
broken by remodelling the proble[Bmith, 200].

Dynamic detection of value symmetries and a general
method for detecting them has been proposd@enhamou,
1994. The general case for such a detection is difficult. How-
ever in not-equal binary CSPs some value symmetries can be
detected in linear timEBenhamou, 2004and dominance de-
tection for value symmetries can be performed in linear time

A symmetry in a Constraint Satisfaction Problem (CSP) is[Benhamou and Saidi, 20p6

a bijective function that preserves CSP structure and solu- Lately research efforts has been triggered towards defining
tions. Symmetries are important because they induce syndetecting and breaking symmetries. Cohen anfiGshenet
metric subtrees in the search tree. If the instance has ne solal., 2009 defined two types of symmetries, solution symme-

tion, failure has to be proved for equivalent subtrees iggr

tries and constraint symmetries and proved that the group of

symmetries. If the instance has solutions, many symmetriconstraint symmetries is a subgroup of solution symmetries
solutions will have to be enumerated in symmetric subtreesGent and al[Gentet al, 20050 evaluated several techniques
The detection and breaking of symmetries can thus speed up break conditional symmetries, that is symmetries agisin
the solving of a CSP.

during search. However the detection of conditional symme-

Symmetries arise naturally in graphs as automorphismdries remains a research topic. Symmetries were also shown

However, although a lot of graph problems have been tackletb produce stronger forms of consistency and more efficient
[Beldiceanuet al., 2009 [Cambazard and Bourreau, 2004 mechanisms for establishing thd@entet al, 20053. Fi-
[Sellman, 200Band a computation domain for graphs hasnally, PugefPuget, 2005hshowed how to detect symmetries
been definedDoomset al, 2004, and despite the fact that automatically, and showed that all variable symmetriedccou
symmetries and graphs are related, little has been done to ilve broken with a linear number of constraints for injective
vestigate the use of symmetry breaking for graph problems iproblemgPuget, 2005a

constraint programming.

Graph pattern matching is a central application in many

This paper aims at applying and extending symmetriesields[Conteet al., 2004. Many different types of algorithms

techniques for subgraph matching. Existing techniques usthave been proposed, ranging from general methods to spe-
ally handle only initial symmetries and are not able to deteccific algorithms for particular types of graphs. In consttai
symmetries arising during search, so called conditional-sy programming, several autholkarrosa and Valiente, 2002;
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Rudolf, 1999 have shown that subgraph matching can be —
formulated as a CSP problem, and argued that constraint pro-
gramming could be a powerful tool to handle its combinato- Gp
rial complexity. Within the CSP framework, a model for sub- —
graph monomorphism has been proposed by RU&altiolf, s
1999 and Valiente et al[Larrosa and Valiente, 20020ur -~
modeling[Zampelli et al,, 2009 is based on these works.

Sorlin [Sorlin and Solnon, 20Q4proposed a filtering algo-

rithm based on paths for graph isomorphism and part of our ) )
approach can be seen as a generalization of this filterind7igure 1: Example solution for a monomorphism problem
A declarative view of matching has also been proposed ifnstance.

[Mamoulis and Stergiou, 2004 In [Zampelliet al., 2004,

we showed that CSP approach is competitive with dedicated ) )
algorithms over a graph database representing graphs wifaPhG = (IV, E) is a graphS = (N’, E') whereN" is a
various topologies. subset ofV andE’ is a subset of-.

ObjectivesThis work aims at developing symmetry break- A subgraph monomorphism(or subgraph matching) be-
ing techniques for subgraph matching modelled as a CSP itweenG,, andG, is a total injective functiorf : N, — N,
order to increase the number of tractable instances of graptespecting the monomorphism constraintu, v) € E, =
matching. Our first goal is to develop specific detectiontech (f(u), f(v)) € E;. Figure 1 shows an example of subgraph
niques for the classical variable symmetries and value symmonomorphism.
metries, and to break such symmetries when solving subgraph
matching. Our second goal is to develop more advanced syny
metries that can be easily detected for subgraph matching. be modeled withX = z,,...,x, with z; a FD variable

Results corresponding to thei node of G, and D(z;) = N;.

e We show that variable symmetries and value symmetrieThe injective condition is modeled with the global con-
can be detected by computing the set of automorphismstraintal | di f f (1, ...z,,). The monomorphism condition
on the pattern graph and on the target graph. is translated into the global constraiMC(z1,...,z,) =

e We show that conditional value symmetries can be de/\¢ jjes, (%i, ;) € Ei. Implementation, comparison with
tected by computing the set of automorphisms on vari-dedicated algorithms, and extension to subgraph isomor-
ous subgraphs of the target graph, called dynamic targgthism and to graph and function computation domains can
graphs. The GE-Tree method can be extended to handlee found in[Zampelliet al., 2005; Devilleet al.,, 2003.

these conditional symmetries. A CSP instance is a triple X, D,C > whereX is the
¢ We introduce the concept of local value symmetries, thaset of variables,D is the universal domain specifying the
is symmetries on a subproblem. It is shown how suchpossible values for those variables, afids the set of con-
symmetries can be computed and exploited using starstraints. In the rest of this document,= |N,|, d = |D|,
dard methods such as GE-Tree. and D(z;) is the domain ofz;. A symmetry over a CSP
gﬁ_stanceP is a bijectionoc mapping solutions to solutions,

ment achieved by these symmetries and show that synfnd nénce non solutions to non solutidifaget, 2005b
metry breaking is an effective way to increase the num: ince a symmetry is a bijection where domain and target

ber of tractable instances of the subgraph matching probSetS ar€ the same, a symmetry is a permutatiovarable
lem. symmetnyis a bijective functiono : X — X permuting a

) ) ) _(non) solutions = ((x1,d41),. .., (xn,d,)) to a (non) solu-
Outline Sections 2 provides the necessary background ifion s' = ((o(z1),dy), ..., (0(zn),dy)). A value symme-
subgraph matching and in symmetry breaking. Section 3 deyy is a bijective functions : D — D permuting a (non)
scribes a CSP approach for subgraph matching. Sectionssplution s = ((21,d1),..., (s, d,)) to a (non) solution

The CSP model of subgraph matching should represent
total functionf : N, — N,. This total function can

e Experimental results compare and analyze the enhanc

and 4 present variable symmetries and value symmetries it — ((zy,o(d,)), ..., (#n,0(dn)). A value and variable
subgraph matching. Conditional value symmetries are harsymmetryis a bijective functions : X x D — X x D
dled in Section 6, and Section 7 introduces local value sympermuting a (non) solution = ((z1,d1), ..., (zn,dy)) to
metries in subgraph matching. Finally, Section 8 describeg (non) solutions’ = (o(z1,d1),...,0(xn,dy,)). A condi-
experimental results and Section 9 concludes this paper.  tional symmetryof a CSPP is a symmetry holding only in
. a sub—problen’P/ of P. The conditions of the symmetry are
2 Background and Definitions the constraints necessary to genetdtérom P [Gentet al,,
Basic definitions for subgraph matching and symmetries ar@005H. A groupis a finite or infinite set of elements together
introduced. with a binary operation (called the group operation) th&t sa
A graph G = (N, E) consists of anode setN and an isfy the four fundamental properties of closure, assodtsti
edge setl C N x N, where an edgéu, v) is a pair of nodes. the identity property, and the inverse property. &rtomor-
The nodes: andv are the endpoints of the edge, v). We  phism of a graphs a graph isomorphism with itself. The sets
consider directed and undirected graphssubgraph of a  of automorphismslut(G) define a finite permutation group.
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Figure 2: Example of symbolic graph for a square pattern. Pattern Target
3 Variable Symmetries Figure 3: Example of matching where the set of value sym-

_ metries is not empty andut(G;) = 0.
3.1 Detection

This section shows that, in subgraph matching, variable sym3 2 Breaking

metries are the automorphisms of the pattern graph and do i ) ,

not depend on the target graph. Two techniques were selected to break variable symmetries.
It has been shown that the set of variable symmetries of th_g’he first technique is an approximation and consists in break

CSP is the automorphism group ofgmbolic grapHPuget, N9 only the generators of symmetry grol(rawfordet al,

2005H . The patterrG,, is transformed into a symbolic graph 1994. Those generators are obtained by using a tool such as

S(G,) where Aut(S(G,)) is the set of variable symmetries NAUTY. For each generatar, an ordering constraint< os

of the CSP. is posted.
The second technique breaks all variable symmetries of an

Definition 1 A CSPP modeling a subgraph monomorphism injective problem by using a SchreierSims algorithm, pro-
instance(G,, G;) can be transformed into the following sym- vided that the generators of the variable symmetry group are
bolic graphS(P) : known [Puget, 2005b Puget showed the number of con-
. . . ) straints to be posted is linear with the number of variables.
1. Each variabler; is a distinct node labelled The Schreier-Sims algorithm computes a base and strong

2. Ifthere exists a constraint/ C'(z;, z), then there exists  generating set of a permutation group @(n*log*|G| +
an arc betweeri andj in the symbolic graph t.n.log|G|), whereG is the groupt the number of generators

, e , andn the size of the of group of all permutations containing
3. The constraint alldiff is transformed into a node typed ;.

with label 'a’; an arc (a, z;) is added to the symbolic

h. i
grap 4 Value Symmetries

If we do not consider the extra node and arcs introduced by .
the alldiff constraint, then the symbolic gragti?) andG,  +1 Detection
are isomorphic by construction. Given the labeling of nodesn subgraph matching, value symmetries are automorphisms
representing constraints, an automorphisrfi(i*) maps the  of the target graph and do not depend on the pattern graph.
alldiff node to itself and the nodes corresponding to theé var _ _ _
ables to another node corresponding to the variables. Eachheorem 3 Given a subgraph monomorphism instance
automorphism iMut(G,) will thus be a restriction of an au- (Gp, Gt) and its associated CSP, eacho € Aut(Gy) is
tomorphism inAut(S(P)), and an element iMut(S(P)) @ value symmetry af.
will be an extension of an element iwt(G,). Hence the

. Proof SupposeSol = (v1,--- ,v,) IS a solution. Consider
two following theorems. the subgrapl? = (N, E) of G, whereN = {vy,---,v,}
Theorem 1 Given a subgraph monomorphism instance@NdE = {(i,j) [ (7'(i), 0 1(3,)) € Ep}. This means there
(Gp, G:) and its associated CSP : exists a monomorphic functiogh matchingG, tocG. Hence

, ((x1,0(v1)), -+, (xn,0(vy,))) is a solution. A
o Vo Aut(Gp) Io € Aut(S(P)) : All value symmetries of P are not in Aut(Gy).
VneN,:on)=a(n) Consider Figure 3. There exists two value sym-
, metric solutions : {(z1,1), (z2,2), (x3,3), (x4,4)} and
e Vo € Aut(S(P)) Jo € Aut(Gp) : {(21,2), (z2,1), (x3,4), (24, 3)} althoughAut(G,) = 0.

VneN,:on)=o(n)
. . ) 4.2 Breaking
Theorem 2 Given a subgraph monomorphism instance

(G,,G,) and its associated CSP, the set of variable sym- Breaking initial value symmetries can be done by using GE-
metries ofP is the set of bijective functiondut(S(P)) re-  Tree techniqudC.M. et al, 2004. The idea is to mod-

stricted toN,,, which is equal todut(G,,). ify the distribution by avoiding symmetrical value assign-
ments. Suppose a stafeis reached, where,, - -- , x;, are
Theorem 2 says that onlyut(G,) has to be computed in  assignedte, - - - , v, respectively, and;, 1, - - - , z,, are not
order to get all variable symmetries. assigned yet. The variahig_ ; should not be assigned to two

Figure 2 shows a pattern transformed into its symbolicsymmetrical values, since two symmetric subtrees would be
graph. searched. For each valug € D(vi41) that is symmetric to



plain edges are the selected edges for the dynamic target sub
: : graph.

E By Each automorphism a@¥; is a conditional value symmetry
for the states.

'® 2 . ® Theorem 4 Given a subgraph monomorphism instance
\ (Gp, Gy), its associated CSIP, and a stateS in the search,

: eacho € Aut(Gy) is a conditional value symmetry df.
4 3 O ; Moreover, the conditions ef are vy = vy, -+ , zx = vg.

Pattem 1 1 Proof Supposesol = (v1, - - - ,v;) is a partial solution. Con-
S O ° sider the subgrapfi;. The states can be considered as a new

CSPP' of an instancéG,, G) with additional constraints
Target ry =y, , T = vg. By Theorem 3, the thesis followll
The size ofG} is an important issue, as we will dynam-
Figure 4: Example of dynamic target subgraph. ically compute symmetry information with it. The follow-
ing theorem shows that, because of the MC constraints, the

longest path irGG,, has the same length than the longest path
a valuev; € D(vxy1), Only one state5; should be gener- i, ¢, whenever at least a variable is assigned.

ated with the new constrain = v;; N0 new stateS, with .
k1 =v ? Definition 3 LetG = (N, E) be a graph. Themaxzd(G)

x; = v; should be generated. ) ,
A convenient way to compute those symmetrical valuedlenotes the size of the longest simple path between two nodes

is to compute a base and a strong generating set using tie €.

SchreierSims algorithm. Algorithm SchreierSims outpbest Theorem 5 Given a subgraph monomorphism instance
subgroups ofAut(G;) G; (1 < i < d)suchthatv o € G; : (Gp, Gy), its associated CSP, and a stateS in the search,
a(j) = 7 V¥ j € [1,4] (called the pointwize stabilizators of if 3i € N, | |D(x;)| = 1, thenmazd(Gp) = mazd(Gy).

G). Moreover SchreierSims outputs th%set of images of  This is a nice result for complexity issues, when
that let0, - - - ,i invariant : Ui, = (i +1)%+*. Those sets azd(G,) is small. In Figure 4,mazd(G,)=2 and only
U, are interesting because they give the set of symmetrlcaﬂ;des at shortest distance 2 from nddie the target graph
values ofi given that the values, ..., i are not subjectto any  5.¢ included iG;.

_permqtation (mapped to thgmselves). If va_Iues are assignedr-rhe dynamic target grapi can be computed dynamically.
in an increasing order, assigning symmetrical values can bg, [Devile et al, 2005, we showed how subgraph matching

avoided. can be modelled and implemented in CP(Graph), an exten-
N ) sion of CP with graph domain variables. In this setting, a
5 Conditional Value Symmetries graph domain variabl@ is used for target graph, with ini-

Fial domaini@, - - - , G¢]. When a solution is foundl is in-
Stantiated to the matched subgraphGef Hence, during the
search, the dynamic target gra@fi will be the upper bound
of variableT and can be obtained if(1).

In subgraph monomorphism, the relations between values a
explicitly represented in the target graph. This allowsdhe
tection of conditional values symmetries.

5.1 Detection 5.2 Breaking

During the search, the target graph looses a rogleenever In this subsection, we show how to modify GE-Tree method
a ¢ Uien,D(x;). This is interesting because the relation to handle conditional value symmetries. Before distritmiti
between the values are known dynamically. the following actions are triggered :

The set of values);c v, D(z;) denotes the nodes of sub- 1. Get(*
graph ofG; in which a solution is searched. For a given state L

S, such a subgraph can be, for a given stiteomputed ef- 2. The NAUTY and SchreierSims algorithms are called.
ficiently. We first define this subgraph 6f. This returns the new; sets.
Definition 2 Let S be a state in the search where, - - - .z 3. The main problemis how to adapt the variable and value
are assigned, and . . are not assigned’ Tﬁéyk selection such that conditional value symmetries are bro-
o toge (i;raphkg‘? C ’(J\Z* Er)is a subgrabh o, ken. In GE-Tree, from a given stafs two branches are
such that : created :
taté; with a constraint;, = v
N* = Usery . Dl (&) anews 1 wi r k k
® ieft, - m D(@i) (b) a new stateS; with constraints :
o by ={(a,b) € Ey |a€ Nf Nbe N/} i. xp # vk
Figure 4 shows an example of dynamic target graph. In i ap # vV j € Up-.
this figure, the circled nodes are assigned together. Tinkbla To handle conditional value symmetries, we slightly
nodes are the nodes excluded froma; ... ,jD(z;), and the modify this schema. From a given statetwo branches

black nodes are the nodes includediig; ... , D (x;). The are created :



(a) a new stat&; with a constraintry, = vy / 6"\\
(b) a new state, with constraints : \
i. Tl 75 Vk 1

.........................................

i, o #0;VjeUp1UU, ) 9% £ 3

An issue is how to handle structute In Gecode system ' ' '
(http://Iwww.gecode.org), in which the actual implemeiatat

is made, the states are copied and trailing is not neededs Thu ; ; :

the structuré/ must not be updated because of backtracking. : 4 5 i3 2

A single global copy is kept during the whole search pro- Pattern Target
cess. In a stat® where conditional values symmetries are

discovered, structur is copied into a new structufé’ and  Figure 5: Example of conditional local value symmetry. The
merged withl . This structuré/" shall be used for all states dashed lines show the new subgraph monomorphism instance
S’ having$ in its predecessors. Of course, some heuristicgor CSPP'.

should be added to choose the states where a new conditional

value symmetry should be computed. the search, where the assigned variables afe-- -,z

. with valuesvq,--- ,v;. Let P’ be a new CSP of a sub-
6 Local Value Symmetries graph monomorphism instano(@;,G;) with additional

In this section, we introduce the concept of local value Symconstramtsmkﬂ = D(2s1), - &, = D(zy). Then:
metries, that is value symmetries on a subproblem. This con- B ,
cept can be seen as a particular case of dynamic detectionl. Eacho € Aut(Gy ) is a value symmetry d? .

of value symmetries such as studied/Benhamou, 1994 2. Assuming we have the FC property, we have
However local values symmetries exploits the fact that bt su ((z1,01), -+, (Tn,vn)) € Sol(S) '
graph monomorphism relations between values are exglicitl iff ’ v

represented in the target graph. (@hsts Vks1), - s (2ny0m)) € Sol(P).
6.1 Detection The theorem states that value symmetries of the local 'SP
We first introduce partial dynamic graphs. Those graphs arean be obtained by computing:¢(G; ) and that these sym-
associated to a state in the search and correspond to the unetries can be exploited without losing or adding solutians
solved part of the problem. This can be viewed as a new locdhe initial matching problem.

problem to the current state. It is important to notice that the value symmetriesiof
are not conditional symmetries oP. It is not possible to

Definition 4 Let S be a state in the search whose varl- 44 constraints t& to generate”’. As the CSPP' is a local

ableszy, - -, z); are assignedtey, - -, v respectively, and  ~gp associated to a statethese value symmetries are called
Tpt1, ", Ty Are not assigned yet. - o local value symmetries
'SFSS przrtlr?log nzml;ﬁ ?r?;tf-r ngraph &, = (N, E,) s a The computation o7, can be easily performed thanks to
orap P ' graph variables. Ifl" is the target graph variable over ini-
o Ny ={ie[k+1,n]} tial domain[(, - - - , G¢], then during the computatio; is
- i ; - A - lub(T (T).
e B, ={(i,j)€E,|ie Ny AjeN,} ub(T) \ glb(T)

Consider the subgraph monomorphism instaf€g, G;)
Thepartial dynamictarget graph G, = (N, ,E; )isasub- in Figure 5. Nodes of the pattern graph are the vari-
graph ofG; such that : ables of the corresponding CSP, i.e. nadef G, cor-
o N = U1 D(z;) responds to variable:;. Suppose that;; has been as-
t i€lk+1,n] FA signed to valuel. Because of MCf{i,x3), D(z3) =
o B, ={(a,b) € By |ae N, ANbe N, } {4,6,7}. Moreover, because of alldiff¢, - - - ,z,), value

When forward checking (FC) is used during the search, int is deleted from all domain®(z;) (i # 1). The new
any state in the search tree, every constraint involding = CSP P consists of the subgraph af, = ({2,3,4,5},
uninstantiated variable is arc consistent. In otherwardsry ~ 1(2,3), (3,2), (3,5), (5,3), (4,5), (5, ), (2,4), (4,2)})

value in the domain of an uninstantiated variable is coestst and G; = ({2,3,4,5,6,7}, {(2 3), (3,2), (3,5), ( 3),
with the partial solution. This FC property on a binary CSP(4,5), (5,4), (2, 4) (4 2) (7,6), (6,7)}). The domains
ensures that one can focus on the uninstantiated variatdes aof the variables ofP’ are : D(x3) = {4,6,7}, D(z2) =
their associated constraints without losing or creating-so {2,5,6,7}, D(z5) = {2,5,6,7}, D(zs) = {3,4,6,7}.
tions to the initial problem. Such a property also holds when:or the stateS, Sol(S) = {(1,5,4,3,2), (1’274’375)}
the search achieves stronger consistency in the search traad BSol(S) = {(1,2,4,3,5)}. For the subproblem

(Partial Look Ahead, Maintaining Arc Consistency, ...). P, Sol(P /) = {(5,4,3,2),(2,4,3,5)} and BSol(P/) _

Theorem 6 Let (G,, G;) be a subgraph monomorphism in- {(2,4,3,5)}. The partial as&gnmenitpl, ) in stateS to-
stance, P its associated CSP, anfl a state of P during  gether with the solutions o’ equalsSol(S).



6.2 Breaking

. o . . Table 1: Comparison over GraphBase undirected graphs.
Breaking local value symmetries is equivalent to breaking

: ) All solutions 5 min.
value symmetries on the subprobldéth Puget's method and soved T unsol | torltime T meantme
the dynamic GE-Tree method can thus be applied to the local CSP | 58% | 42% | 70min. | 5.95 sec.
CSPP’. Gen. | 60,5% | 39,5% | 172 min. 13.95 sec.
FVS | 61.8% | 38.2% | 101 min. 8 sec.

7 Experimental results

The CSP model for subgraph monomorphism has been imple- Table 2: Comparison over GraphBase directed graphs.

mented in Gecode (http://www.gecode.org), using CP(Graph Allsolutions 5 min.

and CP(Map)Doomset al, 2004 [Deville et al., 2009 . =5 Sg;vojd lé’;f' t‘;‘f‘ time mean time
CP(Graph) provides graph domain variables and CP(Map) Gon | 7am | 26 | a7mmin | 887 coc
provides function domain variables. All the software was im FVS | 74% | 26% | 40min. | 7.64sec.

plemented in C++. The standard implementation of NAUTY
algorithm was used. We also implemented SchreierSims al

gorithm. The computation of the constraints for breaking in Eg]aetérgjcrease Is an astonishing behavior that should besinve

jective problems was implemented, and GE-Tree method Was™y e symmetry breaking was evaluated on the set of di-
also incorporated. . . rected graphs. Table 3 shows that only one percent was
_ We have evaluated varlable symmetry .detectlon and brea jained. This may be due to the fact that there are less symme-
ing, value symmetry detection and breaking, and variabde Nyries in directed graph than in undirected graphs. For béia

value symmetry breaking. and value symmetries, a total of 233 undirected random in-

The data graphs used ta generate instances are from tlg?ances were treated. We evaluated variable and values sym-
GraphBase database containing different topologies a8d hqotries separately and then together in Table 4. This table

been used ifLarrosa and Valiente, 2002 There is a di- h h | . iabl i
rected and an undirected set of graphs. We took the first 3@%50\“/5 thatt, as expected, value symmetries and variable sym

) ; etries each increase the number of solved instances. No-
graphs and the first 50 graphs from GraphBase. The directeghe yore that value symmetry breaking with GE-Tree leads to
set contains graphs ranging from 10 nodes to 462 node

Prew solved instances and better performance, reducing mean
The undirected set contains graphs ranging from 10 nod P ' g

, ; e on solved instances. Full variable symmetry technique
to 138 nodes. Using those graphs, there are 405 insStancGs, o new instances solved, but does not significantly eeduc
for directed graphs and 1225 instances for undirected graph

mean time on solved instances. Moreover, the combination of
All runs were performed on a dual Intel(R) Xeon(TM) CPU ; ; ' :
2 66GHz with 2 Go of RAM. value symmetry breaking and variable symmetry breaking do

not combine the power of the two techniques. In fact the GE-

A main concern is how much time it takes to preprocess thae ypner bound of the number of the solved solutions is not
graphs. NAUTY processed each undirected graph in less thgp bp

! ing full variabl hnique, i
0.02 second. For directed graphs, each graph was processgﬁgeased by using full variable symmetry technique, asd it

. . . an time is even increased.
in less thar0.01 second except one of them which terminate £, these experiments, we conclude that although vari-
in 0.8 second and 4 of them which did not terminate in five

. . "~ able and value symmetry gives better performances and make
minutes. Note that we did not tune NAUTY. For the Schr_aer-new instances solved, they are not sufficient to make a signif

YCant higher percentage of instances solved. This calls for

than one second except for 3 of them which termina@in ., jitional and local symmetry detection and breaking.

second, 1 of them in.5 seconds, and 1 of them b1 sec-
onds. All undirected graphs were processed in less than o .
second, except two of them, with 4 seconds and 8 seconds.r§ Conclusion

In our tests, we look for all solutions. A run is solved if it In this paper, we presented techniques for symmetry break-
finishes under 5 minutes, unsolved otherwise. We applied thi@g in subgraph matching. Specific detection techniques wer
basic CSP model, the model where breaking variable synfirst developed for the classical variables symmetries and
metries with generators (Gen.) are posted, and finally the fuvalue symmetries. We show that variable symmetries and
variable symmetry (FVS) that breaks all variable symmestrie value symmetries can be detected by computing the set of au-
Results are shown in Table 1 and 2. In those runs, the prepré@morphisms on the pattern graph and on the target graph.
cessing time has not been considered. The total time columy/e also showed that conditional value symmetries can be
shows the total time needed for the solved instances. Theetected by computing the set of automorphisms on various
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