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Abstract

Graph pattern matching, a central application in
many fields, can be modelled as a CSP. This CSP
approach can be competitive with dedicated algo-
rithms. In this paper, we develop symmetry break-
ing techniques for subgraph matching in order to
increase the number of tractable instances. Spe-
cific detection techniques are first developed for the
classical variables symmetries and value symme-
tries. It is also shown how these symmetries can be
broken when solving subgraph matching. We also
show how conditional value symmetries can be au-
tomatically detected and handled in the search pro-
cess. Then, the concept of local value symmetries is
introduced; it is shown how these symmetries can
be computed and exploited. Finally, experimental
results show that symmetry breaking is an effective
way to increase the number of tractable instances
of the subgraph matching problem.

1 Introduction
A symmetry in a Constraint Satisfaction Problem (CSP) is
a bijective function that preserves CSP structure and solu-
tions. Symmetries are important because they induce sym-
metric subtrees in the search tree. If the instance has no solu-
tion, failure has to be proved for equivalent subtrees regarding
symmetries. If the instance has solutions, many symmetric
solutions will have to be enumerated in symmetric subtrees.
The detection and breaking of symmetries can thus speed up
the solving of a CSP.

Symmetries arise naturally in graphs as automorphisms.
However, although a lot of graph problems have been tackled
[Beldiceanuet al., 2005] [Cambazard and Bourreau, 2004]
[Sellman, 2003] and a computation domain for graphs has
been defined[Doomset al., 2005], and despite the fact that
symmetries and graphs are related, little has been done to in-
vestigate the use of symmetry breaking for graph problems in
constraint programming.

This paper aims at applying and extending symmetries
techniques for subgraph matching. Existing techniques usu-
ally handle only initial symmetries and are not able to detect
symmetries arising during search, so called conditional sym-

metries. We will show how to detect and handle those condi-
tional symmetries.

Related Works Handling symmetries to reduce search
space has been a subject of research in constraint program-
ming for many years. Crawford and al.[Crawford et al.,
1996] showed that computing the set of predicates breaking
the symmetries of an instance is NP-hard in general. Differ-
ent approaches exist for exploiting symmetries. Symmetries
can be broken during search either by posting additional con-
straints (SBDS)[Gent and Smith, 2001] [Gentet al., 2002]
or by pruning the tree below a state symmetrical to a pre-
vious one (SBDD)[Gentet al., 2003]. Symmetries can be
broken by taking into account the symmetries into the heuris-
tic [Meseguer and Torras, 2001]. Symmetries can be broken
by adding constraints to the initial problem at its root node
[Crawfordet al., 1996] [Gent, 2001]. Symmetries can also be
broken by remodelling the problem[Smith, 2001].

Dynamic detection of value symmetries and a general
method for detecting them has been proposed in[Benhamou,
1994]. The general case for such a detection is difficult. How-
ever in not-equal binary CSPs some value symmetries can be
detected in linear time[Benhamou, 2004] and dominance de-
tection for value symmetries can be performed in linear time
[Benhamou and Saı̈di, 2006].

Lately research efforts has been triggered towards defining,
detecting and breaking symmetries. Cohen and al.[Cohenet
al., 2005] defined two types of symmetries, solution symme-
tries and constraint symmetries and proved that the group of
constraint symmetries is a subgroup of solution symmetries.
Gent and al.[Gentet al., 2005b] evaluated several techniques
to break conditional symmetries, that is symmetries arising
during search. However the detection of conditional symme-
tries remains a research topic. Symmetries were also shown
to produce stronger forms of consistency and more efficient
mechanisms for establishing them[Gentet al., 2005a]. Fi-
nally, Puget[Puget, 2005b] showed how to detect symmetries
automatically, and showed that all variable symmetries could
be broken with a linear number of constraints for injective
problems[Puget, 2005a].

Graph pattern matching is a central application in many
fields[Conteet al., 2004]. Many different types of algorithms
have been proposed, ranging from general methods to spe-
cific algorithms for particular types of graphs. In constraint
programming, several authors[Larrosa and Valiente, 2002;
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Rudolf, 1998] have shown that subgraph matching can be
formulated as a CSP problem, and argued that constraint pro-
gramming could be a powerful tool to handle its combinato-
rial complexity. Within the CSP framework, a model for sub-
graph monomorphism has been proposed by Rudolf[Rudolf,
1998] and Valiente et al.[Larrosa and Valiente, 2002]. Our
modeling[Zampelli et al., 2005] is based on these works.
Sorlin [Sorlin and Solnon, 2004] proposed a filtering algo-
rithm based on paths for graph isomorphism and part of our
approach can be seen as a generalization of this filtering.
A declarative view of matching has also been proposed in
[Mamoulis and Stergiou, 2004]. In [Zampelli et al., 2005],
we showed that CSP approach is competitive with dedicated
algorithms over a graph database representing graphs with
various topologies.

ObjectivesThis work aims at developing symmetry break-
ing techniques for subgraph matching modelled as a CSP in
order to increase the number of tractable instances of graph
matching. Our first goal is to develop specific detection tech-
niques for the classical variable symmetries and value sym-
metries, and to break such symmetries when solving subgraph
matching. Our second goal is to develop more advanced sym-
metries that can be easily detected for subgraph matching.

Results

• We show that variable symmetries and value symmetries
can be detected by computing the set of automorphisms
on the pattern graph and on the target graph.

• We show that conditional value symmetries can be de-
tected by computing the set of automorphisms on vari-
ous subgraphs of the target graph, called dynamic target
graphs. The GE-Tree method can be extended to handle
these conditional symmetries.

• We introduce the concept of local value symmetries, that
is symmetries on a subproblem. It is shown how such
symmetries can be computed and exploited using stan-
dard methods such as GE-Tree.

• Experimental results compare and analyze the enhance-
ment achieved by these symmetries and show that sym-
metry breaking is an effective way to increase the num-
ber of tractable instances of the subgraph matching prob-
lem.

Outline Sections 2 provides the necessary background in
subgraph matching and in symmetry breaking. Section 3 de-
scribes a CSP approach for subgraph matching. Sections 3
and 4 present variable symmetries and value symmetries in
subgraph matching. Conditional value symmetries are han-
dled in Section 6, and Section 7 introduces local value sym-
metries in subgraph matching. Finally, Section 8 describes
experimental results and Section 9 concludes this paper.

2 Background and Definitions
Basic definitions for subgraph matching and symmetries are
introduced.

A graph G = (N, E) consists of anode setN and an
edge setE ⊆ N×N , where an edge(u, v) is a pair of nodes.
The nodesu andv are the endpoints of the edge(u, v). We
consider directed and undirected graphs. Asubgraph of a
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Figure 1: Example solution for a monomorphism problem
instance.

graphG = (N, E) is a graphS = (N ′, E′) whereN ′ is a
subset ofN andE′ is a subset ofE.

A subgraph monomorphism(or subgraph matching) be-
tweenGp andGt is a total injective functionf : Np → Nt

respecting the monomorphism constraint :(u, v) ∈ Ep ⇒
(f(u), f(v)) ∈ Et. Figure 1 shows an example of subgraph
monomorphism.

The CSP model of subgraph matching should represent
a total functionf : Np → Nt. This total function can
be modeled withX = x1, ..., xn with xi a FD variable
corresponding to the ith node of Gp and D(xi) = Nt.
The injective condition is modeled with the global con-
straintalldiff(x1, ...xn). The monomorphism condition
is translated into the global constraintMC(x1, ..., xn) ≡∧

(i,j)∈Ep
(xi, xj) ∈ Et. Implementation, comparison with

dedicated algorithms, and extension to subgraph isomor-
phism and to graph and function computation domains can
be found in[Zampelliet al., 2005; Devilleet al., 2005].

A CSP instance is a triple< X, D, C > whereX is the
set of variables,D is the universal domain specifying the
possible values for those variables, andC is the set of con-
straints. In the rest of this document,n = |Np|, d = |D|,
and D(xi) is the domain ofxi. A symmetry over a CSP
instanceP is a bijectionσ mapping solutions to solutions,
and hence non solutions to non solutions[Puget, 2005b].
Since a symmetry is a bijection where domain and target
sets are the same, a symmetry is a permutation. Avariable
symmetryis a bijective functionσ : X → X permuting a
(non) solutions = ((x1, d1), . . . , (xn, dn)) to a (non) solu-
tion s′ = ((σ(x1), d1), . . . , (σ(xn), dn)). A value symme-
try is a bijective functionσ : D → D permuting a (non)
solution s = ((x1, d1), . . . , (xn, dn)) to a (non) solution
s′ = ((x1, σ(d1)), . . . , (xn, σ(dn)). A value and variable
symmetryis a bijective functionσ : X × D → X × D
permuting a (non) solutions = ((x1, d1), . . . , (xn, dn)) to
a (non) solutions′ = (σ(x1, d1), . . . , σ(xn, dn)). A condi-
tional symmetryof a CSPP is a symmetry holding only in
a sub-problemP

′

of P . The conditions of the symmetry are
the constraints necessary to generateP

′

from P [Gentet al.,
2005b]. A groupis a finite or infinite set of elements together
with a binary operation (called the group operation) that sat-
isfy the four fundamental properties of closure, associativity,
the identity property, and the inverse property. Anautomor-
phism of a graphis a graph isomorphism with itself. The sets
of automorphismsAut(G) define a finite permutation group.



Figure 2: Example of symbolic graph for a square pattern.

3 Variable Symmetries

3.1 Detection

This section shows that, in subgraph matching, variable sym-
metries are the automorphisms of the pattern graph and do
not depend on the target graph.

It has been shown that the set of variable symmetries of the
CSP is the automorphism group of asymbolic graph[Puget,
2005b] . The patternGp is transformed into a symbolic graph
S(Gp) whereAut(S(Gp)) is the set of variable symmetries
of the CSP.

Definition 1 A CSPP modeling a subgraph monomorphism
instance(Gp, Gt) can be transformed into the following sym-
bolic graphS(P ) :

1. Each variablexi is a distinct node labelledi

2. If there exists a constraintMC(xi, xj), then there exists
an arc betweeni andj in the symbolic graph

3. The constraint alldiff is transformed into a node typed
with label ’a’; an arc (a, xi) is added to the symbolic
graph.

If we do not consider the extra node and arcs introduced by
the alldiff constraint, then the symbolic graphS(P ) andGp

are isomorphic by construction. Given the labeling of nodes
representing constraints, an automorphism inS(P ) maps the
alldiff node to itself and the nodes corresponding to the vari-
ables to another node corresponding to the variables. Each
automorphism inAut(Gp) will thus be a restriction of an au-
tomorphism inAut(S(P )), and an element inAut(S(P ))
will be an extension of an element inAut(Gp). Hence the
two following theorems.

Theorem 1 Given a subgraph monomorphism instance
(Gp, Gt) and its associated CSPP :

• ∀ σ ∈ Aut(Gp) ∃ σ
′

∈ Aut(S(P )) :

∀ n ∈ Np : σ(n) = σ
′

(n)

• ∀ σ
′

∈ Aut(S(P )) ∃ σ ∈ Aut(Gp) :

∀ n ∈ Np : σ(n) = σ
′

(n)

Theorem 2 Given a subgraph monomorphism instance
(Gp, Gt) and its associated CSPP , the set of variable sym-
metries ofP is the set of bijective functionsAut(S(P )) re-
stricted toNp, which is equal toAut(Gp).

Theorem 2 says that onlyAut(Gp) has to be computed in
order to get all variable symmetries.

Figure 2 shows a pattern transformed into its symbolic
graph.

Figure 3: Example of matching where the set of value sym-
metries is not empty andAut(Gt) = ∅.

3.2 Breaking

Two techniques were selected to break variable symmetries.
The first technique is an approximation and consists in break-
ing only the generators of symmetry group[Crawfordet al.,
1996]. Those generators are obtained by using a tool such as
NAUTY. For each generatorσ, an ordering constraints ≤ σs
is posted.

The second technique breaks all variable symmetries of an
injective problem by using a SchreierSims algorithm, pro-
vided that the generators of the variable symmetry group are
known [Puget, 2005b]. Puget showed the number of con-
straints to be posted is linear with the number of variables.
The Schreier-Sims algorithm computes a base and strong
generating set of a permutation group inO(n2log3|G| +
t.n.log|G|), whereG is the group,t the number of generators
andn the size of the of group of all permutations containing
G.

4 Value Symmetries

4.1 Detection

In subgraph matching, value symmetries are automorphisms
of the target graph and do not depend on the pattern graph.

Theorem 3 Given a subgraph monomorphism instance
(Gp, Gt) and its associated CSPP , eachσ ∈ Aut(Gt) is
a value symmetry ofP .

Proof SupposeSol = (v1, · · · , vn) is a solution. Consider
the subgraphG = (N, E) of Gt, whereN = {v1, · · · , vn}
andE = {(i, j) | (σ−1(i), σ−1(j)) ∈ Ep}. This means there
exists a monomorphic functionf

′

matchingGp toσG. Hence
((x1, σ(v1)), · · · , (xn, σ(vn))) is a solution.�

All value symmetries of P are not in Aut(Gt).
Consider Figure 3. There exists two value sym-
metric solutions : {(x1, 1), (x2, 2), (x3, 3), (x4, 4)} and
{(x1, 2), (x2, 1), (x3, 4), (x4, 3)} althoughAut(Gt) = ∅.

4.2 Breaking

Breaking initial value symmetries can be done by using GE-
Tree technique[C.M. et al., 2004]. The idea is to mod-
ify the distribution by avoiding symmetrical value assign-
ments. Suppose a stateS is reached, wherex1, · · · , xk are
assigned tov1, · · · , vk respectively, andxk+1, · · · , xn are not
assigned yet. The variablexk+1 should not be assigned to two
symmetrical values, since two symmetric subtrees would be
searched. For each valuevi ∈ D(vk+1) that is symmetric to



Figure 4: Example of dynamic target subgraph.

a valuevj ∈ D(vk+1), only one stateS1 should be gener-
ated with the new constraintxk+1 = vi; no new stateS2 with
xi = vj should be generated.

A convenient way to compute those symmetrical values
is to compute a base and a strong generating set using the
SchreierSims algorithm. Algorithm SchreierSims outputs the
subgroups ofAut(Gt) Gi (1 ≤ i ≤ d) such that∀ σ ∈ Gi :
σ(j) = j ∀ j ∈ [1, i] (called the pointwize stabilizators of
G). Moreover SchreierSims outputs the set of images ofi
that let0, · · · , i invariant : Ui+1 = (i + 1)Gi+1 . Those sets
Ui are interesting because they give the set of symmetrical
values ofi given that the values1, ..., i are not subject to any
permutation (mapped to themselves). If values are assigned
in an increasing order, assigning symmetrical values can be
avoided.

5 Conditional Value Symmetries
In subgraph monomorphism, the relations between values are
explicitly represented in the target graph. This allows thede-
tection of conditional values symmetries.

5.1 Detection
During the search, the target graph looses a nodea whenever
a /∈ ∪i∈Np

D(xi). This is interesting because the relation
between the values are known dynamically.

The set of values∪i∈Np
D(xi) denotes the nodes of sub-

graph ofGt in which a solution is searched. For a given state
S, such a subgraph can be, for a given stateS, computed ef-
ficiently. We first define this subgraph ofGt.

Definition 2 LetS be a state in the search wherex1, · · · , xk

are assigned, andxk+1, · · · , xn are not assigned. Thedy-
namic target graph G∗

t = (N∗

t , E∗

t ) is a subgraph ofGt

such that :

• N∗

t = ∪i∈[1,··· ,n]D(xi)

• E∗

t = {(a, b) ∈ Et | a ∈ N∗

t ∧ b ∈ N∗

t }

Figure 4 shows an example of dynamic target graph. In
this figure, the circled nodes are assigned together. The blank
nodes are the nodes excluded from∪i∈[1,··· ,n]D(xi), and the
black nodes are the nodes included in∪i∈[1,··· ,n]D(xi). The

plain edges are the selected edges for the dynamic target sub-
graph.

Each automorphism ofG∗

t is a conditional value symmetry
for the stateS.

Theorem 4 Given a subgraph monomorphism instance
(Gp, Gt), its associated CSPP , and a stateS in the search,
eachσ ∈ Aut(G∗

t ) is a conditional value symmetry ofP .
Moreover, the conditions ofσ arex1 = v1, · · · , xk = vk.

Proof SupposeSol = (v1, · · · , vk) is a partial solution. Con-
sider the subgraphG∗

t . The stateS can be considered as a new
CSPP

′

of an instance(Gp, G
∗

t ) with additional constraints
x1 = v1, · · · , xk = vk. By Theorem 3, the thesis follows.�

The size ofG∗

t is an important issue, as we will dynam-
ically compute symmetry information with it. The follow-
ing theorem shows that, because of the MC constraints, the
longest path inGp has the same length than the longest path
in Gt whenever at least a variable is assigned.

Definition 3 Let G = (N, E) be a graph. Thenmaxd(G)
denotes the size of the longest simple path between two nodes
a, b ∈ N .

Theorem 5 Given a subgraph monomorphism instance
(Gp, Gt), its associated CSPP , and a stateS in the search,
if ∃ i ∈ Np | |D(xi)| = 1, thenmaxd(Gp) = maxd(G∗

t ).

This is a nice result for complexity issues, when
maxd(Gp) is small. In Figure 4,maxd(Gp)=2 and only
nodes at shortest distance 2 from node1 in the target graph
are included inG∗

t .
The dynamic target graphG can be computed dynamically.

In [Deville et al., 2005], we showed how subgraph matching
can be modelled and implemented in CP(Graph), an exten-
sion of CP with graph domain variables. In this setting, a
graph domain variableT is used for target graph, with ini-
tial domain[∅, · · · , Gt]. When a solution is found,T is in-
stantiated to the matched subgraph ofGt. Hence, during the
search, the dynamic target graphG∗

t will be the upper bound
of variableT and can be obtained inO(1).

5.2 Breaking
In this subsection, we show how to modify GE-Tree method
to handle conditional value symmetries. Before distribution,
the following actions are triggered :

1. GetG∗

t .

2. The NAUTY and SchreierSims algorithms are called.
This returns the newU

′

i sets.

3. The main problem is how to adapt the variable and value
selection such that conditional value symmetries are bro-
ken. In GE-Tree, from a given stateS, two branches are
created :

(a) a new stateS1 with a constraintxk = vk

(b) a new stateS2 with constraints :
i. xk 6= vk

ii. xk 6= vj ∀ j ∈ Uk−1.

To handle conditional value symmetries, we slightly
modify this schema. From a given stateS, two branches
are created :



(a) a new stateS1 with a constraintxk = vk

(b) a new stateS2 with constraints :
i. xk 6= vk

ii. xk 6= vj ∀ j ∈ Uk−1 ∪ U
′

k−1

An issue is how to handle structureU . In Gecode system
(http://www.gecode.org), in which the actual implementation
is made, the states are copied and trailing is not needed. Thus
the structureU must not be updated because of backtracking.
A single global copy is kept during the whole search pro-
cess. In a stateS where conditional values symmetries are
discovered, structureU is copied into a new structureU

′′

and
merged withU

′

. This structureU
′′

shall be used for all states
S

′

havingS in its predecessors. Of course, some heuristics
should be added to choose the states where a new conditional
value symmetry should be computed.

6 Local Value Symmetries
In this section, we introduce the concept of local value sym-
metries, that is value symmetries on a subproblem. This con-
cept can be seen as a particular case of dynamic detection
of value symmetries such as studied in[Benhamou, 1994].
However local values symmetries exploits the fact that in sub-
graph monomorphism relations between values are explicitly
represented in the target graph.

6.1 Detection
We first introduce partial dynamic graphs. Those graphs are
associated to a state in the search and correspond to the un-
solved part of the problem. This can be viewed as a new local
problem to the current state.

Definition 4 Let S be a state in the search whose vari-
ablesx1, · · · , xk are assigned tov1, · · · , vk respectively, and
xk+1, · · · , xn are not assigned yet.
The partial dynamic pattern graph G−

p = (N−

p , E−

p ) is a
subgraph ofGp such that :

• N−

p = {i ∈ [k + 1, n]}

• E−

p = {(i, j) ∈ Ep | i ∈ N−

p ∧ j ∈ N−

p }

Thepartial dynamic target graph G−

t = (N−

t , E−

t ) is a sub-
graph ofGt such that :

• N−

t = ∪i∈[k+1,n]D(xi)

• E−

t = {(a, b) ∈ Et | a ∈ N−

t ∧ b ∈ N−

t }

When forward checking (FC) is used during the search, in
any state in the search tree, every constraint involvingone
uninstantiated variable is arc consistent. In other words,every
value in the domain of an uninstantiated variable is consistent
with the partial solution. This FC property on a binary CSP
ensures that one can focus on the uninstantiated variables and
their associated constraints without losing or creating solu-
tions to the initial problem. Such a property also holds when
the search achieves stronger consistency in the search tree
(Partial Look Ahead, Maintaining Arc Consistency, . . . ).

Theorem 6 Let (Gp, Gt) be a subgraph monomorphism in-
stance,P its associated CSP, andS a state ofP during

Figure 5: Example of conditional local value symmetry. The
dashed lines show the new subgraph monomorphism instance
for CSPP

′

.

the search, where the assigned variables arex1, · · · , xk

with valuesv1, · · · , vk. Let P ′ be a new CSP of a sub-
graph monomorphism instance(G−

p , G−

t ) with additional

constraintsx
′

k+1 = D(xk+1), · · · , x
′

n = D(xn). Then:

1. Eachσ ∈ Aut(G−

t ) is a value symmetry ofP
′

.

2. Assuming we have the FC property, we have
((x1, v1), · · · , (xn, vn)) ∈ Sol(S)
iff
((xk+1, vk+1), · · · , (xn, vn)) ∈ Sol(P

′

).

The theorem states that value symmetries of the local CSPP ′

can be obtained by computingAut(G−

t ) and that these sym-
metries can be exploited without losing or adding solutionsto
the initial matching problem.

It is important to notice that the value symmetries ofP ′

are not conditional symmetries ofP . It is not possible to
add constraints toP to generateP ′. As the CSPP ′ is a local
CSP associated to a stateS, these value symmetries are called
local value symmetries.

The computation ofG−

t can be easily performed thanks to
graph variables. IfT is the target graph variable over ini-
tial domain[∅, · · · , Gt], then during the computationG−

t is
lub(T ) \ glb(T ).

Consider the subgraph monomorphism instance(Gp, Gt)
in Figure 5. Nodes of the pattern graph are the vari-
ables of the corresponding CSP, i.e. nodei of Gp cor-
responds to variablexi. Suppose thatx1 has been as-
signed to value1. Because of MC(x1, x3), D(x3) =
{4, 6, 7}. Moreover, because of alldiff(x1, · · · , xn), value
1 is deleted from all domainsD(xi) (i 6= 1). The new
CSP P

′

consists of the subgraph ofG−

p = ({2, 3, 4, 5},
{(2, 3), (3, 2), (3, 5), (5, 3), (4, 5), (5, 4), (2, 4), (4, 2)})
and G−

t = ({2, 3, 4, 5, 6, 7},{(2, 3), (3, 2), (3, 5), (5, 3),
(4, 5), (5, 4), (2, 4), (4, 2), (7, 6), (6, 7)}). The domains
of the variables ofP

′

are : D(x3) = {4, 6, 7}, D(x2) =
{2, 5, 6, 7}, D(x5) = {2, 5, 6, 7}, D(x4) = {3, 4, 6, 7}.
For the stateS, Sol(S) = {(1, 5, 4, 3, 2), (1, 2, 4, 3, 5)}
and BSol(S) = {(1, 2, 4, 3, 5)}. For the subproblem
P

′

, Sol(P
′

) = {(5, 4, 3, 2), (2, 4, 3, 5)} and BSol(P
′

) =
{(2, 4, 3, 5)}. The partial assignment(x1, 1) in stateS to-
gether with the solutions ofP

′

equalsSol(S).



6.2 Breaking
Breaking local value symmetries is equivalent to breaking
value symmetries on the subproblemP ′. Puget’s method and
the dynamic GE-Tree method can thus be applied to the local
CSPP ′.

7 Experimental results
The CSP model for subgraph monomorphism has been imple-
mented in Gecode (http://www.gecode.org), using CP(Graph)
and CP(Map)[Doomset al., 2005] [Deville et al., 2005] .
CP(Graph) provides graph domain variables and CP(Map)
provides function domain variables. All the software was im-
plemented in C++. The standard implementation of NAUTY
algorithm was used. We also implemented SchreierSims al-
gorithm. The computation of the constraints for breaking in-
jective problems was implemented, and GE-Tree method was
also incorporated.

We have evaluated variable symmetry detection and break-
ing, value symmetry detection and breaking, and variable and
value symmetry breaking.

The data graphs used to generate instances are from the
GraphBase database containing different topologies and has
been used in[Larrosa and Valiente, 2002]. There is a di-
rected and an undirected set of graphs. We took the first 30
graphs and the first 50 graphs from GraphBase. The directed
set contains graphs ranging from 10 nodes to 462 nodes.
The undirected set contains graphs ranging from 10 nodes
to 138 nodes. Using those graphs, there are 405 instances
for directed graphs and 1225 instances for undirected graphs.
All runs were performed on a dual Intel(R) Xeon(TM) CPU
2.66GHz with 2 Go of RAM.

A main concern is how much time it takes to preprocess the
graphs. NAUTY processed each undirected graph in less than
0.02 second. For directed graphs, each graph was processed
in less than0.01 second except one of them which terminate
in 0.8 second and 4 of them which did not terminate in five
minutes. Note that we did not tune NAUTY. For the Schreier-
Sims algorithm, each directed graph was processed in less
than one second except for 3 of them which terminate in0.5
second, 1 of them in1.5 seconds, and 1 of them in3.1 sec-
onds. All undirected graphs were processed in less than one
second, except two of them, with 4 seconds and 8 seconds.

In our tests, we look for all solutions. A run is solved if it
finishes under 5 minutes, unsolved otherwise. We applied the
basic CSP model, the model where breaking variable sym-
metries with generators (Gen.) are posted, and finally the full
variable symmetry (FVS) that breaks all variable symmetries.
Results are shown in Table 1 and 2. In those runs, the prepro-
cessing time has not been considered. The total time column
shows the total time needed for the solved instances. The
mean time column shows the mean time for the solved in-
stances.

Thanks to variable symmetry breaking constraints more in-
stances are solved, either for the directed graphs or for the
undirected graphs. Moreover, the time for solved instances
was increased because of the variable symmetry breaking
constraints. Regarding the mean time, the full variable sym-
metry breaking constraint has a clear advantage. This mean

Table 1: Comparison over GraphBase undirected graphs.

All solutions 5 min.
solved unsol total time mean time

CSP 58% 42% 70 min. 5.95 sec.
Gen. 60,5% 39,5% 172 min. 13.95 sec.
FVS 61.8% 38.2% 101 min. 8 sec.

Table 2: Comparison over GraphBase directed graphs.

All solutions 5 min.
solved unsol total time mean time

CSP 67% 33% 21 min. 4.31 sec.
Gen. 74% 26% 47 min. 8.87 sec.
FVS 74% 26% 40 min. 7.64 sec.

time increase is an astonishing behavior that should be inves-
tigated.

Value symmetry breaking was evaluated on the set of di-
rected graphs. Table 3 shows that only one percent was
gained. This may be due to the fact that there are less symme-
tries in directed graph than in undirected graphs. For variable
and value symmetries, a total of 233 undirected random in-
stances were treated. We evaluated variable and values sym-
metries separately and then together in Table 4. This table
shows that, as expected, value symmetries and variable sym-
metries each increase the number of solved instances. No-
tice here that value symmetry breaking with GE-Tree leads to
new solved instances and better performance, reducing mean
time on solved instances. Full variable symmetry technique
makes new instances solved, but does not significantly reduce
mean time on solved instances. Moreover, the combination of
value symmetry breaking and variable symmetry breaking do
not combine the power of the two techniques. In fact the GE-
Tree upper bound of the number of the solved solutions is not
increased by using full variable symmetry technique, and its
mean time is even increased.

From these experiments, we conclude that although vari-
able and value symmetry gives better performances and make
new instances solved, they are not sufficient to make a signif-
icant higher percentage of instances solved. This calls for
conditional and local symmetry detection and breaking.

8 Conclusion
In this paper, we presented techniques for symmetry break-
ing in subgraph matching. Specific detection techniques were
first developed for the classical variables symmetries and
value symmetries. We show that variable symmetries and
value symmetries can be detected by computing the set of au-
tomorphisms on the pattern graph and on the target graph.
We also showed that conditional value symmetries can be
detected by computing the set of automorphisms on various
subgraphs of the target graph, called dynamic target graphs.

Table 3: Comparison over GraphBase directed graphs for
value symmetries.

All solutions 5 min.
solved unsol total time mean time

GE-Tree 68% 32% 21 min. 4.39 sec.



Table 4: Comparison over GraphBase undirected graphs for
variable and value symmetries.

All solutions 5 min.
solved unsol total time mean time

CSP 53,6% 46,3 % 31 min. 20.1 sec.
GE-Tree 55,3% 44,7 % 6 min. 3.21 sec.

FVS 54,9 % 45,1% 31 min. 19 sec.
GE-Tree and FVS 55,3 % 44,7% 26 min. 8.68 sec.

The GE-Tree method has been extended to handle these con-
ditional symmetries. We introduced the concept of local
value symmetries, that is symmetries on a subproblem. It
was shown how such symmetries can be computed and ex-
ploited using standard methods such as GE-Tree. Experimen-
tal results analyzed the enhancement achieved by variables
symmetries and value symmetries. It showed that symme-
try breaking is an effective way to increase the number of
tractable instances of the graph matching problem.

Future work includes more experiments on conditional
symmetries and local value symmetries, and the development
of heuristics for the integration of these symmetries on suit-
able search states. An interesting research direction is the
automatic detection of symmetries in graph domain variable.
Finally, an open issue is the ability to handle local variable
symmetries.
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), Cité des Congrès - Nantes, France, septembre 2006. to
appear.

[Benhamou, 1994] Belaid Benhamou. Study of symmetry in
constraint satifaction. InPCP’94, 1994.

[Benhamou, 2004] Belaid Benhamou. Symmetry in not-
equals binary constraint networks. InProceedings of the
satelite workshop of CP 2004, Symmetry in Constraints
(SymCon’04), pages 2–8, september 2004.

[Cambazard and Bourreau, 2004] H. Cambazard and
E. Bourreau. Conception d’une constrainte globale de
chemin. In10e Journ. nat. sur la ŕesolution de probl̀emes
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