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Abstract— Requirements-related scenarios capture typical examples of system behaviors through sequences of desired 
interactions between the software-to-be and its environment. Their concrete, narrative style of expression makes them very effective 
for eliciting software requirements and for validating behavior models. However, scenarios raise coverage problems as they only 
capture partial histories of interaction among system component instances. Moreover, they often leave the actual requirements 
implicit. Numerous efforts have therefore been made recently to synthesize requirements or behavior models inductively from 
scenarios. Two problems arise from those efforts. On the one hand, the scenarios must be complemented with additional input such 
as state assertions along episodes or flowcharts on such episodes. This makes such techniques difficult to use by the non-expert 
end-users who provide the scenarios. On the other hand, the generated state machines may be hard to understand as their nodes 
generally convey no domain-specific properties. Their validation by analysts, complementary to model checking and animation by 
tools, may therefore be quite difficult. 

This paper describes tool-supported techniques that overcome those two problems. Our tool generates a labeled transition system 
(LTS) for each system component from simple forms of message sequence charts (MSC) taken as examples or counter-examples 
of desired behavior. No additional input is required. A global LTS for the entire system is synthesized first. This LTS covers all 
scenario examples and excludes all counter-examples. It is inductively generated through an interactive procedure that extends 
known learning techniques for grammar induction. The procedure is incremental on training examples. It interactively produces 
additional scenarios that the end-user has to classify as example or counter-example of desired behavior. The LTS synthesis 
procedure may thus also be used independently for requirements elicitation through scenario questions generated by the tool. The 
synthesized system LTS is then projected on local LTS for each system component. For model validation by analysts, the tool 
generates state invariants that decorate the nodes of the local LTS. 

Index Terms— D.2.1 Requirements/Specifications: scenario-based elicitation, synthesis of behavior models, scenario generation, 
invariant generation, labeled transition systems, message sequence charts, model validation, incremental learning, analysis tools. 

——————————      —————————— 

1 INTRODUCTION

CENARIOS are widely recognized as an effective means 
for requirements elicitation, documentation, and valida-
tion [11]. They support an informal, narrative, and con-

crete style of description that focuses on the dynamic as-
pects of software-environment interaction. Scenarios are 
therefore easily accessible to practioners and stakeholders 
involved in the requirements engineering process [30]. 

The context of this paper is a project aimed at automat-
ing the production of web applications from end-user sce-
narios. In this project, behavioral models need to be ob-
tained from scenarios as an intermediate product for gener-
ating code fragments that populate a predefined architec-
ture for the application.  

A scenario is a temporal sequence of interactions among 
system components. The word system refers here to the 
software-to-be together with its environment. A system is 
made of active components, called agents, that control sys-
tem behaviors. Some agents form the environment, others 
form the system-to-be. An interaction in a scenario origi-

nates from some event synchronously controlled by a 
source agent instance and monitored by a target agent in-
stance. A scenario episode is an interaction sub-sequence 
that achieves some objective (generally left implicit). Posi-
tive scenarios describe typical examples of desired interac-
tions whereas negative scenarios describe undesired ones. 

This paper addresses the problem of synthesizing a state 
machine model of the system from scenarios submitted by 
end-users. For end-user involvement we need to put strong 
requirements on the synthesis process.  

• The input to the generation algorithm should be a set 
of end-users scenarios, and end-user scenarios only. 
Such users are most likely to be unable to provide ad-
ditional input such as state assertions along scenario 
episodes or flowcharts on such episodes. The scenar-
ios should moreover be expressed in some simple, 
“box-and-arrow” form. 

• Both positive and negative scenarios should be taken 
into account. Our experience in a variety of require-
ments engineering projects over the years showed 
that negative scenarios are quite common among the 
examples provided by stakeholders. 

• Scenarios are inherently incomplete (like examples or 
test data are). The generation algorithm should sup-
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port the elicitation of additional, “interesting” posi-
tive/negative scenarios that are not originally pro-
vided by the end-user.  

• The synthesis of state machine models from scenarios 
should be incremental; the models should be incre-
mentally refinable as further scenarios become avail-
able.  

• In view of possible overgeneralizations and incom-
plete/inconsistent scenarios, the synthesized state 
machine models should be understandable for valida-
tion and correction by the analyst before code genera-
tion starts.  

• The generated models should be well-structured for 
high-quality code generation, in particular, through 
one state machine per software agent.  

Various efforts have been reported in the literature to 
generate behavior models from scenarios. We review them 
briefly with respect to the above requirements.  

Uchitel and colleagues developed a technique for gener-
ating one labeled transition system (LTS) for each agent of a 
message sequence chart (MSC) specification [29]. Their ap-
proach requires additional input, namely, a high-level mes-
sage sequence chart (hMSC) that specifies how the MSC 
scenarios are to be flowcharted. To our experience, such 
hMSC may become quite complex for non-toy systems. 
Adding a new MSC in the specification may require some 
non-trivial refactoring of the original hMSC [20]. Asking 
end-users to provide a correct and complete hMSC as input 
seems thus unrealistic. The LTS synthesis algorithm does 
not take negative scenarios into account. Moreover, the syn-
thesized LTS are not easily understandable by humans as 
their states are labeled by numbers only.  

Whittle and Schumann proposed a technique for gener-
ating UML statecharts from sequence diagrams that capture 
positive scenarios – and positive scenarios only [31]. Their 
technique requires scenario interactions to be annotated by 
pre- and post-conditions on global state variables expressed 
in the Object Constraint Language (OCL). In a similar spirit, 
Kruger and colleagues proposed a technique for translating 
MSCs into statecharts [15]. Their technique also requires 
state information as additional input (in this case, through 
MSC conditions). It is unclear in both approaches whether 
end-users are able to provide such additional information.  

Mäkinen and Systä developed an interactive approach 
for synthesizing UML statecharts from sequence diagrams 
that capture positive scenarios [23]. Their so-called Mini-
mally Adequate Synthesizer (MAS) uses grammatical infer-
ence and asks the user trace questions in order to avoid 
undesirable generalizations. (A trace question is a path in 
the state machine local to a specific agent.) MAS focuses on 
single agents; generalization must therefore be done inde-
pendently for each software agent. Trace questions may be 
quite hard to understand by end-users as they do not show 
global system behaviors. Overgeneralization may fre-
quently occur in view of the built-in assumption that trace 
events with the same label lead to the same component 
state (unless a counter-example is specified). To eliminate 
such poor generalization, the user has to understand and 
validate the agent’s generated state machine, and provide 

state machine traces as counter-examples to indicate unde-
sired behaviors and restart the generalization process.  

van Lamsweerde and Willemet developed an inductive 
learning technique for generating goal specifications in lin-
ear temporal logic (LTL) from positive and negative scenar-
ios expressed in MSC-like form [17]. Büchi automata could 
then be generated from the LTL specifications using known 
algorithms; the resulting state machines would however be 
very hard to understand for validation. Moreover, as in 
[31], the user has to provide pre-/post-conditions of sce-
nario interactions. 

Other efforts have been devoted to producing SDL speci-
fications from MSCs (e.g., [9]). The techniques proposed 
there require complex forms of MSC as input to the synthe-
sis process. Such MSCs cannot be considered as scenarios 
expressed at requirements engineering time by end-users. 
No negative information is exploited. 

This paper presents techniques, supported by a tool, that 
meet the above requirements for state machine generation 
from end-user scenarios. 

Our approach takes both positive and negative scenarios 
as input. We synthesize a LTS covering all positive scenar-
ios and excluding all negative ones. The synthesis proce-
dure extends grammar induction techniques developed in 
[26, 4]. Our inductive learning procedure is interactive and 
incremental on training instances which makes it possible 
to integrate missing scenarios and scenario corrections on 
the fly. It requires no additional state or flowchart informa-
tion. The original set of scenarios is incrementally com-
pleted by asking the user scenario questions that are gener-
ated during synthesis. A scenario question consists in show-
ing the user a specific scenario and asking her to classify it 
as positive or negative. The synthesized LTS is then trans-
formed into a parallel composition of finer LTS – one LTS 
per agent.  

To enable validation and documentation of the resulting 
behavior model, state invariants are generated as node 
decorations from fluent definitions to be provided by the 
analyst. Fluents are state predicates whose truth values are 
determined by the occurrences of initiating and terminating 
events [5]; they provide a nice interface between goal speci-
fications and goal operationalizations [16] and can easily be 
identified from goal formulations. 

The paper is organized as follows. Section 2 presents 
some required background on scenario specifications, la-
beled transition systems, fluents, and grammar induction. 
Section 3 presents an overview of the various steps sup-
ported by our tool. Section 4 details the process of synthe-
sizing LTS models and generating scenario questions. Sec-
tion 5 details the fluent-based invariant generation proce-
dure. The entire approach is illustrated in Section 6 on a 
non-trivial case study, a mine pump control system [13, 14]. 

2 BACKGROUND 
To make the paper self-contained, this section introduces 
some basic material on message sequence charts (MSC), 
labeled transition systems (LTS), fluents, and grammar in-
duction. A simple train system fragment will be used 
throughout the paper as a running example to illustrate the 



AUTHOR ET AL.:  TITLE 3 

 

various techniques. The system is composed of three 
agents: a train controller, a train actuator/sensor, and pas-
sengers. The train controller controls operations such as 
start, stop, open doors, and close doors. A safety goal re-
quires train doors to remain closed while the train is mov-
ing. If the train is not moving and a passenger presses the 
alarm button, the controller must open the doors in emer-
gency. When the train is moving and the passenger presses 
the alarm button, the controller must stop the train first and 
then open the doors in emergency. 

2.1 Scenarios as Message Sequence Charts 
A simple MSC language is used for representing end-user 
scenarios. A MSC is composed of vertical lines representing 
timelines associated with agent instances, and horizontal 
arrows representing interactions among such agents. A 
timeline label specifies the type of the corresponding agent 
instance. An arrow label specifies some event defining the 
corresponding interaction. Every arrow label uniquely de-
termines the source and target agent instances that control 
and monitor the event in the interaction, respectively. The 
event is synchronously controlled by the source agent and 
monitored by the target agent.  

A MSC timeline defines a total ordering on incom-
ing/outgoing events whereas an entire MSC defines a par-
tial ordering on all events. To allow end-users to submit 
their scenarios we limit the input language to be a very 
simple one, leaving aside more sophisticated MSC features 
such as conditions, timers, coregions, etc. 

Fig. 2.1 shows a MSC capturing the following scenario: 
“The train is started by the controller; the latter then waits for 
external stimuli. A passenger presses the alarm button; the 
alarm is propagated to the controller; the latter then stops the 
train and opens the doors in emergency”. 

Scenarios are positive or negative. A positive scenario il-
lustrates some desired system behavior. A negative sce-
nario captures a behavior that may not occur. It is captured 
by a pair (p, e) where p is a positive MSC, called precondi-
tion, and e is a prohibited subsequent event. The meaning is 
that once the admissible MSC precondition has occurred, 
the prohibited event may not label the next interaction 
among the corresponding agents. 

Fig. 2.2 shows a negative scenario. The MSC precondi-
tion is made of the interaction start; the prohibited event is 
open doors. Prohibited events in negative MSCs appear be-
low a (red) dashed line in our tool. The scenario in Fig. 2.2 
is used to express that the train controller may not open the 

doors after having started the train (without any intermedi-
ate interaction). 

The semantics of MSCs used in this paper is the one in-
troduced in [29]. As this semantics is defined in terms of 
labeled transition systems and parallel composition, we 
come back to it in Section 2.2 where LTS are introduced. 

2.2 State machines as Labeled Transition Systems 
A system is behaviorally modeled as a set of concurrent 
state machines – one machine per agent. Each agent is char-
acterized by a set of states and a set of transitions between 
states. Each transition is labeled by an event. The state ma-
chines in this paper are a particular class of automata called 
labeled transitions systems [21]. 

A finite automaton is a 5-tuple (Q,Σ,δ,q0,F) where Q is a fi-
nite set of states, Σ is an alphabet, δ is a transition function 
mapping QxΣ to 2Q, q0 is the initial state, and F is a subset of 
Q identifying the accepting states. The automaton is deter-
ministic if for any q in Q and any e in Σ, δ(q,e) has at most 
one member.  

In a labeled transitions system (LTS), all states are accept-
ing states, that is, the sets Q and F are the same. A LTS is 
therefore simply denoted by a 4-tuple (Q,Σ,δ,q0). The alpha-
bet Σ corresponds to the set of event labels of the LTS. In a 
LTS, if a state q has no outgoing transition with label l, no 
event with label l can occur when the system is in state q.  

A finite execution of a LTS (Q,Σ,δ,q0) is a finite sequence of 
events <e1,…,en>, with ei ∈ Σ, accepted by the LTS from its 
initial state. Such execution is said to finish in state q if the 
LTS is in state q after having performed that event sequence 
from the initial state. Prefixes of a finite execution are finite 
executions as all LTS states are accepting states. 

Complex systems can be modeled through parallel com-
position of LTS components [24]. The parallel composition 
of two LTS P and Q, denoted by P║Q, models their joint 
behavior. The composed model behaves asynchronously 
but synchronizes on shared events. A system composed of 
agents a1,…,an modeled by LTS A1,…,An is thus modeled by 
the LTS A1║…║An. 

The semantics of MSCs can be defined in terms of LTS 
and parallel composition [29]. A MSC timeline defines a 
total order on its input and output events. Therefore it de-
fines a unique finite LTS execution that captures a corre-
sponding agent behavior. Fig. 2.3 shows the LTS behavior 
corresponding to the Train Controller agent in Fig. 2.1 The 
semantics of an entire MSC can similarly be defined in 
terms of the LTS modeling the entire system. As MSCs de-
fine partial orders of their events, we need to consider MSC 
linearizations of such partial orders [1]. A linearization de-
fines a total order of events and represents one temporal 

 
Fig. 2.2 – Negative scenario for a train system. 

 
Fig. 2.1 – Positive scenario for a train system. 
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behavior of the system. In the context of end-users scenar-
ios, we consider finite MSCs, that is, MSCs with finite sets 
of linearizations. A MSC linearization defines a finite execu-
tion of the system’s LTS. An entire MSC then defines a fi-
nite set of such executions. Positive MSCs define desirable 
executions whereas negative MSCs define rejected ones. (To 
simplify the presentation, the MSC examples in this paper 
have one linearization only.) 

2.3 Interfacing event-based and state-based models 
through fluents 

Miller and Shanahan define fluents as “time-varying proper-
ties of the world that are true at particular time-points if they 
have been initiated by an event occurrence at some earlier 
time-point, and not terminated by another event occurrence in 
the meantime. Similarly, a fluent is false at a particular time-
point if it has been previously terminated and not initiated in the 
meantime” [25]. 

A fluent Fl is a proposition defined by a set InitFl of initi-
ating events, a set TermFl of terminating events, and an ini-
tial value InitiallyFl that can be true or false. The sets of initi-
ating and terminating events must be disjoint. The concrete 
syntax for fluent definition is the following [5]: 

fluent Fl = < InitFl, TermFl > initially InitiallyFl 

In our train example, the safety goal “Doors shall remain 
closed while the train is moving” suggests two fluents: moving 
and doorsClosed. The former is defined as follows: 

fluent moving = <{start},{stop, emergency stop}> initially false 

2.4 Grammar induction 
Inductive learning aims at finding a theory that generalizes a 
set of observed examples. In grammar induction, the theory 
to be learned is a formal language and the set of positive 
examples is made of strings defined on a specific alphabet. 
A negative sample corresponds to a set of strings not be-
longing to the target language. When the target language is 
regular and the learned language is represented by a de-
terministic finite state automaton (DFA), the problem is 
known as DFA induction. 

DFA identification in the limit 
Identification in the limit is a learning framework in which an 
increasing sequence of strings is presented to the learning 
algorithm [6]. The strings are randomly drawn and cor-
rectly labeled as positive or negative. Learning is successful 
if the algorithm infers the target language in finite time af-
ter having seen finite samples. This framework justifies 
why successful DFA learning needs both positive and nega-
tive strings. Gold showed that the class of regular lan-
guages cannot be identified in the limit from positive 
strings only [6]. In practice, convergence in finite time to-
wards an exact solution is often bargained with reasonably 
fast convergence towards a good approximate solution [18]. 

The search space of DFA induction 
DFA induction requires efficient search through the space 
of possible generalizations. To characterize the search space 
we need to recall some links between finite automata and 
regular languages. 

Let Σ denote a finite alphabet, u,v,w denote strings over 
Σ, and let λ denote the empty string. A string u is a prefix of 
v if there exists a string w such that uw=v. A language L is 
any subset of the set Σ* of strings over Σ. 

A string u is accepted by an automaton if there is a path 
from the initial state to some accepting state such that u is 
the concatenation of the transition symbols along this path. 
The language L(A) accepted by an automaton A is the set of 
strings accepted by A. For any regular language L, the ca-
nonical automaton A(L) is the minimal DFA accepting L, 
that is, the DFA having the smallest number of states and 
accepting L. The automaton A(L) is known to be unique up 
to state renumbering [7]. 

 A positive sample S+ can be represented by a prefix tree 
acceptor PTA(S+) as depicted in Fig. 2.4 (accepting states 
there are represented by double circles); PTA(S+) is the 
largest DFA accepting S+ exactly. Learning an automaton A 
by generalizing a positive sample can be performed by 
merging states from PTA(S+). Such generalization is de-
fined through a quotient automaton, constructed by parti-
tioning the states of A.  

Consider, for example, the automaton A represented at 
the top of Fig. 2.5. Let π={{0,2},{1}} be a partition defined on 
its state set Q={0,1,2}. Its quotient automaton with respect 
to the partition π, denoted A/π, is represented on the right. 
Any accepting path in A is also an accepting path in its quo-
tient automaton. In other words, merging states in an 
automaton generalizes the language it accepts. As a quo-
tient automaton corresponds to a particular partition, the 
set of possible generalizations which can be obtained by 

 
Fig. 2.3 – Finite LTS execution for the Train Controller agent in the 
Positive Scenario in Fig. 2.1. 

 
Fig. 2.4 – The prefix tree acceptor built from S+ = {λ,a,bb,bba, 
baab,baaaba}. 

 
Fig. 2.5 – A lattice of partitions defining quotient automata. 
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merging states of an automaton A is defined by a lattice of 
partitions. Fig. 2.5 presents all quotient automata that can 
be derived from the automaton at the top.  

Learning a language L aims at generalizing a positive 
sample S+ under the control of a negative sample S–, with 
S+ ⊆ L and S– ⊆ Σ*\L. This is made possible if S+ is repre-
sentative enough of the unknown language L and if the 
correct space of possible solutions is searched through. 
These notions are stated precisely hereafter. 
Definition 2.1. (Structural completeness). A positive sample 

S+ of a language L is structurally complete with respect to an 
automaton A accepting L if, when generating S+ from A, 
every transition of A is used at least once and every final state 
is used as accepting state of at least one staring. 
Rather than a requirement on the sample, structural 

completeness should be considered as a limit on the possi-
ble generalizations that are allowed from a sample. If a 
proposed solution is an automaton in which some transi-
tion is never used while parsing the positive sample, no 
evidence supports the existence of this transition and this 
solution should be discarded. The following theorem is 
proved in [3] to characterize the search space of the DFA 
induction problem. 
Theorem (DFA search space). If a positive sample S+ is struc-

turally complete with respect to a canonical automaton A(L) 
then there exists a partition of the state set of PTA(S+) such 
that PTA(S+)/π = A(L). 
To summarize, learning a regular language L can be per-

formed by identifying the canonical automaton A(L) of L 
from a positive sample S+. If the sample is structurally 
complete with respect to this target automaton, it can be 
derived by merging states of the PTA built from S+. A 
negative sample S– is used to guide this search and avoid 
overgeneralization. Finding the minimal DFA is a NP-
complete problem [7]. 

The RPNI algorithm and its convergence 
The RPNI algorithm explores a very small fraction of the 
entire search space with the guarantee of finding the correct 
DFA when the learning sample is rich enough [26]. The 
convergence of RPNI on the correct automaton A(L) is 
guaranteed when the algorithm receives a sample as input 
that includes a characteristic sample of the target lan-
guage [4]. A proof of convergence is presented in [27] in the 
more general case of transducer learning. Some further no-
tions are needed here. 
Definition 2.2. (Short prefixes and suffixes). Let Pr(L) de-

note the set of prefixes of L, with Pr(L) = {u | ∃v, uv ∈ L}. 
The right-quotient of L by u, or set of suffixes of u in L, is de-
fined by L/u = {v | uv ∈ L}. The set of short prefixes Sp(L) of 
L is defined by Sp(L) = {x ∈ Pr(L) | ¬∃ u ∈ Σ* with L/u = 
L/x and u < x}. 
In a canonical automaton A(L) of a language L, the set of 

short prefixes is the set of the first strings in standard order, 
each of which leads to a particular state of the canonical 
automaton. Consequently, there are as many short prefixes 
as states in A(L). In other words, the short prefixes uniquely 

identify the states of A(L). The set of short prefixes of the 
automaton of Fig. 2.6 is Sp(L) = {λ, b}. 
Definition 2.3. (Language kernel). The kernel N(L) of the 

language L is defined as N(L) = {xa | x ∈ Sp(L), a ∈ Σ, xa ∈ 
Pr(L)} ∪ {λ}. 
The kernel is made of the short prefixes extended by one 

letter, and the empty string. By construction Sp(L) ⊆ N(L). 
The kernel elements represent the transitions of the canoni-
cal automaton A(L) since they are obtained by adding one 
letter to the short prefixes that represent the states of A(L). 

The kernel of the language defined by the automaton of 
Fig. 2.6 is N(L) = {λ, a, b, ba, bb}. 
Definition 2.4. (Characteristic sample). A sample S = (S+,S-) 

is characteristic for language L and the RPNI algorithm if it 
satisfies the following conditions : 
1. ∀x ∈ N(L), if x ∈ Pr(L) then x ∈ S+ else ∃u ∈ Σ* such 

that xu ∈ S+ 
2. ∀x ∈ Sp(L), ∀y ∈ N(L) if L/x ≠ L/y then ∃u ∈ Σ* such 

that (xu ∈ S+ and yu ∈ S-) or (xu ∈ S- and yu ∈ S+) 
Condition 1 guarantees that each element of the kernel 

belongs to S+ if it also belongs to the language or, other-
wise, is prefix of a string of S+. This condition can be seen 
to imply the structural completeness of the sample S+ with 
respect to A(L). In this case, the DFA search space theorem 
guarantees that the automaton A(L) belongs to the lattice 
derived from PTA(S+). When an element x of the short pre-
fixes and an element y of the kernel do not have the same 
set of suffixes (L/x ≠ L/y), they necessarily correspond to 
distinct states in the canonical automaton. In this case, con-
dition 2 guarantees that a suffix u would distinguish them. 
In other words, the merging of a state corresponding to a 
short prefix x in PTA(S+) with another state corresponding 
to an element y of the kernel is made incompatible by the 
existence of xu in S+ and yu in S–, or the converse. 

One can verify that S = (S+, S–), with S+ = {λ, a, bb, bba, 
baab, baaaba} and S– = {b, ab, aba}, forms a characteristic 
sample for the language accepted by the canonical automa-
ton in Fig. 2.6. 

3 OVERVIEW OF THE APPROACH 
Fig. 3.1 shows the various steps of our approach as seen by 
users. We outline them first before providing the technical 
details in the next sections. In the first step, the end-user 
introduces positive and negative scenarios. In the second 
step, the tool synthesizes a LTS for the global system which 
covers all positive scenarios and excludes all negative ones. 
The generalization process is guided by scenario questions 
asked to the end-user and generated during the incremental 
synthesis process. The synthesized LTS is then projected to 
obtain each local agent LTS. In the third step, fluent defini-

 
Fig. 2.6 – An automaton A with Sp(L) = {λ,b} and N(L) = {λ,a,b,ba,bb}. 
The sample S =( S+, S–) with S+ = {λ,a,bb,bba,baab,baaaba} and 
S = {b,ab,aba} is characteristic for A.. 
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tions are provided by the analyst as optional input for gen-
erating state invariants to document and validate the gen-
erated LTS. 

(Step 1) Submitting an initial set of positive and negative 
scenarios. The end-user has to provide a non-empty set of 
scenarios (positive and/or negative) as initial input to the 
process. All scenarios must start in the same initial state. 
Fig. 3.2 presents typical end-user scenarios for the train ex-
ample. The initial scenario collection there contains three 
positive scenarios and one negative. 

(Step 2) Generating scenario questions and synthesizing 
agent LTS. The tool incrementally generates and refines a 
global LTS for the system that covers positive scenarios and 
excludes negative ones. The generalization process is 
guided by scenarios generated during synthesis as 
questions to the end-user. The user just needs to classify 
those generated scenarios as being positive or negative. For 
the initial scenarios in Fig. 3.2, the tool generates three 
scenario questions while producing a first LTS sketch. 
These questions are shown in Fig. 3.3. Scenario questions 
are composed of a prefix and a suffix. The prefix is an 
already admissible behavior. The suffix must be accepted or 
rejected by the end-user. The prefix and suffix of a question 
are separated by a dashed line labelled with a question 
mark. The first scenario asks the user if the train controller 
can start after having started and stopped the train. The 
user should accept this scenario. The second question can 
be rephrased as follows: “if the train starts and a passenger 
presses the alarm button, can the controller then open the 
doors in emergency and close the doors afterwards?”. This 
scenario should be rejected as the train should not move 
with open doors. The third question asks the user if the 
passenger can press the alarm button in the initial state. The 
end-user might accept this scenario. Once they are accepted 
or rejected, the generated scenarios are added to the 
scenario collection as positive or negative ones, 
respectively. 

Finally, the synthesized LTS is projected on each agent to 
obtain its LTS. Fig. 3.4 (a) shows the generated Train 
Controller LTS at the end of this process. 

(Step 3) Generating state invariants to document the 
generated state machines. For validation and 
documentation purpose, each state of the generated LTS 

may be decorated with a state invariant that holds at any 
time this state is visited. If this option is taken, fluent 
definitions are to be provided by the user from goal 
formulations. The user here is no longer the end-user but 
the analyst who wants the state machines to be made 
comprehensible for documentation and validation before 
code generation. For the train controller, three fluents 
might be identified from goal formulations: 

• fluent moving = <{start}, {stop, emergency stop} > initially false 
• fluent doors_open = <{open doors, emergency open}, {close 

doors}> initially false 
• fluent alarmed = <{alarm propagated}, {emergency open}> ini-

tially false 

The decorated state machine is shown in Fig. 3.4 (b). If 
the analyst finds problems with the generated state ma-
chines, she can do the following. 

• If the state machine is overgeneralized, she should 
provide a negative scenario and restart the LTS syn-
thesis process. 

• If the state machine is incomplete, she may (i) change 
the state machine by hand (e.g., by adding a transi-
tion), or (ii) add new positive scenarios and then re-
start the LTS synthesis process. Alternative (i) can re-
sult in inconsistencies between the LTS and the end-
user’s scenario collection; the analyst should therefore 
raise the problem to the end-user and modify the lat-
ter accordingly. 

 
Fig. 3.1 – Generating annotated state machines from end-user  
scenarios. 
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(b) 

Fig. 3.4 – Generated LTS of the Train Controller; (a) before decoration; 
(b) decorated with state invariants. 

 
Fig. 3.1 – Generating annotated state machines from end-user  
scenarios. 
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Fig. 3.3 – Scenario questions generated to the end-user during the LTS synthesis process. 

 
Fig. 3.2 – End-user’s positive and negative scenarios for a train system. 
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4 SYNTHESIZING LABELED TRANSITION SYSTEMS 
FROM END-USER SCENARIOS 

This section describes our technique for synthesizing la-
beled transition systems (LTS) from simple message se-
quence charts (MSC) without any extra information such as 
hMSCs or state assertions. Our algorithm extends an effi-
cient automaton induction algorithm known as RPNI [26] 
to make it interactive through scenario questions. Section 
4.1 explains how LTS synthesis can be achieved through 
automaton induction and why such interaction is needed in 
our context. The synthesis of a global system LTS is de-
tailed in Section 4.2. The projection of this LTS on the 
agents forming the system is explained in Section 4.3. The 
properties of our approach are then discussed in Sec-
tion 4.4. 

4.1 LTS synthesis as a grammar induction problem 
As introduced in Section 2.4, a regular language can be 
learned through automaton induction techniques. LTS are a 
particular class of automata that contain only accepting 
states. A positive (resp. negative) MSC timeline defines a 
unique execution of the LTS associated with the corre-
sponding agent. It therefore defines an accepted (resp. re-
jected) string of the regular language represented by the 
agent LTS. In a similar way, a positive (resp. negative) MSC 
linearization defines an accepted (resp. rejected) string of 
the regular language generated by the LTS of the global 
system. The latter language will be denoted by L(S) in the 
sequel. 

Any prefix of a finite LTS execution is a valid LTS execu-
tion as LTS contain only accepting states. Therefore, any 
prefix of a positive MSC linearization is an accepted string 
of L(S). Such a linearization thus provides a finite set of 
positive strings of L(S). In a similar way, as the prefix of a 
negative MSC is a positive MSC, a negative MSC lineariza-
tion provides one rejected string and a finite set of accepted 
strings of L(S). 

Our choice of a RPNI-based technique to overcome the 
absence of additional state information about the submitted 
scenarios is motivated by the following observation. If the 
end-user scenario collection contains a characteristic sample 
according to L(S), a RPNI-based algorithm will ensure that 
L(S) can be learned in polynomial time. The learned system 
LTS can then be projected on each agent, using standard 
automaton algorithms, in order to obtain their respec-
tive LTS. 

In practice, the initial scenario collection might not pro-
vide a characteristic sample for the considered system (see 
the importance of negative strings in Definition 2.4). For 
example, an initial scenario collection with no negative ex-
ample cannot be characteristic for any non-trivial system – 
that is, any system for which the target automaton contains 
at least two states (Condition 2 in Definition 2.4 states that 
the merging of those states should be made incompatible 
by at least one negative scenario). To overcome the problem 
of poor generalization when dealing with such limited 
training sets, we extend the RPNI algorithm so that it gen-
erates additional scenarios and asks the end-user to classify 
them as positive or negative. The learned system will cover 

all positive scenarios and reject all negative ones, including 
the interactively generated/classified ones. 

4.2 Interactive synthesis of the system LTS 
Our interactive RPNI-based synthesis algorithm is given 

in Fig. 4.1. The algorithm takes a scenario collection as in-
put and produces a LTS of the global system as output. The 
completion of the initial scenario collection with classified 
scenarios that were generated during synthesis is another 
output of the algorithm. The input collection must contain 
at least one positive or one negative scenario. The gener-
ated LTS covers all positive scenarios in the final collection 
and excludes all negative ones.  

The induction process can be described as follows: it 
starts by constructing an initial LTS covering all positives 
scenarios only, i.e. the latter does not introduce any gener-
alization of the system behaviors described by the positive 
scenarios. The system is then successively generalized un-
der the control of the available negative scenarios and 
newly generated scenarios classified by the end-user. This 
generalization is carried out by successively merging well-
selected state pairs of the initial LTS, i.e. by successively 
computing quotient LTS from the initial one (see Section 
2.4). The induction process is such that, at any step, the cur-
rent quotient LTS covers all positive scenarios and excludes 
all negative ones, including the interactively classified ones. 
In the sequel, a LTS will be said to be compatible with respect 
to a set of scenarios if it covers all positive scenarios in that 
set and excludes all negative ones. By extension, two states 
will be said compatible for merging (resp. incompatible) if the 
quotient LTS which results from their merging is compati-
ble (resp. incompatible) with the current set of scenarios. 

Following the algorithm given in Fig. 4.1, the Initialize 
function returns an initial candidate LTS solution built from 
S+. Next, pairs of states are iteratively chosen from the cur-
rent solution. The quotient automaton obtained by merging 
such states, and possibly some additional states, is com-
puted by the Merge function. The compatibility of this quo-
tient automaton with the learning sample is then checked 
by the Compatible function using available negative scenar-

 
Fig. 4.1 – An interactive adaptation of the RPNI induction algorithm. 



AUTHOR ET AL.:  TITLE 9 

 

ios. When compatible, new scenarios are generated through 
the GenerateQuestion function and submitted to the end-
user for classification (CheckWithEndUser). Scenarios classi-
fied as positive are added to the initial collection. When a 
generated scenario is classified as negative, it is added as 
negative example; the generation of the current solution is 
ended and the candidate quotient automaton is discarded. 
Otherwise, when all generated scenarios are classified as 
positive, the quotient automaton becomes the current can-
didate solution. The process is iterated until no more pair of 
states can be considered for merging. The learned LTS is 
then returned as output of the algorithm. 

This interactive algorithm has a polynomial time com-
plexity in the size of the learning sample. Whenever a quo-
tient automaton is considered compatible and the end-user 
classifies all generated scenarios as positive examples, the 
states that were merged remain merged forever. In other 
words, there is no backtracking in the induction process. This 
is a key feature explaining the time complexity of the algo-
rithm.  
We now have a closer look at the algorithm by detailing its 
various functions. 

(Initialize) The Initialize function returns the initial solution 
built from S+ as prefix tree acceptor PTA(S+) constructed 
from positive MSCs. The PTA built from the positive sam-

ple in Fig. 3.2 is shown on top of Fig. 4.2. According to the 
modeling hypothesis discussed before, all PTA states are 
accepting states. As mentioned before we assume here that 
all scenarios are starting in the same system state. 

(ChooseStatePairs). The candidate solution is refined by 
merging well-selected state pairs. The ChooseStatePairs func-
tion determines which pairs to consider for such merging. It 
relies on the standard lexicographical order “<” on strings. 
Each PTA(S+) state can be labeled by its unique prefix from 
the initial state. Since prefixes can be sorted according to 
that order, the states can be ranked accordingly. For exam-
ple, the PTA states in Fig. 4.2 are labeled by their rank ac-
cording to this order. The algorithm considers states q of 
PTA(S+) in increasing order. The state pairs considered for 
merging only involve such state q and any state q’ of lower 
rank. The q’ states are considered in increasing order as 
well. 

(Merge) The Merge function merges the two states (q, q’) 
selected by the ChooseStatePairs function in order to com-
pute a quotient automaton, that is, to generalize the current 
set of accepted behaviors. In the example of Fig. 4.2, we 
assume that states 0, 1, and 2 were previously determined 
not to be mergeable (through negative scenarios initially 
submitted or generated scenarios that were rejected by the 

 
Fig. 4.2 – Typical steps implemented by the Merge function. From the current solution A, states 3 and 0 are merged. The resulting NFA is con-
verted into a deterministic quotient automaton Anew. Labels e.stop, e.open, a.pressed and a.propagated are shorthands for emergency stop, 
emergency open, alarm pressed, and alarm propagated, respectively. 
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user). Merging a candidate state pair may produce a non-
deterministic automaton. For example, after having merged 
q = 3 and q’ = 0 in the upper part of Fig. 4.2, one gets two 
transitions labeled start from state 0, leading to states 2 and 
6, respectively. In such a case, the Merge function merges 
the latter states and, recursively, any further pair of states 
that introduces non-determinism.  

We call determinization the operation of removing non-
determinism through such recursive merge. This operation 
guarantees that the current solution at any step is a DFA. It 
does not remove non-determinism to build an equivalent 
DFA as standard algorithms [8] since it produces an 
automaton which may accept a more general language than 
the NFA it starts from. 

When two states are merged, the rank of the resulting 
state is defined as the lowest rank of the pair; in particular, 
the rank of the merged state when merging q and q’ is de-
fined as the rank of q’ by construction. If no compatible 
merging can be found between q and any of its predecessor 
states according to <, state q is said to be consolidated (in the 
example, states 0, 1, and 2 are consolidated). 

(Compatible) The Compatible function checks whether the 
automaton Anew correctly rejects all negative scenarios. As 
seen in Fig. 4.1, the quotient automaton is discarded by the 
algorithm when it is detected not to be compatible with the 
negative sample. 

(GenerateQuestion) When an intermediate solution is com-
patible with the available scenarios, new scenarios are gen-
erated for classification by the end-user as positive or nega-
tive. The aim is to avoid poor generalizations of the learned 
language. The notion of characteristic sample drives the 
identification of which new scenarios should be generated as 
questions. Recall from section 4.2 that a sample, i.e. a set of 
available scenarios, is characteristic of a language L, that is 
of a set of event sequences accepted by a global LTS, if it 
contains enough positive and negative information. On one 
hand, the required positive information is the set of short 
prefixes Sp(L) which form the shortest histories leading to 
each system state. This positive information must also in-
clude all elements of the kernel N(L) which represents all 
system transitions, that is, all shortest histories followed by 
any admissible event. If such positive information is avail-
able, the PTA (as well as any machine generalized from it 
by merging states) is guaranteed to contain the global LTS 
states and transitions. On the other hand, the negative sce-
narios provide the necessary information to make incom-
patible the merging of states which should be kept distinct. 
A negative scenario which excludes the merging of a state 
pair (q, q’) can be simply made of the shortest history lead-
ing to q’ followed by any suffix, i.e. any valid continuation, 
from state q. 

Consider the current solution of our induction algorithm 
when a pair of states (q, q’) is selected for merging. By con-
struction, q’ is always a consolidated state at this step of the 
algorithm (that is, q’ ∈ Sp(L)). State q is always both the root 
of a tree and the child of a consolidated state. In other 
words, q is situated at one letter of a consolidated state, that 
is, q ∈ N(L). States q and q’ are compatible according to the 
available negative scenarios; they would be merged by the 

standard RPNI algorithm. In our extension, the tool will 
first confirm or infirm the compatibility of q and q’ by gen-
erating scenarios to be classified by the end-user. The gen-
erated scenarios are constructed as follows. 

Let A denote the current solution, L(A) the language 
generated by A, and Anew the quotient automaton computed 
by the Merge function at some given step. Let x ∈ Sp(L) and 
y ∈ N(L) denote the short prefixes of q’ and q in A, respec-
tively. Let u ∈ L(A)/y denote a suffix of q in A.  

A generated scenario is a string xu such that xu ∈ 
L(Anew)\L(A). This string can be further decomposed as xvw 
such that xv ∈ L(A). A generated scenario xu is thus con-
structed as the short prefix of q’ concatenated with a suffix 
of q in the current solution, provided the entire behavior is 
not yet accepted by A. Such scenario is made of two parts: 
the first part xv is an already accepted behavior whereas the 
second part w provides a continuation to be checked for 
acceptance by the end-user. When submitted to the end-
user, the generated scenario can always be rephrased as a 
question: after having executed the first episode (xv), can the 
system continue with the second episode (w)? 

Consider the example in Fig. 4.2 with selected state pair 
q=3, q’=0. As q’ is the root of the PTA, its short prefix is the 
empty string. The suffixes of q here yield one generated 
question, see Fig. 4.3, which can be rephrased as follows: 
When having started and stopped the train, can the controller 
restart it again? One can see that the first episode of this sce-
nario in Fig. 4.2 is already accepted by A whereas the entire 
behavior is accepted in Anew.  

The suffixes selected by our tool for generating questions 
are always the entire branches of the tree rooted at q. The 
aim is to help the end-user to more easily determine 
whether the generated scenario should be rejected. The 
boundary between the first (xv) and second (w) episodes of 
this scenario can be determined by comparing A and Anew; 
some states get new outgoing transitions during the deriva-
tion of the quotient automaton – see, e.g., the new transition 
label start appearing on state 5 at the bottom of Fig 4.2. Such 
a new transition identifies the first event of w. Given a se-
lected suffix u=vw of q, v is composed of the transitions 
folded up during the determinization process whereas w is 
the unfolded part of the branch. No scenario has to be gen-
erated whenever w is empty, that is, when the entire branch 
is folded up. 

 
Fig. 4.3 – Scenario question submitted to the end-user by the interac-
tive synthesis algorithm. 
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As the formulated behavior is not yet in A but will be in 
Anew, a generated scenario could be viewed as a measure of 
language generalization by the merging of q and q’. Our 
interactive RPNI extension controls such generalizations 
when the sample is not characteristic.  

(CheckWithEndUser) The end-user is asked to classify gen-
erated scenarios as examples of positive or negative behav-
ior of the system; the scenario collection is completed ac-
cordingly. For the scenario question in Fig. 4.3, the user 
should provide a positive answer, thereby classifying this 
scenario as a positive example of system behavior.  

The compatibility of q and q’ in the system LTS gets con-
firmed when the user classifies as positive all scenarios 
generated at this step in the algorithm; Anew is then consid-
ered as a good intermediate LTS solution and becomes the 
new current solution. The algorithm then continues with 
another state pair.  

If one generated scenario is classified as a negative ex-
ample, the generation procedure ends that solution path. 
The goal is to avoid merging of incompatible states, and 
one single counter-example is sufficient to avoid such poor 
generalization. When a scenario gets rejected, the first event 
in its second episode is used as prohibited event of the 
negative example. In case this prohibited event appears 
later in the second episode, the user may change the posi-
tion of the boundary between the accepted and rejected 
episodes, to change the counter-example or make it more 
specific (see the Change button in Fig. 4.3). In all cases, the 
generated scenarios are added to the scenario collection 
once they are classified (see the algorithm in Fig. 4.1).  

The final result of the induction algorithm is guaranteed 
to be compatible with all scenarios received, including 
those classified by the end-user. Compatibility with the 
positive scenarios is ensured by construction of the initial 
PTA and subsequent merges, which can only generalize the 
accepted set of behaviors (see Section 2.4). At each step of 
the algorithm, the new solution is only kept if it rejects all 
current negative scenarios, as checked by the Compatible 
function, and if all new scenarios are classified as positive 
by the end-user. 

4.3 Projecting the global system LTS on agents 
Fig. 4.4 (a) shows the train global LTS obtained by the syn-
thesis algorithm. The LTS for each agent forming that sys-
tem are generated from this global LTS using standard 
automaton algorithms [8].  

The projection of the system LTS on a specific agent pro-
ceeds in three steps: 

1) Each event not monitored or controlled by the agent is 
replaced by a special empty event ε, and eliminated. 

2) The resulting NFA is converted into an equivalent 
DFA. 

3) The resulting LTS is minimized to yield the minimal 
deterministic LTS representing the behavior of this 
agent.  

Fig. 4.4 (b) shows the resulting LTS for the Train Con-
troller. 

An earlier version of our tool was based on an alterna-
tive approach where a high-level Message Sequence 

Chart [10] was generated first as an intermediate product 
before LTS generation. The generated high-level Message 
Sequence Chart (hMSC) in this approach has exactly the 
same admissible behaviors than the synthesized LTS. We 
initially took that approach for two reasons: (a) the agent 
LTS can then be generated from this hMSC using known 
techniques [29], and (b) an intermediate hMSC may some-
times provide a valuable global view of the system for vali-
dation by the analyst. The synthesis approach presented in 
the paper has however been preferred for much greater 
simplicity. 

2.4 Discussion 
This section addresses three issues raised by our LTS syn-
thesis technique: the adequacy of the synthesized behavior 
model, the presence of implied scenarios, and the number 
of scenario questions interactively generated. 

Adequacy of the synthesized model 
Unlike deductive inference, inductive inference from ex-
amples is known to be logically not sound. The inferred 
system model may be undergeneralized or overgeneral-
ized.  

Overgeneralization occurs when the synthesized system 
LTS covers undesired behaviors. This may occur when 
states were merged by the algorithm while they correspond 
to distinct states of the system; that is some system states 
may not have been adequately identified. Although sce-
nario generation is based on characteristic samples, such 
situations may arise when the sample is sparse due to a 
limited number of generated scenario questions. One pos-
sible way of fixing this is to add the undesired behaviors 
being covered as new negative examples to the scenario 
collection, and restart the incremental synthesis algorithm.  

Undergeneralization occurs when desired system behav-
iors are not covered by the system LTS. This may occur 
when the scenario collection is not structurally complete; 
some system transitions may not have been adequately 
identified. One possible way of fixing this is to add the 
missing desired behaviors as new positive examples to the 
scenario collection, and restart the incremental synthesis 
algorithm. 

 

 

 

 

(a) 

 

 

 

 

 

(b) 

Fig. 4.4 – (a) Synthesized LTS of the global train system. (b) Train 
Controller LTS. 
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The union of the set of initial end-user scenarios, the set 
of answers to scenarios questions, and the set of such addi-
tional desired/undesired examples, is converging towards 
a characteristic sample for the algorithm. Keeping classified 
scenarios in an updated collection thus contributes to the 
algorithm’s convergence towards an adequate behavior 
model. It also prevents the same scenario from being re-
submitted during the following cycles of the incremental 
synthesis. 

Under- and overgeneralizations should be detected be-
fore they can be fixed. This may be achieved through model 
checking [21, 5], model animation [22], or model validation 
using the LTS decoration algorithm presented in the next 
section. 

Handling implied scenarios 
The set of behaviors of the parallel composition of each 
agent LTS is not necessarily the same as the set of behaviors 
of the synthesized global LTS. Implied scenarios may result 
from the parallel composition of agents acting on local in-
formation [28]. In our example, implied scenario analysis 
would result in new questions to the user such as: “Can the 
passenger push on the alarm twice?”. Non-desired implied 
scenarios should be detected and excluded. The interested 
readers may refer to [28] and [20] for details on implied 
scenario analysis. 

Reducing the number of submitted questions 
According to the definition of a characteristic sample, our 
RPNI-based strategy is optimistic; two states are considered 
compatible for merging if there is no suffix to distinguish 
among them. This can lead to a significant number of sce-
narios being generated to the end-user, to avoid poor gen-
eralizations, when the initial sample is sparse and not char-
acteristic for the system LTS.  

To overcome this problem, our tool implements an op-
timized strategy known as Blue Fringe [19]. The difference 
lies in the way state pairs are considered for merging. The 
general idea is to first consider state pairs for which com-
patibility has highest chance to be confirmed by the user 
through positive classification. The resulting “please con-
firm” interaction may also appear more appealing to the 
user. 

 Fig. 4.5 gives a typical example of a temporary solution 
produced by the original algorithm. Three state classes can 
be distinguished in this DFA. The red states are the consoli-
dated ones (0, 1 and 2 in this example). Outgoing transi-
tions from red states lead to blue states unless the latter 
have already been labeled as red. Blue states (4 and 5 in this 
case) form the blue fringe. All other states are white states.  

The original ChooseStatePairs function considers the low-
est-rank blue state first (state 4 here) for merge with the 
lowest-rank red state (0). When this choice leads to a com-
patible quotient automaton, generated scenarios are sub-
mitted to the end-user (in this case, a scenario equivalent to 
the string {alarm propagated, emergency stop, emergency open}). 
The above strategy may lead to multiple questions being 
generated to avoid poor generalization. Moreover, such 
questions may be non-intuitive for the user, e.g., the alarm 
propagated event is sent to the train controller without hav-
ing been fired by the alarm pressed event to the sensor. 

To select a state pair for merging, the Blue-Fringe opti-
mization evaluates all (red, blue) state pairs first. The 
ChooseStatePairs function now calls the Merge and Compati-
ble functions before selecting the next state pair. If a blue 
state is found to be incompatible with all current red states, 
it is immediately promoted to red; the blue fringe is up-
dated accordingly and the process of evaluating all (red, 
blue) pairs is iterated. When no blue state is found to be 
incompatible with red states, the most compatible (red, blue) 
pair is selected for merging through an adapted version of 
the Compatible and Initialize functions. Initialize now returns 
an augmented prefix tree acceptor PTA(S+, S–). It stores the 
prefixes of all positive and negative strings, with accepting 
states being labeled as positive or negative. The Compatible 
function now returns a compatibility score instead of a Boo-
lean value. The score is defined as −1 when, in the merging 
process for determinization, merging the current (red, blue) 
pair requires some positive accepting state to be merged 
with some negative accepting state; this score indicates an 
incompatible merging. Otherwise, the compatibility score 
measures how many accepting states in this process share 
the same label (either + or -). The (red, blue) pair with high-
est compatibility score is considered first. 

The above strategy can be further refined with a com-
patibility threshold α as additional input parameter. Two 
states are considered to be compatible if their compatibility 
score is above that threshold. This additional parameter 
controls the level of generalization since increasing α de-
creases the number of state pairs that are considered com-
patible for merging; it thus decreases the number of gener-
ated questions. 

On the train example of this paper, the original RPNI-
based algorithm in Section 4.2 learns the system LTS cor-
rectly by submitting 20 scenarios to the end-user (17 should 
be rejected and only 3 should be accepted). With the inter-
active Blue-Fringe optimization, the same LTS is synthe-
sized with only 3 scenarios being submitted (one to be re-
jected and two to be accepted). 

The number of generated questions can be further re-
duced by integration of system knowledge or legacy com-
ponents. Domain properties and legacy components can be 
modeled as state machines. As the states of the PTA capture 
global system states, defined as tuples of simultaneous LTS 
states of the various agents, adding partial state informa-
tion in the PTA allows an equivalence relation to be defined 
on states. Any generalization which would result in merg-
ing non-equivalent states according to this relation can be 
discarded. This ensures both consistency with system 
knowledge and search space reduction which speeds up the 

 
Fig. 4.5 – Consolidated states (red) and states on the fringe (blue) in a
temporary solution. 
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learning process and decreases the number of scenario 
questions. An example of legacy component integration is 
presented in Section 6. Some preliminary work on integrat-
ing goal specifications [16] in the learning process suggests 
that goals are another highly effective source for drastic 
pruning of scenario questions. 

5 GENERATING STATE INVARIANTS FROM FLUENT 
DEFINITIONS 

State invariants on a state machine are assertions on a spe-
cific state which hold every time that state is visited. The 
annotation of state machines with such invariants provides 
multiple benefits: 

• the understandability and documentation of the state 
machine is improved; 

• the invariants can be shown to the analyst for valida-
tion and error detection; 

• state invariants can be used by analysis tools for more 
efficient analysis [12];  

• invariants can be used by code generators to improve 
the quality of the generated code. When the entire 
code of the application cannot be fully generated, the 
generated fragments must be readable by developers. 
The choice of variables in the generated code, their 
names and property annotations may then be quite 
useful.  

An algorithm for generating state invariants for SCR 
state machines is presented in [12]. This algorithm cannot 
be applied here as the semantics of SCR state machines dif-
fers from the semantics of LTS state machines. Consider a 
state machine with state q and no outgoing transition with 
label l. 

• According to the semantics described in [12], if the 
system is in state q, an event with label l can occur; the 
system then remains in the same state q.  

• With the LTS semantics, no event with label l can oc-
cur when the system is in state q. 

This section presents an algorithm for generating state 
invariants from fluent definitions. We use fluents, as intro-
duced in Section 2.4, rather than pre- and post-conditions 
on event occurrences. The reasons are the following. 

• Fluents turn out to be simpler to use; they allow the 
analyst to focus on one single state variable at a time 
and thereby annotate LTS incrementally.  

• Invariant generation requires less input information; 
only the counterpart of postconditions has to be de-
fined transition preconditions are provided by the 
state machine.  

• Conflicts may arise when the pre-/postconditions are 
incompatible with the state machine. Consider two 
consecutive events ev1 and ev2 in a LTS execution. 
The postcondition post(ev1) and the precondition 
pre(ev2) cannot be inconsistent; in other words, a con-
flict arises when post(ev1) ∧ pre(ev2) → false, mean-
ing that either the state machine or the pre-
/postconditions are incorrect.  

• Fluents provide a nice interface between goal specifi-
cations and goal operationalizations [16]; their defini-

tion can be derived in a systematic way from goal 
specifications provided by goal models. 

The algorithm implemented by our tool decorates each 
state of the input LTS with a conjunction of fluent values 
that holds in that state. 

For our train example, three fluents are emerging from 
goal specifications: 

• fluent moving = <{start}, {stop, emergency stop} > initially false 
• fluent doors_open = <{open doors, emergency open}, {close 

doors}> initially false 
• fluent alarmed = <{alarm propagated}, {emergency open}> ini-

tially false 

The decoration of the initial state will be:  

¬ moving ∧ ¬ doors_opened ∧ ¬ alarmed 

Section 5.1 discusses the decoration of LTS states with 
single fluents. Section 5.2 then shows how state invariants 
are formed from single decorations. 

5.1 Decorating states with single fluents 
We first discuss how fluent values can decorate a node 

on a single LTS path. Then we consider the general case of 
node decoration for a node pertaining to multiple paths. 

Fluent values for a node on a single path 
A fluent Fl is true after a finite LTS execution σ ending in 
state q if and only if one of the following conditions 
holds [5]: 

(a) Fl holds initially and no terminating event has oc-
curred in σ;  

(b) Some initiating event has occurred in σ with no ter-
minating event occurring since then. 

The following recursive version of this definition is use-
ful for our generation algorithm. 

A Fluent Fl is true after a finite LTS execution σ ending in 
state q if and only if one of the following conditions holds: 

(a) σ is empty and Fl holds initially; 
(b) the last event of σ belongs to the initiating events; 
(c) the last event e of σ does not belong to the terminat-

ing events and the fluent is true after σ' where 
σ = <σ', e> 

Fluent values for a node on multiple paths  
The value of a fluent in a LTS node is not necessarily either 
true or false. There may be two LTS executions σ1 and σ2 
reaching a state q, such that the value of the fluent Fl after 
σ1 is true and the value of the fluent Fl after σ2 is false. For 
example, consider the train controller LTS (Fig. 3.4) and the 
fluent  

emergency = <{alarm propagated}, {start}> initially false. 

The value of the fluent at the initial state after the LTS 
execution σ1=<start, stop> is false. The value of the fluent at 
the initial state after the LTS execution σ2=<alarm propa-
gated, emergency open, close doors> is true. The value of emer-
gency at that state will therefore be set to top, meaning that 
the value of the fluent can be true or false at that state de-
pending on the path being followed. It is also possible that 
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a state is unreachable from the initial state. In that case, the 
value of Fl at that state will be set to bottom.  

The possible values of a fluent in some state thus belong 
to a lattice Boolabs defined as follows: 

Given a LTS model (Q,Σ, δ, q0) and a fluent Fl = < InitFl, 
TermFl > initially InitiallyFl, the output of our algorithm is a 
function decor: Q → boolabs defined as follows: 

decor (q) = 
'true' iff Fl is true for all LTS executions reaching 

state q 
'false' iff Fl is false for all LTS executions reaching 

state q 
'top' iff Fl is true for some LTS executions reaching 

state q and false for others 
'bottom' iff state q is not reachable from the initial state 

The idea behind the algorithm is the following. At each 
step, every state has a decoration. At the beginning, in 
every state, the fluent value is initialized to bottom except 
for the initial state where the fluent is initialized to the ini-
tial value provided by its definition. The algorithm propa-
gates fluent values in the state machine according to the 
following propagation rule derived from the above recur-
sive characterization of fluent values: 

where source ∈ Q, event ∈ Σ, target ∈ δ(source, event), and 
sup is the supremum function in the lattice Boolabs , for in-
stance, sup (true, false)= top and sup(bottom, true) = true. 

The algorithm applies this propagation rule for each 
transition until a fixpoint is reached where no state decora-
tion changes if the propagation rule is applied on each tran-
sition once again. 

The algorithm for one fluent is given in Fig. 5.2. It keeps 
track of the set ToExpl of states that have been updated and 
where the propagation should be applied. The algorithm 
stops when the set ToExpl is empty, that is, there is no state 
that must still propagate its value. 

The algorithm terminates because the set ToExpl will 
eventually be empty as a state can change his decoration at 
most twice: from bottom to either true or false, and from 
true or false to top. The reason is that the lattice is finite and 
the decoration can only go up in the lattice in view of the 
supremum operator. 

Fig. 5.3 illustrates the two first steps of our algorithm for 
the fluent moving = <{start}, {stop, emergency stop}> initially 
false on the Train Controller state machine. The value of the 
fluent at each state and after each step is shown in 
Table 5.1. 

(Step 0) We initialize the values of moving at bottom for each 
state except for the initial state where we initialize moving 
to its initial value.  

 (Step 1) Only state 0 is in ToExpl. We propagate its value to 
all his successors states. It has three outgoing transitions 
towards state1, state3 and state4. The fluent value of state0 
and state2 thus remains the same. For state1, the newVal 
equals true because start belongs to the initiating events 
and therefore moving will equal sup(bottom,true)=true. 
Therefore we add state1 to the set ToExpl. For state3 and 
state4, the events alarm propagated and open doors do not 
belong to the initiating or terminating events. The fluent 
values of state3 and state4 are sup(bottom,false)=false. We 
add thus state3 and state4 to ToExpl. 

(Step 2) We choose one element in ToExpl. Here we choose 
state1. State1 has two outgoing transitions. Because stop is a 
terminating event, moving at state0 equals 
sup(false,false)=false. Because the decoration of state0 has not 
changed, we do not add state0 to ToExpl. Alarm propagated 
does not belong to the initiating or terminating events and 
therefore moving at state2 equals sup(bottom,true)=true. We 
add thus state2 to ToExpl. 

The process is continued until ToExpl gets empty. 

 

 
Fig. 5.1 – Propagation rule of the decoration algorithm. 

 
Fig. 5.2 – LTS decoration algorithm. 
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5.2 Forming the state invariant 
A straightforward way of obtaining the global invariant at 
each state is to apply the algorithm of Fig. 5.1 once per flu-
ent and then take the conjunction of results. For example, 
the fluent values for the initial state are 

{moving = false, doors_opened = false, alarmed = false}. 

The state invariant is formed by taking the conjunction 
of all fluent values in that state. The top values do not ap-
pear in this conjunction as they do not give any information 
about the values of the corresponding fluents. The state 
invariant at the initial state is thus 

 ¬ moving ∧ ¬ doors_opened ∧ ¬ alarmed 

The algorithm implemented in our tool is an equivalent, 
optimized version where the value of all fluents is calcu-
lated within a single loop. 

6 CASE STUDY: A MINE PUMP CONTROL SYSTEM 
This section shows our tool in action on a non-trivial 
benchmark. We consider the following simplified problem 
statement for the Mine Pump exemplar [13]: “Water perco-
lating into a mine is collected in a sump to be pumped out of 

the mine. The water level sensor detects when water is above 
and below a specific level. A pump controller switches the 
pump on when the water goes above this level and off when it 
goes below this level. To avoid the risk of explosion, the pump 
must be operated only when the methane level is below some 
critical level.” 

Fig. 6.1 shows three scenarios initially submitted to the 
tool by stakeholders – two positive and one negative. As 
mentioned before, the tool has the built-in assumption that 
all submitted input scenarios start in the same initial state 
(this assumption is commonly made by the other ap-
proaches to state machine synthesis from scenarios.) The 
submitted scenarios thus implicitly specify that both the 
water level and the methane level are initially low. 

To illustrate the integration of legacy components, we 
assume that the methane sensor is an external component 
specified by the LTS shown on Fig. 6.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (b) (c) 
 
Fig. 5.3 – Executing the algorithm for fluent moving. (a) after initialization (Step 0) (b) after having propagated the value of fluent at state0 (after 
Step 1) (c) after having propagated the value o fluent atstate1 (after Step2). 

 
 (a) 

 

 
 

 
Table 5.1 – Values of fluent moving after each step of the decoration
algorithm. 

 
Fig. 6.2 – LTS of the Methane Sensor. 
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Fig. 6.5 – Synthesized Annotated LTS of the pump controller. 

 
 
 
 
 
 
 
 
 
 
 (a) (b) 
 
 

 

 

 

Fig. 6.1 – Three initial scenarios of the mine pump. 

 (c)  
 
 
 
 
 
 
 
 
 
 
 
 
 (a) (b) 
 
Fig. 6.3 – Two scenarios generated by the tool. 

 
 
 
 
 
 
 
 
Fig. 6.4 – Synthesized system LTS for the Mine Pump. Event labels are shorthands for the events presented in the scenarios of Fig. 6.1. 
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From this input the tool generates a first scenario ques-
tion shown in Fig. 6.3 (a). This scenario should be rejected 
by the end-user; in view of the common initial state with 
low water, the pump controller may not switch the pump 
on when the water level is low. This scenario is added as 
negative scenario to the initial collection. Its precondition 
contains the events signal critical methane and signal not 
critical methane, and its prohibited event is switch pump on.  

The next scenario then generated by the tool is shown in 
Fig. 6.3 (b). This scenario is to be accepted by the user; if the 
water level is high and the pump is running, the controller 
should switch the pump off when the methane level be-
comes critical, and switches the pump on when the meth-
ane level is no longer critical. 

The third and last scenario question requires a negative 
answer. The synthesis already terminates after those three 
questions as the integration of the legacy component allows 
the generation of two scenarios violating the methane sen-
sor LTS to be avoided. Fig. 6.4 shows the synthesized sys-
tem LTS. 

The tool then projects the synthesized system LTS on 
each agent. Fig. 6.5 shows the LTS for the pump controller, 
where the predicates annotating nodes there are to be re-
placed by numbers. 

The analyst enters the picture at this point. For better 
understanding of the generated LTS and its validation, she 
may enter the following fluent definitions as input to the 
invariant generation process: 

• fluent PumpOn = <{turn pump on}, {turn pump off} > initially 
false 

• fluent HighWater = <{signal high water}, {signal low water }> ini-
tially false 

• fluent CriticalMethane = <{signal critical methane}, {signal not 
critical methane}> initially false 

These fluents define the state of the pump, of the water 
level, and of the methane level in terms of their initiat-
ing/terminating events. They are typically identified from 
goal operationalizations [16]. 

The invariant generator then decorates each agent LTS 
with node annotations as shown for the pump controller 
LTS in Fig. 6.5. 

7 CONCLUSION 
Scenarios are concrete vehicles frequently used for eliciting, 
illustrating, and validating system requirements and design 
models. However they are just partial examples of desired 
or undesired behavior. The required properties are left im-
plicit and must be inferred. The behavior models are only 
partially covered and need to be synthesized. 

The contribution of this paper is twofold. 
• A new approach has been presented for synthesizing 

behavior models from simple forms of scenarios. 
Compared with other synthesis approaches, our ap-
proach does not require additional input to the syn-
thesis process, such as state assertions along episodes 
or flowcharts on such episodes. Positive and negative 
scenarios are both taken into account. New scenarios 
are generated as questions for further elicitation and 
for control over the generalization process. The syn-

thesis process is incremental and does not require all 
scenarios to be provided from the beginning. The 
global system model is guaranteed to cover all posi-
tive scenarios and exclude all negative ones whereas 
the projection of this model on system agents may in-
troduce, as in other approaches, undesirable implied 
scenarios that result from the parallel composition of 
the system agents. 

• A new fixpoint algorithm has been described for gen-
erating state invariants on labeled transition systems 
so as to make such models easier to understand and 
validate – especially as they are automatically gener-
ated from scenarios.  

The tool implementing both contributions has been used 
on several non-trivial case studies and example bench-
marks from the literature; it proved to be quite effective in 
synthesizing LTS models through scenario-based interac-
tion only. For example, a state machine for an ATM system 
is generated in [31] from four scenarios annotated with pre- 
and post conditions. Our tool generates the same state ma-
chine, from the same four input scenarios but without any 
annotation, with only one scenario question (to be rejected 
by the user).  In [23], the MAS tool takes one single scenario 
for an alarm clock system as input. MAS first interacts four 
times with the user through trace questions on the state 
machine generated for the so-called control unit agent. The 
resulting state machine appears to be overgeneralized; the 
user therefore must further submit a counterexample. Three 
more trace interactions are then required before the final 
state machine is generated. On this clock example with the 
same input scenario, our tool generates one single scenario 
question. This question corresponds to the counter-example 
that the user had to provide by herself in [23]. We generate 
it, and express it in a simple MSC form. Since the single 
input scenario is not structurally complete, the state ma-
chine generated by our tool is not complete. Adding one 
more positive scenario makes our tool generate the same 
state machine as in [23] without any further question. In 
addition, the tool generates the state machines for each 
agent. 

Our LTS synthesis technique extends a known learning 
algorithm from the literature on grammatical infer-
ence [26, 4] to make it incremental and generate scenario 
questions. The convergence of this algorithm is guaranteed 
when the learning sample is rich enough [27] – said in sce-
nario terms, when the scenario collection is characteristic. 
This shows the importance of positive as well as negative 
scenarios. The positive scenarios help learning a system 
LTS by providing a constraint on minimal coverage of be-
haviors; on the other hand, the negative scenarios help 
learning the correct system by constraining such coverage 
not to be too wide. Our extension of this algorithm is aimed 
at overcoming the limitation of not having a characteristic 
scenario collection from the beginning. Additional scenar-
ios are generated during LTS synthesis to be classified by 
the end-user as positive or negative. Those scenario ques-
tions are generated so as to converge towards a characteris-
tic scenario sample for the learned system. This ensures 
convergence of the learning process while providing a 
natural way of eliciting further scenarios and their underly-
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ing requirements. As discussed in Section 4.4 and Section 6, 
various optimizations of this interactive induction algo-
rithm helps reducing the number of scenario questions 
without sacrifying to its convergence. 

 Our approach raises several issues. Multiple users may 
submit inconsistent scenarios. As with other approaches, 
inconsistencies may propagate to the synthesized model. 
Our approach is also highly sensitive to classification er-
rors. Accepting a scenario question instead of rejecting it, 
for example, will obviously result in inadequate models 
being synthesized (this problem is common to learning-by-
examples techniques).   

Our tool makes the assumption that all submitted sce-
narios start in the same initial system state (this assumption 
is used in other approaches as well). For real-sized systems 
or multi-user elicitation, such assumption seems unrealistic. 
If two end-users specify scenarios separately, they might 
not choose the same initial state. Our algorithm should be 
adapted to support this problem.  

The generated state machines are “flat” LTS.  Transform-
ing them into hierarchical machines with sequential and 
parallel decomposition within single agents would be use-
ful, in particular, for generation of more structured code. 
The generated fluent decorations might help in such struc-
turing process. 

In addition to existential scenarios, we would like to ex-
plore the use of universal scenarios [2] in our approach. 
Existential scenarios illustrate what may occur; universal 
scenarios state what must occur. The addition of universal 
scenarios would allow us to constrain the induction proc-
ess, automatically reject induced solutions that are incom-
patible with the information provided by obligations, and 
thus further reduce the number of scenario questions. 

We are currently experimenting our approach to synthe-
size behavior models for web applications from end-user 
scenarios of interaction with such applications. It turns out 
that the state space gets much larger in this context which 
may result in too many scenario questions being generated 
to the end-user. Constraining the search space through ad-
ditional input information is one obvious solution to this 
problem. Such additional information, to be provided by 
the analyst (not the end-user), may include LTS models of 
legacy components to be integrated (as already suggested 
in Section 6). The latest version of our tool also takes system 
goals [16], to be achieved by the synthesized models, to 
further constrain the search space. Preliminary experiments 
suggest some drastic improvement. This is not too unex-
pected; as a goal captures a set of scenarios, the number of 
scenarios questions decreases accordingly. 
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