
IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

Generating Annotated Behavior Models
from End-User Scenarios

Christophe Damas, Bernard Lambeau, Pierre Dupont and Axel van Lamsweerde, Member, IEEE

Abstract— Requirements-related scenarios capture typical examples of system behaviors through sequences of desired
interactions between the software-to-be and its environment. Their concrete, narrative style of expression makes them very effective
for eliciting software requirements and for validating behavior models. However, scenarios raise coverage problems as they only
capture partial histories of interaction among system component instances. Moreover, they often leave the actual requirements
implicit. Numerous efforts have therefore been made recently to synthesize requirements or behavior models inductively from
scenarios. Two problems arise from those efforts. On the one hand, the scenarios must be complemented with additional input such
as state assertions along episodes or flowcharts on such episodes. This makes such techniques difficult to use by the non-expert
end-users who provide the scenarios. On the other hand, the generated state machines may be hard to understand as their nodes
generally convey no domain-specific properties. Their validation by analysts, complementary to model checking and animation by
tools, may therefore be quite difficult.

This paper describes tool-supported techniques that overcome those two problems. Our tool generates a labeled transition system
(LTS) for each system component from simple forms of message sequence charts (MSC) taken as examples or counter-examples
of desired behavior. No additional input is required. A global LTS for the entire system is synthesized first. This LTS covers all
scenario examples and excludes all counter-examples. It is inductively generated through an interactive procedure that extends
known learning techniques for grammar induction. The procedure is incremental on training examples. It interactively produces
additional scenarios that the end-user has to classify as example or counter-example of desired behavior. The LTS synthesis
procedure may thus also be used independently for requirements elicitation through scenario questions generated by the tool. The
synthesized system LTS is then projected on local LTS for each system component. For model validation by analysts, the tool
generates state invariants that decorate the nodes of the local LTS.

Index Terms— D.2.1 Requirements/Specifications: scenario-based elicitation, synthesis of behavior models, scenario generation,
invariant generation, labeled transition systems, message sequence charts, model validation, incremental learning, analysis tools.

—————————— ——————————

1 INTRODUCTION

CENARIOS are widely recognized as an effective means
for requirements elicitation, documentation, and valida-
tion [11]. They support an informal, narrative, and con-

crete style of description that focuses on the dynamic as-
pects of software-environment interaction. Scenarios are
therefore easily accessible to practioners and stakeholders
involved in the requirements engineering process [30].

The context of this paper is a project aimed at automat-
ing the production of web applications from end-user sce-
narios. In this project, behavioral models need to be ob-
tained from scenarios as an intermediate product for gener-
ating code fragments that populate a predefined architec-
ture for the application.

A scenario is a temporal sequence of interactions among
system components. The word system refers here to the
software-to-be together with its environment. A system is
made of active components, called agents, that control sys-
tem behaviors. Some agents form the environment, others
form the system-to-be. An interaction in a scenario origi-

nates from some event synchronously controlled by a
source agent instance and monitored by a target agent in-
stance. A scenario episode is an interaction sub-sequence
that achieves some objective (generally left implicit). Posi-
tive scenarios describe typical examples of desired interac-
tions whereas negative scenarios describe undesired ones.

This paper addresses the problem of synthesizing a state
machine model of the system from scenarios submitted by
end-users. For end-user involvement we need to put strong
requirements on the synthesis process.

• The input to the generation algorithm should be a set
of end-users scenarios, and end-user scenarios only.
Such users are most likely to be unable to provide ad-
ditional input such as state assertions along scenario
episodes or flowcharts on such episodes. The scenar-
ios should moreover be expressed in some simple,
“box-and-arrow” form.

• Both positive and negative scenarios should be taken
into account. Our experience in a variety of require-
ments engineering projects over the years showed
that negative scenarios are quite common among the
examples provided by stakeholders.

• Scenarios are inherently incomplete (like examples or
test data are). The generation algorithm should sup-

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————
• The authors are with the Departement d’Ingénierie Informatique,

Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium,
E-mail : {damas, blambeau, pdupont, avl}@info.ucl.ac.be.

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliography.

S

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

port the elicitation of additional, “interesting” posi-
tive/negative scenarios that are not originally pro-
vided by the end-user.

• The synthesis of state machine models from scenarios
should be incremental; the models should be incre-
mentally refinable as further scenarios become avail-
able.

• In view of possible overgeneralizations and incom-
plete/inconsistent scenarios, the synthesized state
machine models should be understandable for valida-
tion and correction by the analyst before code genera-
tion starts.

• The generated models should be well-structured for
high-quality code generation, in particular, through
one state machine per software agent.

Various efforts have been reported in the literature to
generate behavior models from scenarios. We review them
briefly with respect to the above requirements.

Uchitel and colleagues developed a technique for gener-
ating one labeled transition system (LTS) for each agent of a
message sequence chart (MSC) specification [29]. Their ap-
proach requires additional input, namely, a high-level mes-
sage sequence chart (hMSC) that specifies how the MSC
scenarios are to be flowcharted. To our experience, such
hMSC may become quite complex for non-toy systems.
Adding a new MSC in the specification may require some
non-trivial refactoring of the original hMSC [20]. Asking
end-users to provide a correct and complete hMSC as input
seems thus unrealistic. The LTS synthesis algorithm does
not take negative scenarios into account. Moreover, the syn-
thesized LTS are not easily understandable by humans as
their states are labeled by numbers only.

Whittle and Schumann proposed a technique for gener-
ating UML statecharts from sequence diagrams that capture
positive scenarios – and positive scenarios only [31]. Their
technique requires scenario interactions to be annotated by
pre- and post-conditions on global state variables expressed
in the Object Constraint Language (OCL). In a similar spirit,
Kruger and colleagues proposed a technique for translating
MSCs into statecharts [15]. Their technique also requires
state information as additional input (in this case, through
MSC conditions). It is unclear in both approaches whether
end-users are able to provide such additional information.

Mäkinen and Systä developed an interactive approach
for synthesizing UML statecharts from sequence diagrams
that capture positive scenarios [23]. Their so-called Mini-
mally Adequate Synthesizer (MAS) uses grammatical infer-
ence and asks the user trace questions in order to avoid
undesirable generalizations. (A trace question is a path in
the state machine local to a specific agent.) MAS focuses on
single agents; generalization must therefore be done inde-
pendently for each software agent. Trace questions may be
quite hard to understand by end-users as they do not show
global system behaviors. Overgeneralization may fre-
quently occur in view of the built-in assumption that trace
events with the same label lead to the same component
state (unless a counter-example is specified). To eliminate
such poor generalization, the user has to understand and
validate the agent’s generated state machine, and provide

state machine traces as counter-examples to indicate unde-
sired behaviors and restart the generalization process.

van Lamsweerde and Willemet developed an inductive
learning technique for generating goal specifications in lin-
ear temporal logic (LTL) from positive and negative scenar-
ios expressed in MSC-like form [17]. Büchi automata could
then be generated from the LTL specifications using known
algorithms; the resulting state machines would however be
very hard to understand for validation. Moreover, as in
[31], the user has to provide pre-/post-conditions of sce-
nario interactions.

Other efforts have been devoted to producing SDL speci-
fications from MSCs (e.g., [9]). The techniques proposed
there require complex forms of MSC as input to the synthe-
sis process. Such MSCs cannot be considered as scenarios
expressed at requirements engineering time by end-users.
No negative information is exploited.

This paper presents techniques, supported by a tool, that
meet the above requirements for state machine generation
from end-user scenarios.

Our approach takes both positive and negative scenarios
as input. We synthesize a LTS covering all positive scenar-
ios and excluding all negative ones. The synthesis proce-
dure extends grammar induction techniques developed in
[26, 4]. Our inductive learning procedure is interactive and
incremental on training instances which makes it possible
to integrate missing scenarios and scenario corrections on
the fly. It requires no additional state or flowchart informa-
tion. The original set of scenarios is incrementally com-
pleted by asking the user scenario questions that are gener-
ated during synthesis. A scenario question consists in show-
ing the user a specific scenario and asking her to classify it
as positive or negative. The synthesized LTS is then trans-
formed into a parallel composition of finer LTS – one LTS
per agent.

To enable validation and documentation of the resulting
behavior model, state invariants are generated as node
decorations from fluent definitions to be provided by the
analyst. Fluents are state predicates whose truth values are
determined by the occurrences of initiating and terminating
events [5]; they provide a nice interface between goal speci-
fications and goal operationalizations [16] and can easily be
identified from goal formulations.

The paper is organized as follows. Section 2 presents
some required background on scenario specifications, la-
beled transition systems, fluents, and grammar induction.
Section 3 presents an overview of the various steps sup-
ported by our tool. Section 4 details the process of synthe-
sizing LTS models and generating scenario questions. Sec-
tion 5 details the fluent-based invariant generation proce-
dure. The entire approach is illustrated in Section 6 on a
non-trivial case study, a mine pump control system [13, 14].

2 BACKGROUND
To make the paper self-contained, this section introduces
some basic material on message sequence charts (MSC),
labeled transition systems (LTS), fluents, and grammar in-
duction. A simple train system fragment will be used
throughout the paper as a running example to illustrate the

AUTHOR ET AL.: TITLE 3

various techniques. The system is composed of three
agents: a train controller, a train actuator/sensor, and pas-
sengers. The train controller controls operations such as
start, stop, open doors, and close doors. A safety goal re-
quires train doors to remain closed while the train is mov-
ing. If the train is not moving and a passenger presses the
alarm button, the controller must open the doors in emer-
gency. When the train is moving and the passenger presses
the alarm button, the controller must stop the train first and
then open the doors in emergency.

2.1 Scenarios as Message Sequence Charts
A simple MSC language is used for representing end-user
scenarios. A MSC is composed of vertical lines representing
timelines associated with agent instances, and horizontal
arrows representing interactions among such agents. A
timeline label specifies the type of the corresponding agent
instance. An arrow label specifies some event defining the
corresponding interaction. Every arrow label uniquely de-
termines the source and target agent instances that control
and monitor the event in the interaction, respectively. The
event is synchronously controlled by the source agent and
monitored by the target agent.

A MSC timeline defines a total ordering on incom-
ing/outgoing events whereas an entire MSC defines a par-
tial ordering on all events. To allow end-users to submit
their scenarios we limit the input language to be a very
simple one, leaving aside more sophisticated MSC features
such as conditions, timers, coregions, etc.

Fig. 2.1 shows a MSC capturing the following scenario:
“The train is started by the controller; the latter then waits for
external stimuli. A passenger presses the alarm button; the
alarm is propagated to the controller; the latter then stops the
train and opens the doors in emergency”.

Scenarios are positive or negative. A positive scenario il-
lustrates some desired system behavior. A negative sce-
nario captures a behavior that may not occur. It is captured
by a pair (p, e) where p is a positive MSC, called precondi-
tion, and e is a prohibited subsequent event. The meaning is
that once the admissible MSC precondition has occurred,
the prohibited event may not label the next interaction
among the corresponding agents.

Fig. 2.2 shows a negative scenario. The MSC precondi-
tion is made of the interaction start; the prohibited event is
open doors. Prohibited events in negative MSCs appear be-
low a (red) dashed line in our tool. The scenario in Fig. 2.2
is used to express that the train controller may not open the

doors after having started the train (without any intermedi-
ate interaction).

The semantics of MSCs used in this paper is the one in-
troduced in [29]. As this semantics is defined in terms of
labeled transition systems and parallel composition, we
come back to it in Section 2.2 where LTS are introduced.

2.2 State machines as Labeled Transition Systems
A system is behaviorally modeled as a set of concurrent
state machines – one machine per agent. Each agent is char-
acterized by a set of states and a set of transitions between
states. Each transition is labeled by an event. The state ma-
chines in this paper are a particular class of automata called
labeled transitions systems [21].

A finite automaton is a 5-tuple (Q,Σ,δ,q0,F) where Q is a fi-
nite set of states, Σ is an alphabet, δ is a transition function
mapping QxΣ to 2Q, q0 is the initial state, and F is a subset of
Q identifying the accepting states. The automaton is deter-
ministic if for any q in Q and any e in Σ, δ(q,e) has at most
one member.

In a labeled transitions system (LTS), all states are accept-
ing states, that is, the sets Q and F are the same. A LTS is
therefore simply denoted by a 4-tuple (Q,Σ,δ,q0). The alpha-
bet Σ corresponds to the set of event labels of the LTS. In a
LTS, if a state q has no outgoing transition with label l, no
event with label l can occur when the system is in state q.

A finite execution of a LTS (Q,Σ,δ,q0) is a finite sequence of
events <e1,…,en>, with ei ∈ Σ, accepted by the LTS from its
initial state. Such execution is said to finish in state q if the
LTS is in state q after having performed that event sequence
from the initial state. Prefixes of a finite execution are finite
executions as all LTS states are accepting states.

Complex systems can be modeled through parallel com-
position of LTS components [24]. The parallel composition
of two LTS P and Q, denoted by P║Q, models their joint
behavior. The composed model behaves asynchronously
but synchronizes on shared events. A system composed of
agents a1,…,an modeled by LTS A1,…,An is thus modeled by
the LTS A1║…║An.

The semantics of MSCs can be defined in terms of LTS
and parallel composition [29]. A MSC timeline defines a
total order on its input and output events. Therefore it de-
fines a unique finite LTS execution that captures a corre-
sponding agent behavior. Fig. 2.3 shows the LTS behavior
corresponding to the Train Controller agent in Fig. 2.1 The
semantics of an entire MSC can similarly be defined in
terms of the LTS modeling the entire system. As MSCs de-
fine partial orders of their events, we need to consider MSC
linearizations of such partial orders [1]. A linearization de-
fines a total order of events and represents one temporal

Fig. 2.2 – Negative scenario for a train system.

Fig. 2.1 – Positive scenario for a train system.

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

behavior of the system. In the context of end-users scenar-
ios, we consider finite MSCs, that is, MSCs with finite sets
of linearizations. A MSC linearization defines a finite execu-
tion of the system’s LTS. An entire MSC then defines a fi-
nite set of such executions. Positive MSCs define desirable
executions whereas negative MSCs define rejected ones. (To
simplify the presentation, the MSC examples in this paper
have one linearization only.)

2.3 Interfacing event-based and state-based models
through fluents

Miller and Shanahan define fluents as “time-varying proper-
ties of the world that are true at particular time-points if they
have been initiated by an event occurrence at some earlier
time-point, and not terminated by another event occurrence in
the meantime. Similarly, a fluent is false at a particular time-
point if it has been previously terminated and not initiated in the
meantime” [25].

A fluent Fl is a proposition defined by a set InitFl of initi-
ating events, a set TermFl of terminating events, and an ini-
tial value InitiallyFl that can be true or false. The sets of initi-
ating and terminating events must be disjoint. The concrete
syntax for fluent definition is the following [5]:

fluent Fl = < InitFl, TermFl > initially InitiallyFl

In our train example, the safety goal “Doors shall remain
closed while the train is moving” suggests two fluents: moving
and doorsClosed. The former is defined as follows:

fluent moving = <{start},{stop, emergency stop}> initially false

2.4 Grammar induction
Inductive learning aims at finding a theory that generalizes a
set of observed examples. In grammar induction, the theory
to be learned is a formal language and the set of positive
examples is made of strings defined on a specific alphabet.
A negative sample corresponds to a set of strings not be-
longing to the target language. When the target language is
regular and the learned language is represented by a de-
terministic finite state automaton (DFA), the problem is
known as DFA induction.

DFA identification in the limit
Identification in the limit is a learning framework in which an
increasing sequence of strings is presented to the learning
algorithm [6]. The strings are randomly drawn and cor-
rectly labeled as positive or negative. Learning is successful
if the algorithm infers the target language in finite time af-
ter having seen finite samples. This framework justifies
why successful DFA learning needs both positive and nega-
tive strings. Gold showed that the class of regular lan-
guages cannot be identified in the limit from positive
strings only [6]. In practice, convergence in finite time to-
wards an exact solution is often bargained with reasonably
fast convergence towards a good approximate solution [18].

The search space of DFA induction
DFA induction requires efficient search through the space
of possible generalizations. To characterize the search space
we need to recall some links between finite automata and
regular languages.

Let Σ denote a finite alphabet, u,v,w denote strings over
Σ, and let λ denote the empty string. A string u is a prefix of
v if there exists a string w such that uw=v. A language L is
any subset of the set Σ* of strings over Σ.

A string u is accepted by an automaton if there is a path
from the initial state to some accepting state such that u is
the concatenation of the transition symbols along this path.
The language L(A) accepted by an automaton A is the set of
strings accepted by A. For any regular language L, the ca-
nonical automaton A(L) is the minimal DFA accepting L,
that is, the DFA having the smallest number of states and
accepting L. The automaton A(L) is known to be unique up
to state renumbering [7].

 A positive sample S+ can be represented by a prefix tree
acceptor PTA(S+) as depicted in Fig. 2.4 (accepting states
there are represented by double circles); PTA(S+) is the
largest DFA accepting S+ exactly. Learning an automaton A
by generalizing a positive sample can be performed by
merging states from PTA(S+). Such generalization is de-
fined through a quotient automaton, constructed by parti-
tioning the states of A.

Consider, for example, the automaton A represented at
the top of Fig. 2.5. Let π={{0,2},{1}} be a partition defined on
its state set Q={0,1,2}. Its quotient automaton with respect
to the partition π, denoted A/π, is represented on the right.
Any accepting path in A is also an accepting path in its quo-
tient automaton. In other words, merging states in an
automaton generalizes the language it accepts. As a quo-
tient automaton corresponds to a particular partition, the
set of possible generalizations which can be obtained by

Fig. 2.3 – Finite LTS execution for the Train Controller agent in the
Positive Scenario in Fig. 2.1.

Fig. 2.4 – The prefix tree acceptor built from S+ = {λ,a,bb,bba,
baab,baaaba}.

Fig. 2.5 – A lattice of partitions defining quotient automata.

AUTHOR ET AL.: TITLE 5

merging states of an automaton A is defined by a lattice of
partitions. Fig. 2.5 presents all quotient automata that can
be derived from the automaton at the top.

Learning a language L aims at generalizing a positive
sample S+ under the control of a negative sample S–, with
S+ ⊆ L and S– ⊆ Σ*\L. This is made possible if S+ is repre-
sentative enough of the unknown language L and if the
correct space of possible solutions is searched through.
These notions are stated precisely hereafter.
Definition 2.1. (Structural completeness). A positive sample

S+ of a language L is structurally complete with respect to an
automaton A accepting L if, when generating S+ from A,
every transition of A is used at least once and every final state
is used as accepting state of at least one staring.
Rather than a requirement on the sample, structural

completeness should be considered as a limit on the possi-
ble generalizations that are allowed from a sample. If a
proposed solution is an automaton in which some transi-
tion is never used while parsing the positive sample, no
evidence supports the existence of this transition and this
solution should be discarded. The following theorem is
proved in [3] to characterize the search space of the DFA
induction problem.
Theorem (DFA search space). If a positive sample S+ is struc-

turally complete with respect to a canonical automaton A(L)
then there exists a partition of the state set of PTA(S+) such
that PTA(S+)/π = A(L).
To summarize, learning a regular language L can be per-

formed by identifying the canonical automaton A(L) of L
from a positive sample S+. If the sample is structurally
complete with respect to this target automaton, it can be
derived by merging states of the PTA built from S+. A
negative sample S– is used to guide this search and avoid
overgeneralization. Finding the minimal DFA is a NP-
complete problem [7].

The RPNI algorithm and its convergence
The RPNI algorithm explores a very small fraction of the
entire search space with the guarantee of finding the correct
DFA when the learning sample is rich enough [26]. The
convergence of RPNI on the correct automaton A(L) is
guaranteed when the algorithm receives a sample as input
that includes a characteristic sample of the target lan-
guage [4]. A proof of convergence is presented in [27] in the
more general case of transducer learning. Some further no-
tions are needed here.
Definition 2.2. (Short prefixes and suffixes). Let Pr(L) de-

note the set of prefixes of L, with Pr(L) = {u | ∃v, uv ∈ L}.
The right-quotient of L by u, or set of suffixes of u in L, is de-
fined by L/u = {v | uv ∈ L}. The set of short prefixes Sp(L) of
L is defined by Sp(L) = {x ∈ Pr(L) | ¬∃ u ∈ Σ* with L/u =
L/x and u < x}.
In a canonical automaton A(L) of a language L, the set of

short prefixes is the set of the first strings in standard order,
each of which leads to a particular state of the canonical
automaton. Consequently, there are as many short prefixes
as states in A(L). In other words, the short prefixes uniquely

identify the states of A(L). The set of short prefixes of the
automaton of Fig. 2.6 is Sp(L) = {λ, b}.
Definition 2.3. (Language kernel). The kernel N(L) of the

language L is defined as N(L) = {xa | x ∈ Sp(L), a ∈ Σ, xa ∈
Pr(L)} ∪ {λ}.
The kernel is made of the short prefixes extended by one

letter, and the empty string. By construction Sp(L) ⊆ N(L).
The kernel elements represent the transitions of the canoni-
cal automaton A(L) since they are obtained by adding one
letter to the short prefixes that represent the states of A(L).

The kernel of the language defined by the automaton of
Fig. 2.6 is N(L) = {λ, a, b, ba, bb}.
Definition 2.4. (Characteristic sample). A sample S = (S+,S-)

is characteristic for language L and the RPNI algorithm if it
satisfies the following conditions :
1. ∀x ∈ N(L), if x ∈ Pr(L) then x ∈ S+ else ∃u ∈ Σ* such

that xu ∈ S+
2. ∀x ∈ Sp(L), ∀y ∈ N(L) if L/x ≠ L/y then ∃u ∈ Σ* such

that (xu ∈ S+ and yu ∈ S-) or (xu ∈ S- and yu ∈ S+)
Condition 1 guarantees that each element of the kernel

belongs to S+ if it also belongs to the language or, other-
wise, is prefix of a string of S+. This condition can be seen
to imply the structural completeness of the sample S+ with
respect to A(L). In this case, the DFA search space theorem
guarantees that the automaton A(L) belongs to the lattice
derived from PTA(S+). When an element x of the short pre-
fixes and an element y of the kernel do not have the same
set of suffixes (L/x ≠ L/y), they necessarily correspond to
distinct states in the canonical automaton. In this case, con-
dition 2 guarantees that a suffix u would distinguish them.
In other words, the merging of a state corresponding to a
short prefix x in PTA(S+) with another state corresponding
to an element y of the kernel is made incompatible by the
existence of xu in S+ and yu in S–, or the converse.

One can verify that S = (S+, S–), with S+ = {λ, a, bb, bba,
baab, baaaba} and S– = {b, ab, aba}, forms a characteristic
sample for the language accepted by the canonical automa-
ton in Fig. 2.6.

3 OVERVIEW OF THE APPROACH
Fig. 3.1 shows the various steps of our approach as seen by
users. We outline them first before providing the technical
details in the next sections. In the first step, the end-user
introduces positive and negative scenarios. In the second
step, the tool synthesizes a LTS for the global system which
covers all positive scenarios and excludes all negative ones.
The generalization process is guided by scenario questions
asked to the end-user and generated during the incremental
synthesis process. The synthesized LTS is then projected to
obtain each local agent LTS. In the third step, fluent defini-

Fig. 2.6 – An automaton A with Sp(L) = {λ,b} and N(L) = {λ,a,b,ba,bb}.
The sample S =(S+, S–) with S+ = {λ,a,bb,bba,baab,baaaba} and
S = {b,ab,aba} is characteristic for A..

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

tions are provided by the analyst as optional input for gen-
erating state invariants to document and validate the gen-
erated LTS.

(Step 1) Submitting an initial set of positive and negative
scenarios. The end-user has to provide a non-empty set of
scenarios (positive and/or negative) as initial input to the
process. All scenarios must start in the same initial state.
Fig. 3.2 presents typical end-user scenarios for the train ex-
ample. The initial scenario collection there contains three
positive scenarios and one negative.

(Step 2) Generating scenario questions and synthesizing
agent LTS. The tool incrementally generates and refines a
global LTS for the system that covers positive scenarios and
excludes negative ones. The generalization process is
guided by scenarios generated during synthesis as
questions to the end-user. The user just needs to classify
those generated scenarios as being positive or negative. For
the initial scenarios in Fig. 3.2, the tool generates three
scenario questions while producing a first LTS sketch.
These questions are shown in Fig. 3.3. Scenario questions
are composed of a prefix and a suffix. The prefix is an
already admissible behavior. The suffix must be accepted or
rejected by the end-user. The prefix and suffix of a question
are separated by a dashed line labelled with a question
mark. The first scenario asks the user if the train controller
can start after having started and stopped the train. The
user should accept this scenario. The second question can
be rephrased as follows: “if the train starts and a passenger
presses the alarm button, can the controller then open the
doors in emergency and close the doors afterwards?”. This
scenario should be rejected as the train should not move
with open doors. The third question asks the user if the
passenger can press the alarm button in the initial state. The
end-user might accept this scenario. Once they are accepted
or rejected, the generated scenarios are added to the
scenario collection as positive or negative ones,
respectively.

Finally, the synthesized LTS is projected on each agent to
obtain its LTS. Fig. 3.4 (a) shows the generated Train
Controller LTS at the end of this process.

(Step 3) Generating state invariants to document the
generated state machines. For validation and
documentation purpose, each state of the generated LTS

may be decorated with a state invariant that holds at any
time this state is visited. If this option is taken, fluent
definitions are to be provided by the user from goal
formulations. The user here is no longer the end-user but
the analyst who wants the state machines to be made
comprehensible for documentation and validation before
code generation. For the train controller, three fluents
might be identified from goal formulations:

• fluent moving = <{start}, {stop, emergency stop} > initially false
• fluent doors_open = <{open doors, emergency open}, {close

doors}> initially false
• fluent alarmed = <{alarm propagated}, {emergency open}> ini-

tially false

The decorated state machine is shown in Fig. 3.4 (b). If
the analyst finds problems with the generated state ma-
chines, she can do the following.

• If the state machine is overgeneralized, she should
provide a negative scenario and restart the LTS syn-
thesis process.

• If the state machine is incomplete, she may (i) change
the state machine by hand (e.g., by adding a transi-
tion), or (ii) add new positive scenarios and then re-
start the LTS synthesis process. Alternative (i) can re-
sult in inconsistencies between the LTS and the end-
user’s scenario collection; the analyst should therefore
raise the problem to the end-user and modify the lat-
ter accordingly.

Fig. 3.1 – Generating annotated state machines from end-user
scenarios.

(a)

(b)

Fig. 3.4 – Generated LTS of the Train Controller; (a) before decoration;
(b) decorated with state invariants.

Fig. 3.1 – Generating annotated state machines from end-user
scenarios.

AUTHOR ET AL.: TITLE 7

Fig. 3.3 – Scenario questions generated to the end-user during the LTS synthesis process.

Fig. 3.2 – End-user’s positive and negative scenarios for a train system.

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

4 SYNTHESIZING LABELED TRANSITION SYSTEMS
FROM END-USER SCENARIOS

This section describes our technique for synthesizing la-
beled transition systems (LTS) from simple message se-
quence charts (MSC) without any extra information such as
hMSCs or state assertions. Our algorithm extends an effi-
cient automaton induction algorithm known as RPNI [26]
to make it interactive through scenario questions. Section
4.1 explains how LTS synthesis can be achieved through
automaton induction and why such interaction is needed in
our context. The synthesis of a global system LTS is de-
tailed in Section 4.2. The projection of this LTS on the
agents forming the system is explained in Section 4.3. The
properties of our approach are then discussed in Sec-
tion 4.4.

4.1 LTS synthesis as a grammar induction problem
As introduced in Section 2.4, a regular language can be
learned through automaton induction techniques. LTS are a
particular class of automata that contain only accepting
states. A positive (resp. negative) MSC timeline defines a
unique execution of the LTS associated with the corre-
sponding agent. It therefore defines an accepted (resp. re-
jected) string of the regular language represented by the
agent LTS. In a similar way, a positive (resp. negative) MSC
linearization defines an accepted (resp. rejected) string of
the regular language generated by the LTS of the global
system. The latter language will be denoted by L(S) in the
sequel.

Any prefix of a finite LTS execution is a valid LTS execu-
tion as LTS contain only accepting states. Therefore, any
prefix of a positive MSC linearization is an accepted string
of L(S). Such a linearization thus provides a finite set of
positive strings of L(S). In a similar way, as the prefix of a
negative MSC is a positive MSC, a negative MSC lineariza-
tion provides one rejected string and a finite set of accepted
strings of L(S).

Our choice of a RPNI-based technique to overcome the
absence of additional state information about the submitted
scenarios is motivated by the following observation. If the
end-user scenario collection contains a characteristic sample
according to L(S), a RPNI-based algorithm will ensure that
L(S) can be learned in polynomial time. The learned system
LTS can then be projected on each agent, using standard
automaton algorithms, in order to obtain their respec-
tive LTS.

In practice, the initial scenario collection might not pro-
vide a characteristic sample for the considered system (see
the importance of negative strings in Definition 2.4). For
example, an initial scenario collection with no negative ex-
ample cannot be characteristic for any non-trivial system –
that is, any system for which the target automaton contains
at least two states (Condition 2 in Definition 2.4 states that
the merging of those states should be made incompatible
by at least one negative scenario). To overcome the problem
of poor generalization when dealing with such limited
training sets, we extend the RPNI algorithm so that it gen-
erates additional scenarios and asks the end-user to classify
them as positive or negative. The learned system will cover

all positive scenarios and reject all negative ones, including
the interactively generated/classified ones.

4.2 Interactive synthesis of the system LTS
Our interactive RPNI-based synthesis algorithm is given

in Fig. 4.1. The algorithm takes a scenario collection as in-
put and produces a LTS of the global system as output. The
completion of the initial scenario collection with classified
scenarios that were generated during synthesis is another
output of the algorithm. The input collection must contain
at least one positive or one negative scenario. The gener-
ated LTS covers all positive scenarios in the final collection
and excludes all negative ones.

The induction process can be described as follows: it
starts by constructing an initial LTS covering all positives
scenarios only, i.e. the latter does not introduce any gener-
alization of the system behaviors described by the positive
scenarios. The system is then successively generalized un-
der the control of the available negative scenarios and
newly generated scenarios classified by the end-user. This
generalization is carried out by successively merging well-
selected state pairs of the initial LTS, i.e. by successively
computing quotient LTS from the initial one (see Section
2.4). The induction process is such that, at any step, the cur-
rent quotient LTS covers all positive scenarios and excludes
all negative ones, including the interactively classified ones.
In the sequel, a LTS will be said to be compatible with respect
to a set of scenarios if it covers all positive scenarios in that
set and excludes all negative ones. By extension, two states
will be said compatible for merging (resp. incompatible) if the
quotient LTS which results from their merging is compati-
ble (resp. incompatible) with the current set of scenarios.

Following the algorithm given in Fig. 4.1, the Initialize
function returns an initial candidate LTS solution built from
S+. Next, pairs of states are iteratively chosen from the cur-
rent solution. The quotient automaton obtained by merging
such states, and possibly some additional states, is com-
puted by the Merge function. The compatibility of this quo-
tient automaton with the learning sample is then checked
by the Compatible function using available negative scenar-

Fig. 4.1 – An interactive adaptation of the RPNI induction algorithm.

AUTHOR ET AL.: TITLE 9

ios. When compatible, new scenarios are generated through
the GenerateQuestion function and submitted to the end-
user for classification (CheckWithEndUser). Scenarios classi-
fied as positive are added to the initial collection. When a
generated scenario is classified as negative, it is added as
negative example; the generation of the current solution is
ended and the candidate quotient automaton is discarded.
Otherwise, when all generated scenarios are classified as
positive, the quotient automaton becomes the current can-
didate solution. The process is iterated until no more pair of
states can be considered for merging. The learned LTS is
then returned as output of the algorithm.

This interactive algorithm has a polynomial time com-
plexity in the size of the learning sample. Whenever a quo-
tient automaton is considered compatible and the end-user
classifies all generated scenarios as positive examples, the
states that were merged remain merged forever. In other
words, there is no backtracking in the induction process. This
is a key feature explaining the time complexity of the algo-
rithm.
We now have a closer look at the algorithm by detailing its
various functions.

(Initialize) The Initialize function returns the initial solution
built from S+ as prefix tree acceptor PTA(S+) constructed
from positive MSCs. The PTA built from the positive sam-

ple in Fig. 3.2 is shown on top of Fig. 4.2. According to the
modeling hypothesis discussed before, all PTA states are
accepting states. As mentioned before we assume here that
all scenarios are starting in the same system state.

(ChooseStatePairs). The candidate solution is refined by
merging well-selected state pairs. The ChooseStatePairs func-
tion determines which pairs to consider for such merging. It
relies on the standard lexicographical order “<” on strings.
Each PTA(S+) state can be labeled by its unique prefix from
the initial state. Since prefixes can be sorted according to
that order, the states can be ranked accordingly. For exam-
ple, the PTA states in Fig. 4.2 are labeled by their rank ac-
cording to this order. The algorithm considers states q of
PTA(S+) in increasing order. The state pairs considered for
merging only involve such state q and any state q’ of lower
rank. The q’ states are considered in increasing order as
well.

(Merge) The Merge function merges the two states (q, q’)
selected by the ChooseStatePairs function in order to com-
pute a quotient automaton, that is, to generalize the current
set of accepted behaviors. In the example of Fig. 4.2, we
assume that states 0, 1, and 2 were previously determined
not to be mergeable (through negative scenarios initially
submitted or generated scenarios that were rejected by the

Fig. 4.2 – Typical steps implemented by the Merge function. From the current solution A, states 3 and 0 are merged. The resulting NFA is con-
verted into a deterministic quotient automaton Anew. Labels e.stop, e.open, a.pressed and a.propagated are shorthands for emergency stop,
emergency open, alarm pressed, and alarm propagated, respectively.

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

user). Merging a candidate state pair may produce a non-
deterministic automaton. For example, after having merged
q = 3 and q’ = 0 in the upper part of Fig. 4.2, one gets two
transitions labeled start from state 0, leading to states 2 and
6, respectively. In such a case, the Merge function merges
the latter states and, recursively, any further pair of states
that introduces non-determinism.

We call determinization the operation of removing non-
determinism through such recursive merge. This operation
guarantees that the current solution at any step is a DFA. It
does not remove non-determinism to build an equivalent
DFA as standard algorithms [8] since it produces an
automaton which may accept a more general language than
the NFA it starts from.

When two states are merged, the rank of the resulting
state is defined as the lowest rank of the pair; in particular,
the rank of the merged state when merging q and q’ is de-
fined as the rank of q’ by construction. If no compatible
merging can be found between q and any of its predecessor
states according to <, state q is said to be consolidated (in the
example, states 0, 1, and 2 are consolidated).

(Compatible) The Compatible function checks whether the
automaton Anew correctly rejects all negative scenarios. As
seen in Fig. 4.1, the quotient automaton is discarded by the
algorithm when it is detected not to be compatible with the
negative sample.

(GenerateQuestion) When an intermediate solution is com-
patible with the available scenarios, new scenarios are gen-
erated for classification by the end-user as positive or nega-
tive. The aim is to avoid poor generalizations of the learned
language. The notion of characteristic sample drives the
identification of which new scenarios should be generated as
questions. Recall from section 4.2 that a sample, i.e. a set of
available scenarios, is characteristic of a language L, that is
of a set of event sequences accepted by a global LTS, if it
contains enough positive and negative information. On one
hand, the required positive information is the set of short
prefixes Sp(L) which form the shortest histories leading to
each system state. This positive information must also in-
clude all elements of the kernel N(L) which represents all
system transitions, that is, all shortest histories followed by
any admissible event. If such positive information is avail-
able, the PTA (as well as any machine generalized from it
by merging states) is guaranteed to contain the global LTS
states and transitions. On the other hand, the negative sce-
narios provide the necessary information to make incom-
patible the merging of states which should be kept distinct.
A negative scenario which excludes the merging of a state
pair (q, q’) can be simply made of the shortest history lead-
ing to q’ followed by any suffix, i.e. any valid continuation,
from state q.

Consider the current solution of our induction algorithm
when a pair of states (q, q’) is selected for merging. By con-
struction, q’ is always a consolidated state at this step of the
algorithm (that is, q’ ∈ Sp(L)). State q is always both the root
of a tree and the child of a consolidated state. In other
words, q is situated at one letter of a consolidated state, that
is, q ∈ N(L). States q and q’ are compatible according to the
available negative scenarios; they would be merged by the

standard RPNI algorithm. In our extension, the tool will
first confirm or infirm the compatibility of q and q’ by gen-
erating scenarios to be classified by the end-user. The gen-
erated scenarios are constructed as follows.

Let A denote the current solution, L(A) the language
generated by A, and Anew the quotient automaton computed
by the Merge function at some given step. Let x ∈ Sp(L) and
y ∈ N(L) denote the short prefixes of q’ and q in A, respec-
tively. Let u ∈ L(A)/y denote a suffix of q in A.

A generated scenario is a string xu such that xu ∈
L(Anew)\L(A). This string can be further decomposed as xvw
such that xv ∈ L(A). A generated scenario xu is thus con-
structed as the short prefix of q’ concatenated with a suffix
of q in the current solution, provided the entire behavior is
not yet accepted by A. Such scenario is made of two parts:
the first part xv is an already accepted behavior whereas the
second part w provides a continuation to be checked for
acceptance by the end-user. When submitted to the end-
user, the generated scenario can always be rephrased as a
question: after having executed the first episode (xv), can the
system continue with the second episode (w)?

Consider the example in Fig. 4.2 with selected state pair
q=3, q’=0. As q’ is the root of the PTA, its short prefix is the
empty string. The suffixes of q here yield one generated
question, see Fig. 4.3, which can be rephrased as follows:
When having started and stopped the train, can the controller
restart it again? One can see that the first episode of this sce-
nario in Fig. 4.2 is already accepted by A whereas the entire
behavior is accepted in Anew.

The suffixes selected by our tool for generating questions
are always the entire branches of the tree rooted at q. The
aim is to help the end-user to more easily determine
whether the generated scenario should be rejected. The
boundary between the first (xv) and second (w) episodes of
this scenario can be determined by comparing A and Anew;
some states get new outgoing transitions during the deriva-
tion of the quotient automaton – see, e.g., the new transition
label start appearing on state 5 at the bottom of Fig 4.2. Such
a new transition identifies the first event of w. Given a se-
lected suffix u=vw of q, v is composed of the transitions
folded up during the determinization process whereas w is
the unfolded part of the branch. No scenario has to be gen-
erated whenever w is empty, that is, when the entire branch
is folded up.

Fig. 4.3 – Scenario question submitted to the end-user by the interac-
tive synthesis algorithm.

AUTHOR ET AL.: TITLE 11

As the formulated behavior is not yet in A but will be in
Anew, a generated scenario could be viewed as a measure of
language generalization by the merging of q and q’. Our
interactive RPNI extension controls such generalizations
when the sample is not characteristic.

(CheckWithEndUser) The end-user is asked to classify gen-
erated scenarios as examples of positive or negative behav-
ior of the system; the scenario collection is completed ac-
cordingly. For the scenario question in Fig. 4.3, the user
should provide a positive answer, thereby classifying this
scenario as a positive example of system behavior.

The compatibility of q and q’ in the system LTS gets con-
firmed when the user classifies as positive all scenarios
generated at this step in the algorithm; Anew is then consid-
ered as a good intermediate LTS solution and becomes the
new current solution. The algorithm then continues with
another state pair.

If one generated scenario is classified as a negative ex-
ample, the generation procedure ends that solution path.
The goal is to avoid merging of incompatible states, and
one single counter-example is sufficient to avoid such poor
generalization. When a scenario gets rejected, the first event
in its second episode is used as prohibited event of the
negative example. In case this prohibited event appears
later in the second episode, the user may change the posi-
tion of the boundary between the accepted and rejected
episodes, to change the counter-example or make it more
specific (see the Change button in Fig. 4.3). In all cases, the
generated scenarios are added to the scenario collection
once they are classified (see the algorithm in Fig. 4.1).

The final result of the induction algorithm is guaranteed
to be compatible with all scenarios received, including
those classified by the end-user. Compatibility with the
positive scenarios is ensured by construction of the initial
PTA and subsequent merges, which can only generalize the
accepted set of behaviors (see Section 2.4). At each step of
the algorithm, the new solution is only kept if it rejects all
current negative scenarios, as checked by the Compatible
function, and if all new scenarios are classified as positive
by the end-user.

4.3 Projecting the global system LTS on agents
Fig. 4.4 (a) shows the train global LTS obtained by the syn-
thesis algorithm. The LTS for each agent forming that sys-
tem are generated from this global LTS using standard
automaton algorithms [8].

The projection of the system LTS on a specific agent pro-
ceeds in three steps:

1) Each event not monitored or controlled by the agent is
replaced by a special empty event ε, and eliminated.

2) The resulting NFA is converted into an equivalent
DFA.

3) The resulting LTS is minimized to yield the minimal
deterministic LTS representing the behavior of this
agent.

Fig. 4.4 (b) shows the resulting LTS for the Train Con-
troller.

An earlier version of our tool was based on an alterna-
tive approach where a high-level Message Sequence

Chart [10] was generated first as an intermediate product
before LTS generation. The generated high-level Message
Sequence Chart (hMSC) in this approach has exactly the
same admissible behaviors than the synthesized LTS. We
initially took that approach for two reasons: (a) the agent
LTS can then be generated from this hMSC using known
techniques [29], and (b) an intermediate hMSC may some-
times provide a valuable global view of the system for vali-
dation by the analyst. The synthesis approach presented in
the paper has however been preferred for much greater
simplicity.

2.4 Discussion
This section addresses three issues raised by our LTS syn-
thesis technique: the adequacy of the synthesized behavior
model, the presence of implied scenarios, and the number
of scenario questions interactively generated.

Adequacy of the synthesized model
Unlike deductive inference, inductive inference from ex-
amples is known to be logically not sound. The inferred
system model may be undergeneralized or overgeneral-
ized.

Overgeneralization occurs when the synthesized system
LTS covers undesired behaviors. This may occur when
states were merged by the algorithm while they correspond
to distinct states of the system; that is some system states
may not have been adequately identified. Although sce-
nario generation is based on characteristic samples, such
situations may arise when the sample is sparse due to a
limited number of generated scenario questions. One pos-
sible way of fixing this is to add the undesired behaviors
being covered as new negative examples to the scenario
collection, and restart the incremental synthesis algorithm.

Undergeneralization occurs when desired system behav-
iors are not covered by the system LTS. This may occur
when the scenario collection is not structurally complete;
some system transitions may not have been adequately
identified. One possible way of fixing this is to add the
missing desired behaviors as new positive examples to the
scenario collection, and restart the incremental synthesis
algorithm.

(a)

(b)

Fig. 4.4 – (a) Synthesized LTS of the global train system. (b) Train
Controller LTS.

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

The union of the set of initial end-user scenarios, the set
of answers to scenarios questions, and the set of such addi-
tional desired/undesired examples, is converging towards
a characteristic sample for the algorithm. Keeping classified
scenarios in an updated collection thus contributes to the
algorithm’s convergence towards an adequate behavior
model. It also prevents the same scenario from being re-
submitted during the following cycles of the incremental
synthesis.

Under- and overgeneralizations should be detected be-
fore they can be fixed. This may be achieved through model
checking [21, 5], model animation [22], or model validation
using the LTS decoration algorithm presented in the next
section.

Handling implied scenarios
The set of behaviors of the parallel composition of each
agent LTS is not necessarily the same as the set of behaviors
of the synthesized global LTS. Implied scenarios may result
from the parallel composition of agents acting on local in-
formation [28]. In our example, implied scenario analysis
would result in new questions to the user such as: “Can the
passenger push on the alarm twice?”. Non-desired implied
scenarios should be detected and excluded. The interested
readers may refer to [28] and [20] for details on implied
scenario analysis.

Reducing the number of submitted questions
According to the definition of a characteristic sample, our
RPNI-based strategy is optimistic; two states are considered
compatible for merging if there is no suffix to distinguish
among them. This can lead to a significant number of sce-
narios being generated to the end-user, to avoid poor gen-
eralizations, when the initial sample is sparse and not char-
acteristic for the system LTS.

To overcome this problem, our tool implements an op-
timized strategy known as Blue Fringe [19]. The difference
lies in the way state pairs are considered for merging. The
general idea is to first consider state pairs for which com-
patibility has highest chance to be confirmed by the user
through positive classification. The resulting “please con-
firm” interaction may also appear more appealing to the
user.

 Fig. 4.5 gives a typical example of a temporary solution
produced by the original algorithm. Three state classes can
be distinguished in this DFA. The red states are the consoli-
dated ones (0, 1 and 2 in this example). Outgoing transi-
tions from red states lead to blue states unless the latter
have already been labeled as red. Blue states (4 and 5 in this
case) form the blue fringe. All other states are white states.

The original ChooseStatePairs function considers the low-
est-rank blue state first (state 4 here) for merge with the
lowest-rank red state (0). When this choice leads to a com-
patible quotient automaton, generated scenarios are sub-
mitted to the end-user (in this case, a scenario equivalent to
the string {alarm propagated, emergency stop, emergency open}).
The above strategy may lead to multiple questions being
generated to avoid poor generalization. Moreover, such
questions may be non-intuitive for the user, e.g., the alarm
propagated event is sent to the train controller without hav-
ing been fired by the alarm pressed event to the sensor.

To select a state pair for merging, the Blue-Fringe opti-
mization evaluates all (red, blue) state pairs first. The
ChooseStatePairs function now calls the Merge and Compati-
ble functions before selecting the next state pair. If a blue
state is found to be incompatible with all current red states,
it is immediately promoted to red; the blue fringe is up-
dated accordingly and the process of evaluating all (red,
blue) pairs is iterated. When no blue state is found to be
incompatible with red states, the most compatible (red, blue)
pair is selected for merging through an adapted version of
the Compatible and Initialize functions. Initialize now returns
an augmented prefix tree acceptor PTA(S+, S–). It stores the
prefixes of all positive and negative strings, with accepting
states being labeled as positive or negative. The Compatible
function now returns a compatibility score instead of a Boo-
lean value. The score is defined as −1 when, in the merging
process for determinization, merging the current (red, blue)
pair requires some positive accepting state to be merged
with some negative accepting state; this score indicates an
incompatible merging. Otherwise, the compatibility score
measures how many accepting states in this process share
the same label (either + or -). The (red, blue) pair with high-
est compatibility score is considered first.

The above strategy can be further refined with a com-
patibility threshold α as additional input parameter. Two
states are considered to be compatible if their compatibility
score is above that threshold. This additional parameter
controls the level of generalization since increasing α de-
creases the number of state pairs that are considered com-
patible for merging; it thus decreases the number of gener-
ated questions.

On the train example of this paper, the original RPNI-
based algorithm in Section 4.2 learns the system LTS cor-
rectly by submitting 20 scenarios to the end-user (17 should
be rejected and only 3 should be accepted). With the inter-
active Blue-Fringe optimization, the same LTS is synthe-
sized with only 3 scenarios being submitted (one to be re-
jected and two to be accepted).

The number of generated questions can be further re-
duced by integration of system knowledge or legacy com-
ponents. Domain properties and legacy components can be
modeled as state machines. As the states of the PTA capture
global system states, defined as tuples of simultaneous LTS
states of the various agents, adding partial state informa-
tion in the PTA allows an equivalence relation to be defined
on states. Any generalization which would result in merg-
ing non-equivalent states according to this relation can be
discarded. This ensures both consistency with system
knowledge and search space reduction which speeds up the

Fig. 4.5 – Consolidated states (red) and states on the fringe (blue) in a
temporary solution.

AUTHOR ET AL.: TITLE 13

learning process and decreases the number of scenario
questions. An example of legacy component integration is
presented in Section 6. Some preliminary work on integrat-
ing goal specifications [16] in the learning process suggests
that goals are another highly effective source for drastic
pruning of scenario questions.

5 GENERATING STATE INVARIANTS FROM FLUENT
DEFINITIONS

State invariants on a state machine are assertions on a spe-
cific state which hold every time that state is visited. The
annotation of state machines with such invariants provides
multiple benefits:

• the understandability and documentation of the state
machine is improved;

• the invariants can be shown to the analyst for valida-
tion and error detection;

• state invariants can be used by analysis tools for more
efficient analysis [12];

• invariants can be used by code generators to improve
the quality of the generated code. When the entire
code of the application cannot be fully generated, the
generated fragments must be readable by developers.
The choice of variables in the generated code, their
names and property annotations may then be quite
useful.

An algorithm for generating state invariants for SCR
state machines is presented in [12]. This algorithm cannot
be applied here as the semantics of SCR state machines dif-
fers from the semantics of LTS state machines. Consider a
state machine with state q and no outgoing transition with
label l.

• According to the semantics described in [12], if the
system is in state q, an event with label l can occur; the
system then remains in the same state q.

• With the LTS semantics, no event with label l can oc-
cur when the system is in state q.

This section presents an algorithm for generating state
invariants from fluent definitions. We use fluents, as intro-
duced in Section 2.4, rather than pre- and post-conditions
on event occurrences. The reasons are the following.

• Fluents turn out to be simpler to use; they allow the
analyst to focus on one single state variable at a time
and thereby annotate LTS incrementally.

• Invariant generation requires less input information;
only the counterpart of postconditions has to be de-
fined transition preconditions are provided by the
state machine.

• Conflicts may arise when the pre-/postconditions are
incompatible with the state machine. Consider two
consecutive events ev1 and ev2 in a LTS execution.
The postcondition post(ev1) and the precondition
pre(ev2) cannot be inconsistent; in other words, a con-
flict arises when post(ev1) ∧ pre(ev2) → false, mean-
ing that either the state machine or the pre-
/postconditions are incorrect.

• Fluents provide a nice interface between goal specifi-
cations and goal operationalizations [16]; their defini-

tion can be derived in a systematic way from goal
specifications provided by goal models.

The algorithm implemented by our tool decorates each
state of the input LTS with a conjunction of fluent values
that holds in that state.

For our train example, three fluents are emerging from
goal specifications:

• fluent moving = <{start}, {stop, emergency stop} > initially false
• fluent doors_open = <{open doors, emergency open}, {close

doors}> initially false
• fluent alarmed = <{alarm propagated}, {emergency open}> ini-

tially false

The decoration of the initial state will be:

¬ moving ∧ ¬ doors_opened ∧ ¬ alarmed

Section 5.1 discusses the decoration of LTS states with
single fluents. Section 5.2 then shows how state invariants
are formed from single decorations.

5.1 Decorating states with single fluents
We first discuss how fluent values can decorate a node

on a single LTS path. Then we consider the general case of
node decoration for a node pertaining to multiple paths.

Fluent values for a node on a single path
A fluent Fl is true after a finite LTS execution σ ending in
state q if and only if one of the following conditions
holds [5]:

(a) Fl holds initially and no terminating event has oc-
curred in σ;

(b) Some initiating event has occurred in σ with no ter-
minating event occurring since then.

The following recursive version of this definition is use-
ful for our generation algorithm.

A Fluent Fl is true after a finite LTS execution σ ending in
state q if and only if one of the following conditions holds:

(a) σ is empty and Fl holds initially;
(b) the last event of σ belongs to the initiating events;
(c) the last event e of σ does not belong to the terminat-

ing events and the fluent is true after σ' where
σ = <σ', e>

Fluent values for a node on multiple paths
The value of a fluent in a LTS node is not necessarily either
true or false. There may be two LTS executions σ1 and σ2
reaching a state q, such that the value of the fluent Fl after
σ1 is true and the value of the fluent Fl after σ2 is false. For
example, consider the train controller LTS (Fig. 3.4) and the
fluent

emergency = <{alarm propagated}, {start}> initially false.

The value of the fluent at the initial state after the LTS
execution σ1=<start, stop> is false. The value of the fluent at
the initial state after the LTS execution σ2=<alarm propa-
gated, emergency open, close doors> is true. The value of emer-
gency at that state will therefore be set to top, meaning that
the value of the fluent can be true or false at that state de-
pending on the path being followed. It is also possible that

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

a state is unreachable from the initial state. In that case, the
value of Fl at that state will be set to bottom.

The possible values of a fluent in some state thus belong
to a lattice Boolabs defined as follows:

Given a LTS model (Q,Σ, δ, q0) and a fluent Fl = < InitFl,
TermFl > initially InitiallyFl, the output of our algorithm is a
function decor: Q → boolabs defined as follows:

decor (q) =
'true' iff Fl is true for all LTS executions reaching

state q
'false' iff Fl is false for all LTS executions reaching

state q
'top' iff Fl is true for some LTS executions reaching

state q and false for others
'bottom' iff state q is not reachable from the initial state

The idea behind the algorithm is the following. At each
step, every state has a decoration. At the beginning, in
every state, the fluent value is initialized to bottom except
for the initial state where the fluent is initialized to the ini-
tial value provided by its definition. The algorithm propa-
gates fluent values in the state machine according to the
following propagation rule derived from the above recur-
sive characterization of fluent values:

where source ∈ Q, event ∈ Σ, target ∈ δ(source, event), and
sup is the supremum function in the lattice Boolabs , for in-
stance, sup (true, false)= top and sup(bottom, true) = true.

The algorithm applies this propagation rule for each
transition until a fixpoint is reached where no state decora-
tion changes if the propagation rule is applied on each tran-
sition once again.

The algorithm for one fluent is given in Fig. 5.2. It keeps
track of the set ToExpl of states that have been updated and
where the propagation should be applied. The algorithm
stops when the set ToExpl is empty, that is, there is no state
that must still propagate its value.

The algorithm terminates because the set ToExpl will
eventually be empty as a state can change his decoration at
most twice: from bottom to either true or false, and from
true or false to top. The reason is that the lattice is finite and
the decoration can only go up in the lattice in view of the
supremum operator.

Fig. 5.3 illustrates the two first steps of our algorithm for
the fluent moving = <{start}, {stop, emergency stop}> initially
false on the Train Controller state machine. The value of the
fluent at each state and after each step is shown in
Table 5.1.

(Step 0) We initialize the values of moving at bottom for each
state except for the initial state where we initialize moving
to its initial value.

 (Step 1) Only state 0 is in ToExpl. We propagate its value to
all his successors states. It has three outgoing transitions
towards state1, state3 and state4. The fluent value of state0
and state2 thus remains the same. For state1, the newVal
equals true because start belongs to the initiating events
and therefore moving will equal sup(bottom,true)=true.
Therefore we add state1 to the set ToExpl. For state3 and
state4, the events alarm propagated and open doors do not
belong to the initiating or terminating events. The fluent
values of state3 and state4 are sup(bottom,false)=false. We
add thus state3 and state4 to ToExpl.

(Step 2) We choose one element in ToExpl. Here we choose
state1. State1 has two outgoing transitions. Because stop is a
terminating event, moving at state0 equals
sup(false,false)=false. Because the decoration of state0 has not
changed, we do not add state0 to ToExpl. Alarm propagated
does not belong to the initiating or terminating events and
therefore moving at state2 equals sup(bottom,true)=true. We
add thus state2 to ToExpl.

The process is continued until ToExpl gets empty.

Fig. 5.1 – Propagation rule of the decoration algorithm.

Fig. 5.2 – LTS decoration algorithm.

AUTHOR ET AL.: TITLE 15

5.2 Forming the state invariant
A straightforward way of obtaining the global invariant at
each state is to apply the algorithm of Fig. 5.1 once per flu-
ent and then take the conjunction of results. For example,
the fluent values for the initial state are

{moving = false, doors_opened = false, alarmed = false}.

The state invariant is formed by taking the conjunction
of all fluent values in that state. The top values do not ap-
pear in this conjunction as they do not give any information
about the values of the corresponding fluents. The state
invariant at the initial state is thus

 ¬ moving ∧ ¬ doors_opened ∧ ¬ alarmed

The algorithm implemented in our tool is an equivalent,
optimized version where the value of all fluents is calcu-
lated within a single loop.

6 CASE STUDY: A MINE PUMP CONTROL SYSTEM
This section shows our tool in action on a non-trivial
benchmark. We consider the following simplified problem
statement for the Mine Pump exemplar [13]: “Water perco-
lating into a mine is collected in a sump to be pumped out of

the mine. The water level sensor detects when water is above
and below a specific level. A pump controller switches the
pump on when the water goes above this level and off when it
goes below this level. To avoid the risk of explosion, the pump
must be operated only when the methane level is below some
critical level.”

Fig. 6.1 shows three scenarios initially submitted to the
tool by stakeholders – two positive and one negative. As
mentioned before, the tool has the built-in assumption that
all submitted input scenarios start in the same initial state
(this assumption is commonly made by the other ap-
proaches to state machine synthesis from scenarios.) The
submitted scenarios thus implicitly specify that both the
water level and the methane level are initially low.

To illustrate the integration of legacy components, we
assume that the methane sensor is an external component
specified by the LTS shown on Fig. 6.2.

 (b) (c)

Fig. 5.3 – Executing the algorithm for fluent moving. (a) after initialization (Step 0) (b) after having propagated the value of fluent at state0 (after
Step 1) (c) after having propagated the value o fluent atstate1 (after Step2).

 (a)

Table 5.1 – Values of fluent moving after each step of the decoration
algorithm.

Fig. 6.2 – LTS of the Methane Sensor.

16 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Fig. 6.5 – Synthesized Annotated LTS of the pump controller.

 (a) (b)

Fig. 6.1 – Three initial scenarios of the mine pump.

 (c)

 (a) (b)

Fig. 6.3 – Two scenarios generated by the tool.

Fig. 6.4 – Synthesized system LTS for the Mine Pump. Event labels are shorthands for the events presented in the scenarios of Fig. 6.1.

AUTHOR ET AL.: TITLE 17

From this input the tool generates a first scenario ques-
tion shown in Fig. 6.3 (a). This scenario should be rejected
by the end-user; in view of the common initial state with
low water, the pump controller may not switch the pump
on when the water level is low. This scenario is added as
negative scenario to the initial collection. Its precondition
contains the events signal critical methane and signal not
critical methane, and its prohibited event is switch pump on.

The next scenario then generated by the tool is shown in
Fig. 6.3 (b). This scenario is to be accepted by the user; if the
water level is high and the pump is running, the controller
should switch the pump off when the methane level be-
comes critical, and switches the pump on when the meth-
ane level is no longer critical.

The third and last scenario question requires a negative
answer. The synthesis already terminates after those three
questions as the integration of the legacy component allows
the generation of two scenarios violating the methane sen-
sor LTS to be avoided. Fig. 6.4 shows the synthesized sys-
tem LTS.

The tool then projects the synthesized system LTS on
each agent. Fig. 6.5 shows the LTS for the pump controller,
where the predicates annotating nodes there are to be re-
placed by numbers.

The analyst enters the picture at this point. For better
understanding of the generated LTS and its validation, she
may enter the following fluent definitions as input to the
invariant generation process:

• fluent PumpOn = <{turn pump on}, {turn pump off} > initially
false

• fluent HighWater = <{signal high water}, {signal low water }> ini-
tially false

• fluent CriticalMethane = <{signal critical methane}, {signal not
critical methane}> initially false

These fluents define the state of the pump, of the water
level, and of the methane level in terms of their initiat-
ing/terminating events. They are typically identified from
goal operationalizations [16].

The invariant generator then decorates each agent LTS
with node annotations as shown for the pump controller
LTS in Fig. 6.5.

7 CONCLUSION
Scenarios are concrete vehicles frequently used for eliciting,
illustrating, and validating system requirements and design
models. However they are just partial examples of desired
or undesired behavior. The required properties are left im-
plicit and must be inferred. The behavior models are only
partially covered and need to be synthesized.

The contribution of this paper is twofold.
• A new approach has been presented for synthesizing

behavior models from simple forms of scenarios.
Compared with other synthesis approaches, our ap-
proach does not require additional input to the syn-
thesis process, such as state assertions along episodes
or flowcharts on such episodes. Positive and negative
scenarios are both taken into account. New scenarios
are generated as questions for further elicitation and
for control over the generalization process. The syn-

thesis process is incremental and does not require all
scenarios to be provided from the beginning. The
global system model is guaranteed to cover all posi-
tive scenarios and exclude all negative ones whereas
the projection of this model on system agents may in-
troduce, as in other approaches, undesirable implied
scenarios that result from the parallel composition of
the system agents.

• A new fixpoint algorithm has been described for gen-
erating state invariants on labeled transition systems
so as to make such models easier to understand and
validate – especially as they are automatically gener-
ated from scenarios.

The tool implementing both contributions has been used
on several non-trivial case studies and example bench-
marks from the literature; it proved to be quite effective in
synthesizing LTS models through scenario-based interac-
tion only. For example, a state machine for an ATM system
is generated in [31] from four scenarios annotated with pre-
and post conditions. Our tool generates the same state ma-
chine, from the same four input scenarios but without any
annotation, with only one scenario question (to be rejected
by the user). In [23], the MAS tool takes one single scenario
for an alarm clock system as input. MAS first interacts four
times with the user through trace questions on the state
machine generated for the so-called control unit agent. The
resulting state machine appears to be overgeneralized; the
user therefore must further submit a counterexample. Three
more trace interactions are then required before the final
state machine is generated. On this clock example with the
same input scenario, our tool generates one single scenario
question. This question corresponds to the counter-example
that the user had to provide by herself in [23]. We generate
it, and express it in a simple MSC form. Since the single
input scenario is not structurally complete, the state ma-
chine generated by our tool is not complete. Adding one
more positive scenario makes our tool generate the same
state machine as in [23] without any further question. In
addition, the tool generates the state machines for each
agent.

Our LTS synthesis technique extends a known learning
algorithm from the literature on grammatical infer-
ence [26, 4] to make it incremental and generate scenario
questions. The convergence of this algorithm is guaranteed
when the learning sample is rich enough [27] – said in sce-
nario terms, when the scenario collection is characteristic.
This shows the importance of positive as well as negative
scenarios. The positive scenarios help learning a system
LTS by providing a constraint on minimal coverage of be-
haviors; on the other hand, the negative scenarios help
learning the correct system by constraining such coverage
not to be too wide. Our extension of this algorithm is aimed
at overcoming the limitation of not having a characteristic
scenario collection from the beginning. Additional scenar-
ios are generated during LTS synthesis to be classified by
the end-user as positive or negative. Those scenario ques-
tions are generated so as to converge towards a characteris-
tic scenario sample for the learned system. This ensures
convergence of the learning process while providing a
natural way of eliciting further scenarios and their underly-

18 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

ing requirements. As discussed in Section 4.4 and Section 6,
various optimizations of this interactive induction algo-
rithm helps reducing the number of scenario questions
without sacrifying to its convergence.

 Our approach raises several issues. Multiple users may
submit inconsistent scenarios. As with other approaches,
inconsistencies may propagate to the synthesized model.
Our approach is also highly sensitive to classification er-
rors. Accepting a scenario question instead of rejecting it,
for example, will obviously result in inadequate models
being synthesized (this problem is common to learning-by-
examples techniques).

Our tool makes the assumption that all submitted sce-
narios start in the same initial system state (this assumption
is used in other approaches as well). For real-sized systems
or multi-user elicitation, such assumption seems unrealistic.
If two end-users specify scenarios separately, they might
not choose the same initial state. Our algorithm should be
adapted to support this problem.

The generated state machines are “flat” LTS. Transform-
ing them into hierarchical machines with sequential and
parallel decomposition within single agents would be use-
ful, in particular, for generation of more structured code.
The generated fluent decorations might help in such struc-
turing process.

In addition to existential scenarios, we would like to ex-
plore the use of universal scenarios [2] in our approach.
Existential scenarios illustrate what may occur; universal
scenarios state what must occur. The addition of universal
scenarios would allow us to constrain the induction proc-
ess, automatically reject induced solutions that are incom-
patible with the information provided by obligations, and
thus further reduce the number of scenario questions.

We are currently experimenting our approach to synthe-
size behavior models for web applications from end-user
scenarios of interaction with such applications. It turns out
that the state space gets much larger in this context which
may result in too many scenario questions being generated
to the end-user. Constraining the search space through ad-
ditional input information is one obvious solution to this
problem. Such additional information, to be provided by
the analyst (not the end-user), may include LTS models of
legacy components to be integrated (as already suggested
in Section 6). The latest version of our tool also takes system
goals [16], to be achieved by the synthesized models, to
further constrain the search space. Preliminary experiments
suggest some drastic improvement. This is not too unex-
pected; as a goal captures a set of scenarios, the number of
scenarios questions decreases accordingly.

ACKNOWLEDGMENT
This work was partially supported by the Regional Gov-
ernment of Wallonia (ReQuest project, RW Conv. 315592).
Thanks are due to Renaud De Landtsheer for his help in
constructing the algorithm for generating state invariants
from fluent definitions and to Emmanuel Letier for helpful
comments and discussions. We are also grateful to the re-
viewers for helpful comments which hopefully resulted in

the clarification of several aspects of our synthesis tech-
nique.

REFERENCES
[1] R. Alur and M. Yannakakis, “Model checking of message se-

quence charts”, Proceedings of the Tenth International Conference on
Concurrency Theory, LNCS 1664, Springer-Verlag, 1999, pp. 114--
129.

[2] W. Damm and D.Harel, “LSCs : Breathing Life Into Message
Sequence Charts”, Formal Methods in System Design, 19(1), 2001.

[3] P. Dupont, L. Miclet and E.Vidal, “What is the search space of
regular inference?”, in Grammatical Inference and Applications, Lec-
ture Notes in Artificial lntelligence Nr. 862, Springer-Verlag
1994, pp. 199-210.

[4] P. Dupont, “Incremental regular inference”, in Grammatical Infer-
ence: Learning Syntax from Sentences, Lecture Notes in Artificial
Intelligence Nr. 1147, Springer-Verlag, 1996, pp. 222–237.

[5] D. Giannakopoulou and J. Magee, “Fluent Model Checking for
Event-Based Systems”, Proc. ESEC/FSE 2003, Helsinki, 2003.

[6] E.M. Gold, “Language identification in the limit”, Information and
Control, 10(5), 1967, pp. 447–474.

[7] E.M. Gold, “Complexity of automaton identification data”, In-
formation and Control Vol. 37, 1978, pp. 302-320.

[8] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[9] H. Ichikawa, M. Itoh, J. Kato, A. Takura, and M. Shibasaki, “SDE:
Incremental Specification and Development of Communications
Software”, IEEE Trans. Computers, vol. 40, 1991, pp. 553-561.

[10] ITU, Message Sequence Charts, Recommendation Z.120, Int’l Tele-
com Union, Telecomm. Standardization Sector, 1996.

[11] M.Jarke and R. Kurki-Suonio (eds.), Special Issue on Scenario
Management, IEEE Trans. on Sofware. Engineering, December
1998.

[12] R. Jeffords and C. Heitmeyer, “Automatic Generation Of State
Invariants From Requirements Specifications”, 6th ACM Symp.
Foundations of Software Engineering, Los Alamitos, California,
1998.

[13] M. Joseph. Real-Time Systems: Specification, Verification and Analy-
sis. Prentice Hall Intl., 1996.

[14] J. Kramer, J. Magee, M. Sloman, et al, “CONIC: an Integrated
Approach to Distributed Computer Control Systems”, IEE Pro-
ceedings, Part E 130, 1, January 1983, pp. 1-10.

[15] I. Kruger, R. Grosu, P. Scholz and M. Broy, From MSCs to State-
charts, Proc. IFIP Wg10.3/Wg10.5 Intl. Workshop on Distributed and
Parallel Embedded Systems (Scholoß Eringerfeld, Germany). F. J. Ram-
mig (ed.), Kluwer Pub., 61-71.

[16] A. van Lamsweerde , “Goal-Oriented Requirements Engineering:
A Guided Tour”, Invited Minitutorial, Proc. RE’01 - 5th Intl. Symp.
Requirements Engineering, Toronto, August 2001, pp. 249-263.

[17] A. van Lamsweerde and L. Willemet, “Inferring Declarative
Requirements Specifications from Operational Scenarios”, IEEE
Trans. on Sofware. Engineering, December 1998.

[18] K.J. Lang, “Random DFAs can be approximately learned from
sparse uniform examples”, 5th ACM Workshop on Computational
Learning Theory, 1992, pages 45–52.

[19] K.J. Lang, B.A. Pearlmutter, and R.A. Price, “Results of the ab-
badingo one DFA learning competition and a new evidence-
driven state merging algorithm”, In Grammatical Inference, Lec-

AUTHOR ET AL.: TITLE 19

ture Notes in Artificial Intelligence Nr. 1433, Springer-Verlag,
1998, pp. 1-12.

[20] E. Letier, J. Kramer, J. Magee, and S. Uchitel, “Monitoring and
Control in Scenario-Based Requirements Analysis”, Proc. ICSE
2005 - 27th International Conference on Software Engineering, St.
Louis, IEEE Press, May 2005.

[21] J. Magee and J. Kramer, Concurrency: State Models and Java Pro-
grams. Wiley, 1999.

[22] J. Magee, N. Pryce, D. Giannakopoulou and J. Kramer, “Graphi-
cal Animation of Behavior Models”, Proc. ICSE’2000: 22nd Intl.
Conf. on Software Engineering, Limerick, May 2000, pp. 499-508.

[23] E. Mäkinen and T. Systä, “MAS – An interactive Synthesizer to
support behavioral modelling in UML”, Proc. ICSE 2001 - Inter-
national Conference on Software Engineering,, Toronto, Canda, May
2001.

[24] R. Milner, Communication and Concurrency. Prentice-Hall, 1989.
[25] R. Miller and M. Shanahan, “The Event Calculus in Classical

Logic – Alternative Axiomatisations”, Linkoping Electronic Arti-
cles in Computer and Information Science, Vol. 4, No. 16, 1999, pp.
1-27.

[26] J. Oncina and P. García, “Inferring regular languages in polyno-
mial update time”, In N. Perez de la Blanca, A. Sanfeliu, and
E.Vidal, ed., Pattern Recognition and Image Analysis, Vol. 1 Series
in Machine Perception and Artificial Intelligence. World Scien-
tific, 1992, pp. 49–61.

[27] J. Oncina, P. García, and E. Vidal. Learning subsequential trans-
ducers for pattern recognition interpretation tasks. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 15(5):448-458,
1993.

[28] S. Uchitel, J. Kramer and J. Magee, “Detecting Implied Scenarios
in Message Sequence Chart Specifications”, Proc. ESEC/FSE'01 -
9th European Software Engineering Conferece & ACM SIGSOFT
Symp. Foundations of Software Engineering, Vienna, September
2001.

[29] S. Uchitel, J. Kramer, and J. Magee, “Synthesis of Behavioral
Models from Scenarios”, IEEE Trans. Softw. Engineering, 29(2),
2003, pp 99-115.

[30] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer, “Scenario
Usage in System Development: A Report on Current Practice”.
IEEE Software, March 1998.

[31] J. Whittle and J. Schumann, “Generating Statechart Designs from
Scenarios”, Proc. ICSE’2000: 22nd Intl. Conference on Software En-
gineering, Limerick, 2000, pp. 314-323.

Christophe Damas received the degree of
engineer in computer science in 2003 from the
Université catholique de Louvain, Belgium. He
is currently pursuing research on generating
web applications from end-user scenarios.

Bernard Lambeau received the degree of
engineer in computer science in 2003 from the
Université catholique de Louvain, Belgium. He
is currently pursuing research on generating
web applications from end-user scenarios.

Pierre Dupont received an M.S. in Electrical
Engineering from the Université catholique de
Louvain (Belgium) in 1988, and a Ph.D. in
Computer Science from l'Ecole Nationale
Supérieure des Télécommunications, Paris
(France) in 1996.

From 1988 to 1991, he was a research staff
member of the Philips Research Laboratory
Belgium. In 1992, he joined the France Telecom
Research Center, Lannion (France). Its primary

research was in automatic speech recognition with a special focus on
search algorithms and language modeling. He has been visiting re-
searcher at Carnegie Mellon University, Pittburgh (USA) in 1996-1997,
and at Universidad Politécnica de Valencia (Spain) in 1994, 1995 and
2000.

From 1997-2001, he was Associate Professor in the Computer Sci-
ence Department of Université Jean Monnet, Saint-Etienne (France).
He is currently Professor in the Departement of Computing Science
and Engineering and co-founder of the Machine Learning Group of the
Université catholique de Louvain, Belgium. His current research inter-
ests include Grammar and Automata Induction, Statistical Language
Modeling, Graph Mining, Machine learning applications to Natural Lan-
guage Processing and Computational Biology.

Axel van Lamsweerde is Full Professor at the
Department of Computing Science of the Uni-
versité catholique de Louvain, Belgium. He has
been research associate at Philips Research
Labs and professor at the universities of Namur,
Brussels, and Louvain (Belgium). He has also
been research fellow at the University of Ore-
gon and the Computer Science Laboratory of
SRI International (Menlo Park, CA). He was co-
founder of two software technology transfer
centers supported by the European Union.

His research interests are in precise techniques for requirements
engineering, system modeling, high assurance systems, lightweight
formal methods, process engineering, and knowledge-based software
development environments. Since 1991 he has been instrumental in
the development and transfer of the KAOS goal-oriented requirements
engineering language, method and toolset.

van Lamsweerde has been editor-in-chief of the ACM Transactions
in Software Engineering and Methodology (TOSEM), program chair of
major international software engineering conferences, including
ESEC'91 and ICSE'94, and founding member of the IFIP WG2.9 Work-
ing Group on Requirements Engineering. He was invited keynote
speaker at ICSE'2000. He is an ACM Fellow since 2000 and received
the ACM Sigsoft Distinguished Service Award in 2003. His recent pa-
pers can be found at http://www.info.ucl.ac.be/people/avl.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

