
Simulation-Based Verification
of a Propulsion Feed Subsystem

via Livingstone PathFinder

Tony Lindsey

Charles Pecheur

RIACS Technical Report 03.11

September 2003

Simulation-Based Verification
of a Propulsion Feed Subsystem

via Livingstone PathFinder

Tony Lindsey, QSS Group

Charles Pecheur, RIACS

RIACS Technical Report 03.11

September 2003

Livingstone PathFinder (LPF) is a software tool for automatically analyzing model-based
diagnosis applications across a wide range of scenarios. This technical report describes
experimental results from the application of LPF to a Livingstone-Based diagnosis for
the propulsion feed subsystem of the X-34 space vehicle. We describe Livingstone, LPF
and the X-34 application, report statistics on LPF performance, including improvements
through the use of heuristic-based guided search, and analyze two examples of errors
reported by LPF.

This work was supported in part by the National Aeronautics and Space Administration under
Cooperative Agreement NCC 2-1006 with the Universities Space Research Association (USRA),
as well as CSRDS Task 091 with QSS Group, Inc. The work was performed in the context of
NASA ECS Project 2.2.1.1 "Validation of Model-Based IVHM Architectures".

Contents

1 Introduction 1

2 Livingstone 1

3 Livingstone PathFinder 2

3.1 LPF Error Conditions . 3
3.2 Search Strategies . 4
3.3 Verification Using LPF . 5
3.4 Simulators in LPF . 5

4 X-34 System Model 6

5 Experimental Results 7

5.1 Depth-First Search . 7
5.2 Heuristic Search . 9
5.3 Example Scenario 1: SV31 double fault 9
5.4 Example Scenario 2: SV02 stuck open 11

6 Conclusions and Perspectives 12

1 Introduction

Livingstone PathFinder (LPF) is a simulation-based verification tool that drives
a Livingstone Diagnosis system, embedded in a simulated environment, across
a wide range of command and fault scenarios. The environment consists of a
Driver that enumerates the commands and faults, and a Simulator that simu-
lates the response of the system being diagnosed. Check-pointing is implemented
in the Diagnosis engine, the Simulator and the Driver, to allow backtracking and
exploration of alternate scenarios. Currently, a second instance of a Livingstone
engine is used for the Simulator.

LPF is intended to offer a variety of state space exploration strategies, along
with a flexible way of changing to the desirable techniques. Most recently a best-
first (heuristic) search has been implemented and added to the list of offered
strategies.

This report describes experiments in applying LPF to a real-size Livingstone-
based application. The PITEX project is applying Livingstone to the propulsion
feed subsystem of the X-34 space vehicle. We have used the X-34 Livingstone
model to test, evaluate and compare the different features of LPF, in particular
the heuristic search capabilities.

The report describes these experiments, reports execution statistics, and
discusses some of the error conditions that were found.

2 Livingstone

Livingstone is a model-based diagnosis system that uses a qualitative model of
the different components of a physical plant and their interactions, both under
nominal and faulty conditions [4]. It tracks the commands issued to the physical
system, then compares the state predicted by the model against observations
received from physical sensors.

If a discrepancy is detected, Livingstone performs a diagnosis by search-
ing for combinations of faults that are consistent with the observations. Each
combination is called a candidate and has an associated rank estimating its
probability, higher ranked candidates being less likely. Livingstone’s best-first
search algorithm returns more likely, lower ranked candidates first. In partic-
ular, when the nominal case is consistent with Livingstone’s observations, the
empty candidate (of rank 0) is generated.

The Livingstone fault diagnosis and recovery kernel has successfully been
applied to the Remote Agent Experiment (RAX) demonstration on Deep Space
1 (DS-1) in 1999. A new generation of Livingstone, called L2, includes tempo-
ral trajectory tracking. Further extensions supporting more general constraint
types (hybrid discrete/continuous models) are under investigation.

The L2 engine is avaiable as a compiled library (L2 is written in C++). A
utility program, l2test, provides a command line interface to perform all L2
operations interactively. l2test commands can be stored in L2 scenario files
for batch replay.

1

3 Livingstone PathFinder

Livingstone PathFinder (LPF) is a simulation-based tool for analyzing and ver-
ifying Livingstone-based diagnosis applications. LPF executes a Livingstone
diagnosis engine, embedded into a simulated environment, and runs that as-
sembly through all executions described by a user-provided scenario file, while
checking for various selectable error conditions after each step.

The architecture of LPF is depicted in Figure 1. The tool is built in a
modular way with generic interfaces, to allow easy substitution of alternative
versions of its different parts. Altogether, this provides a flexible, extensible
framework for simulation-based analysis of diagnosis applications.

The testbed under analysis consists of the following three components:

- Diagnosis : the diagnosis system being analyzed. LPF currently supports
the Livingstone engine; extension to the Titan system [1] is under study.

- Simulator : the simulator for the device on which diagnosis is performed.
Currently a second Livingstone engine instance is used for the simulator
module, but the architecture is open to other alternatives.

- Driver : the simulation driver that generates commands and faults accord-
ing to a user-provided scenario file.

All three components are instrumented so that their execution can be single-
stepped in both forward and backward directions. The Search Engine controls
the order in which the resulting graph of possible executions is explored.

sensors

Simulator Model
commands

& faults

Engine Model

Diagnosis

Driver Scenario

Search

Engine

get state
set state

single step

backtrack

T

E

S

T

B

E

D

Figure 1: Livingstone PathFinder Architecture

The scenario file is essentially a non-deterministic program whose elementary
instructions are commands and faults. Scenarios are built from individual in-
structions using sequential, concurrent (interleaved) and choice statements. The
sample scenario in Figure 2 defines a sequence of three commands cmd1, cmd2

2

and cmd3, with one fault chosen among fltA and fltB occurring at some point
in the sequence. LPF provides a way to automatically generate a scenario com-
bining all commands and faults of a model following the same sequence/choice
pattern.

mix {

"command cmd1";

"command cmd2";

"command cmd3";

} and {

choose "fault fltA";

or "fault fltB";

}

Figure 2: Sample LPF scenario

Each event produced by the Driver is passed to the Simulator, which updates
its state accordingly. Commands (but not faults) are also passed to Diagnosis.
Updated observable variables are then extracted from the Simulator and passed
on to Diagnosis. This cycle is repeated along all sequences covered by the
scenario, saving and restoring intermediate states to explore alternate routes.
User-selectable properties, such as consistency between the diagnosis results
and the actual state of the Simulator, are checked at each step, and a trace is
reported if a violation is detected.

The latest version of LPF offers a number of useful auxiliary capabilities,
such as generating an expanded scenario tree, counting scenario states, exploring
the simulator alone (no diagnosis), generating a default scenario, and producing
a wide array of diagnostic and debugging information, including traces that can
be replayed in Livingstone simulation tools.

3.1 LPF Error Conditions

In each state along its exploration, LPF can check one or several error condi-
tions among a user-selectable set. Currently, LPF supports the following error
conditions:

- Simulator consistency : Simulator reaches an inconsistent state, typically
occurring after executing a command or injecting a fault that results in
conflicts among the model constraints and assignments.

- Diagnosis consistency : Diagnosis reaches an inconsistent state, after fail-
ing to find any candidate consistent with previous commands and obser-
vations. This condition could also be found by using Stanley, a graphical
user interface to Livingstone, to test scenarios. However LPF has the ad-
vantage of more exhaustive automated test coverage. This particular error
condition is unlikely given the “unknown” mode usage. The “unknown”
failure mode represents a catchall mode for unspecified faults.

3

- Mode comparison (MC): compares the modes of all components in the
Simulator to those assumed by Diagnosis, and reports any discrepancy.

- Candidate matching (CM): checks that at least one Diagnosis candidate
matches (i.e. has the same faults as) the Simulator state.

- Candidate subsumption (CS): checks that at least one Diagnosis candidate
is subsumed by (i.e. has its faults included in) the Simulator state.

While the first two conditions can prove to be useful debugging tools, the
subsequent conditions address the core of diagnosis correctness at three different
levels of generality, from the most restrictive to the least. They constitute three
successive refinement steps based on the intuition that diagnosis should properly
track the state of the (simulated) system. Mode comparison only considers the
most likely candidate and reports errors even if another reported candidate
matches the state, which is overly restrictive in practice since the injected fault
may not be the most likely one. Instead, the Candidate matching condition
considers all candidates. Even then, a fault may remain unobservable without
causing immediate harm as long as its component is not solicited. Experience
reveals that this is a frequent situation, causing a large proportion of spurious
error reports. In contrast, Candidate subsumption only reports cases where none
of the diagnosed fault sets is included in the actual fault set. For example, the
empty candidate is subsumed by any fault set and thus never produces an error
using this condition. While this will not detect cases where Diagnosis misses
harmful faults, it will catch cases where the wrong faults are reported by the
Diagnosis engine. This condition has proven to be the most productive so far,
as further discussed in Section 5.

3.2 Search Strategies

LPF supports alternative state space exploration strategies. The first imple-
mented search strategy is a straightforward depth-first search; and an imple-
mentation of heuristic search using configurable fitness functions has just been
completed. Other strategies, such as interactive (i.e. user-driven) or randomized
search, are under consideration.

Heuristic search uses a fitness function to rank different states according to a
given criterion and explores them in that order. Provided that a good heuristic
can be found, i.e. one that favors states that are closer to errors, heuristic search
offers two advantages: The first is that errors are likely to be found earlier on
and the second is the production of shorter counterexample paths. So far we
have implemented and experimented with the two following heuristics:

- Breadth-First Search (BFS) uses the execution depth, i.e. the number of
steps to that state. This heuristic finds the shortest counter-examples.
Although this exploration strategy does not search the state space in-
telligently it was effective at detecting Mode comparison error condition
violations which are the most frequently occurring violation.

4

- Candidate Count (CC) uses the number of generated candidates obtained
via the diagnosis system. For any particular state this number is not
constant and has a configurable upper bound. Intuitively, this heuristic
leads to states with fewer candidates and thus is more likely to lead to
cases where no correct diagnoses (or even no diagnosis at all) is generated.

3.3 Verification Using LPF

Because it executes the actual Livingstone system, LPF is a fairly general ver-
ification tool for Livingstone applications, in that it can reveal the following
different types of problems:

- Engine errors, i.e. inaccurate diagnosis due to errors in the diagnosis
program. These are not the main concern, as the engine is re-used across
many applications and therefore presumably more mature and stable.

- Diagnosability errors, i.e. inaccurate diagnosis due to lack of observability
of the system’s internal state.

- Incompleteness errors, i.e. inaccurate diagnosis due to incomplete search
(e.g. resulting from limited memory resources or erroneous Livingstone
parameter settings).

- Modeling errors, i.e. inaccurate diagnosis due to aspects of the system
incorrectly or too coarsely represented in the Livingstone model. This a
major issue, as Livingstone operates on highly abstracted models of the
physical system.

- Integration errors, where the diagnosis system fails to properly interact
with its simulated environment, and the simulator in particular.

The last two items become relevant only when a higher-fidelity simulation of
the diagnosed system is used. Alternatively, using the same Livingstone model
for the simulator focuses exclusively on engine, diagnosability and incomplete-
ness errors.

3.4 Simulators in LPF

The modular design of LPF allows the use of different simulators through a
generic application programming interface (API). As a first step, we have been
using a second Livingstone engine instance for the Simulator (used in a dif-
ferent way: simulation infers outputs from inputs and injected faults, whereas
diagnosis infers faults given inputs and outputs).

Using the same model for simulation and diagnosis, as this implies, may
appear as circular reasoning but has its own merits. It provides a methodological
separation of concerns: by doing so, we validate operation of the diagnostic
system under the assumption that the diagnosis model is a perfect model of
the physical system, thus concentrating on proper operation of the diagnosis

5

algorithm itself. Incidentally, it also provides a cheap and easy way to set up a
verification testbed, even in the absence of an independent simulator.

On the other hand, using the same model for the simulation ignores the is-
sues due to inaccuracies of the diagnosis model wrt the physical system, which
is a main source of problems in developing model-based applications. We are
currently considering integration of higher fidelity simulators (e.g. Matlab or
Simulink models). We have already been studying integration of NASA John-
son Space Center’s CONFIG simulator system [2]. Note that higher fidelity
simulators are likely to be less flexible and efficient; for example, they may not
have backtracking or check-pointing.

4 X-34 System Model

The Livingstone diagnosis system is being considered for Integrated Vehicle
Health Maintenance (IVHM) for NASA’s next-generation space vehicles. In that
context, the PITEX experiment has demonstrated the application of Livingstone-
based diagnosis to the main propulsion feed subsystem of the X-34 space vehicle
[5, 3], and LPF has been successfully applied to the PITEX model of X-34. The
main propulsion system model components are specified by nominal and fault
modes. The full model contains 535 components and 823 attributes, 250 tran-
sitions, compiling to 2022 propositional clauses.

The model consists of the following four subsystems[5]:

- Pressurization: provides pressurized helium to the propellant tanks during
the bleed and burn phases.

- Pneumatics : provides pressurized helium to open and close pneumatic
valves.

- Liquid Oxygen (LOX): has two tanks for storing liquid oxygen: a forward
and aft tank. All of the logic is implemented in the forward tanks, and
the aft tank is a simple pass-through component.

- Rocket Propellent (RP-1): subsystem consisting of one RP-1 tank.

In addition, two different scenarios have been used to analyze the X-34 sys-
tem model:

- The PITEX baseline scenario combines one nominal and 29 failure scenar-
ios, derived from those used by the PITEX team for testing Livingstone,
as documented in [3]. This scenario covers 89 states.

- The random scenario covers a set of commands and faults combined ac-
cording to the sequence/choice pattern of Figure 2. This scenario is an
abbreviated version of the automatically generated LPF scenario, and cov-
ers 10216 states.

6

5 Experimental Results

The LPF software tool covered the PITEX baseline and random scenario at an
average rate of 50 to 100 states per minute. Early experiments demonstrated
the technical viability of the approach and provided informative feedback to
the developers. Experience revealed a need for improved post-treatment of
generated results, to filter critical information from large amounts of generated
data. Our experiments involved the usage of both depth-first and heuristic
search.

LPF provides a number of options for adjusting analysis parameters and
generating results and monitoring information in various forms. In our experi-
ments, we typically used the following set of options:

• +cmdlogtrace – For each error found, create L2 scenario files (both for
simulation and diagnosis) reproducing the sequence leading to that error.
These files can be replayed in l2test for further analysis (see Section 2).

• +debug – Print additional monitoring data for debugging purposes.

• +log – Create L2 scenario files (both for simulation and diagnosis) corre-
sponding to the complete execution, including backtracking between dif-
ferent traces.

• +trace – Print a trace of the current execution whenever an error occurs.

• +verbose – Report the transition performed and a summary of resulting
changes at each step.

We will first discuss scalability and compare different error conditions us-
ing depth-first search, then discuss the benefits of heuristic search and finally
illustrate some of the errors found.

5.1 Depth-First Search

Our initial experiments involved searching the entire state space. The results
use the search all termination criterion which specifies that the search proceed
normally after an error is detected and report any additionally found errors.
We used the depth-first algorithm in this case, since heuristic search offers no
advantage when searching through all states of the scenario. Table 1 summarizes
depth-first search statistics.

When searching for either Mode comparison or Candidate matching LPF re-
ported an excessive number of errors, most of which were trivial, in the following
sense. When a fault produces no immediately observable effect, then Living-
stone reports does not infer any abnormal behaviour and reports the empty
candidate. For example, although a valve may be stuck, the fault will stay
unnoticed until that valve is acted on. While these errors are indeed missed
diagnoses, experience shows that they are in most cases expected and do not
constitute significant diagnosis flaws. In particular, searching for Candidate

7

Scenario Search Error Cond. #Errors #Non-trivial States States/min

Baseline all CM 27 4 89 44

Baseline all CS 0 0 89 67

Random all CM 9621 137 10216 51

Random all CS 5 5 10216 52

Random one CS 1 1 8648 49

Random min CS 2 2 8838 44

Table 1: Depth-first search statistics

matching error condition violations the PITEX baseline scenario produced 27
errors of which only 4 were not trivial. The identical search was performed over
the random scenario resulting in 9621 errors of which 137 were not trivial.

In contrast, verification over the random scenario using the Candidate sub-
sumption (CS) error condition reported a total of 5 errors, none of which were
trivial (the PITEX baseline scenario reported no errors). Indeed, the CS error
condition will only trigger if all candidates report some incorrect fault, but not
when faults are missed. In particular, the empty candidate subsumes all cases
and will, by definition, never trigger a CS error condition violation.

For illustration purposes, the two last rows in Table 1 show results using
alternative termination criteria search-one (stop at first error) and search-min
(keep searching for shorter error traces only). Search-one finds the first error
(at depth 16) only after 8648 states, i.e. after it has covered a large part of the
state space already. Because of this, the benefit of using search-min is rather
marginal in this case; search-min finds a second error, at depth 3, by exploring
only 190 additional states.

An example of actual statistics generated by LPF is listed below. This
results from a depth-first search on the Random scenario, searching all errors.
The options were as follows:

-mode full -search all -cbfs 5 100 100 3 5 -check sim -check mir

-check modes +check subsumption -completion +verbose +debug +trace
+cmdlogtrace +log MainPropulsionSystem

After generating monitoring and error trace data (in large amounts), LPF
reports final execution statistics as quoted below. Numbers are provided both
for the top-level execution and for the Simulator and Diagnosis components; the
information is mostly redundant and useful for tool debugging purposes only.

Statistics
==========

10216 states

16 max depth
5 errors

Simulator:
10214 commands
10215 completions

15 max depth
Diagnosis:

10214 commands

8

Strategy Max depth Error Cond Time States States/min

DFS 16 CS 02:55:38 8648 49

BFS 3 CS 00:03:56 154 38

CC 5 CS 00:03:42 154 38

DFS 16 CM 00:00:15 17 68

BFS 2 CM 00:00:13 4 20

CC 1 CM 00:00:11 4 24

Table 2: Comparison of heuristic vs. depth-first search

10215 observable updates
274 diagnoses of inconsistent states
15 max depth

Total time 3:14:13

Number of states per minute 52

5.2 Heuristic Search

In this section, we illustrate the benefits of using heuristic search. The experi-
ments used the Random scenario and the search-one option, i.e. LPF stopped
at the first error found. The fitness function types used were breadth-first search
(BFS) and candidate count (CC) (see Section 3.2). The state space was searched
for the Candidate subsumption (CS) and Candidate matching (CM) error con-
dition violations. The results are summarized in Table 2, including depth-first
search (DFS) for comparison purposes.

Results show that, using BFS, LPF mapped through only 154 states before
detecting a CS error condition violation at depth 3, compared to 8648 states to
depth 16 using depth-first search. CC also explores 154 states, although it goes
a little deeper to depth 5. For the less selective CM error condition, LPF finds
an error after just 4 states using CC or BFS, versus 17 states with DFS. As
expected, heuristic search (both BFS and CC) detected the error significantly
faster than depth-first search. These results illustrate that heuristic search can
save a great deal of time by skipping large parts of the search space where errors
are less likely to be found.

5.3 Example Scenario 1: SV31 double fault

Our first example involves the PITEX baseline scenario, and was performed
using an older version of L2 in which, as it turns out, the checkpointing func-
tionality used by LPF was flawed. We consider a double fault occurring at 3301
seconds into the simulation. In this case an open microswitch, on the LOX
vent/relief solenoid valve sv31, fails and sv31 fails open. Here is the sequence
of events:

1. a command open is issued to sv31,

9

2. a command close is issued to sv31,

3. the open microswitch of sv31 breaks,

4. sv31 fails in stuck-open position.

Technically, the faults in the two last items are injected by LPF into the
simulator. Here is the same sequence as reported by LPF:

-- Transition:

{<Initial>}
-- Transition:
{command test.sv31.valveCmdIn=open}

-- Transition:
{command test.sv31.valveCmdIn=close}

-- Transition:
{fault test.sv31.openMs.mode=faulty}
-- Transition:

{fault test.sv31.sv.mode=stuckOpen}

-- Final Simulator state:
test.sv31.openMs.mode=faulty

test.sv31.sv.mode=stuckOpen

The microswitch failure is undetected (Livingstone still reports the empty
candidate after step 3), but the stuck valve causes a fault diagnosis: after step
4, Livingstone reports the following candidates:

Candidate 0)
5#test.vr01.modeTransition=stuckOpen :2

Candidate 1)
-#test.vr01.modeTransition=stuckClosed :2

Candidate 2)

-#test.sv31.modeTransition=stuckClosed :3
Candidate 3)

-#test.vr01.modeTransition=stuckOpen :2
3#test.vr01.modeTransition=stuckClosed :2

Candidate 4)
5#test.forwardLo2.rp1sv.modeTransition=unknownFault :5

Candidate 5)

-#test.forwardLo2.rp1sv.modeTransition=unknownFault :5
Candidate 6)

3#test.forwardLo2.rp1sv.modeTransition=unknownFault :5
Candidate 7)

5#test.sv31.modeTransition=stuckOpen :5

Candidate 8)
-#test.sv03.sv.modeTransition=stuckClosed :3

3#test.sv03.openMs.modeTransition=faulty :3
Candidate 9)

-#test.sv03.sv.modeTransition=stuckClosed :3
-#test.sv03.openMs.modeTransition=faulty :3

At this point, LPF reports a violation of the CM error condition, indicating
that none of the Livingstone candidates match the modes from the simulator.
The fault is detected (otherwise no faulty candidates would be generated), but
incorrectly diagnosed (note that candidate 7 subsumes, but does not match,
the actual faults). This data may suggest, for example, that Livingstone is not
properly generating some valid candidates.

To further interpret and check the results reported by LPF, we ran l2test on
the L2 scenario for diagnosis associated to this error. We obtained the following
list of candidates, which differs from those obtained above from LPF:

10

L2> Step 6; 3529 variables; 0 conflicts before; 242 after.

CBFS: search found 5 candidate(s), more possible (searched 12)
The 8 candidates are:

Candidate 0)
5#test.vr01.modeTransition=stuckOpen :2

Candidate 1)
4#test.vr01.modeTransition=stuckOpen :2

Candidate 2)

4#test.forwardLo2.modeTransition=unknownFault :5
Candidate 3)

3#test.forwardLo2.modeTransition=unknownFault :5
Candidate 4)

4#test.sv31.sv.modeTransition=stuckOpen :5

Candidate 5)
5#test.forwardLo2.modeTransition=unknownFault :5

Candidate 6)
-#test.forwardLo2.modeTransition=unknownFault :5

Candidate 7)
5#test.sv31.sv.modeTransition=stuckOpen :5

Although none of these match the actual faults either (i.e. there is indeed
a CM error in this state), the difference also shows that the results from LPF
were flawed. Further analysis revealed that the discrepancy originated from
a checkpointing bug, where Livingstone did not properly restore its internal
constraint network when restoring checkpoints, resulting in a corrupted internal
state and incorrect diagnosis results. With our help, the error was localized and
fixed in a new release of the Livingstone program.

5.4 Example Scenario 2: SV02 stuck open

The second example considers one of the five errors reported using candidate
subsumption on the Random scenario. It involves a solenoid valve, sv02, which
sends pressurized helium into a rocket propellant tank. A command close is
issued to the valve, but the valve fails and remains open—in LPF terms, a fault
is injected in the simulator. This scenario corresponds to the following sequence
of LPF events:

-- Transition:
{<Initial>}

-- Transition:
{command test.sv02.valveCmdIn=close}

-- Transition:
{fault test.sv02.rp1sv.mode=stuckOpen}

-- Final Simulator state:
test.sv02.rp1sv.mode=stuckOpen

The following sample output lists the candidates reported by Livingstone
after the fault occurs in sv02:

-- Transition:

{fault test.sv02.rp1sv.mode=stuckOpen}
Candidate 0)

4#test.sv02.openMs.modeTransition=faulty :3
Candidate 1)

3#test.sv02.openMs.modeTransition=faulty :3

Candidate 2)
2#test.sv02.openMs.modeTransition=faulty :3

Candidate 3)

11

-#test.sv02.openMs.modeTransition=faulty :3

Candidate 4)
-#test.sv02.rp1sv.modeTransition=unknown :4

The injected fault, test.sv02.rp1sv.mode=stuckOpen, is detected (other-
wise no faulty candidates would be generated) but incorrectly diagnosed: none
of these candidates matches or subsumes the correct fault. The first four can-
didates consist of a faulty open microswitch sensor at different time steps (mi-
croswitches report the valve’s position). The last candidate consists of an un-
known fault mode. The L2 scenario corresponding to this error was replayed
in l2test and produced the same results, confirming the validity of the results
from LPF.

There are a number of explanations that could account for the improper
diagnosis resulting in the above error condition violation. For example the
following are all plausible explanations: the number of candidates returned
or the Livingstone search space (number of candidates Livingstone searches
over to find the diagnosis) may need to be increased; or issues regarding the
Livingstone program itself are in need of deliberation. However, further analysis
by application specialists revealed that fault ranks in the X-34 model needed
re-tuning, which resolved the problem.

6 Conclusions and Perspectives

Currently more extensive testing and analysis is ongoing. Future experiments
will include heuristic search generated results using different fitness functions
on larger scenario files.

Livingstone PathFinder (LPF) is a software tool for automatically analyz-
ing model-based diagnosis applications across a wide range of scenarios. LPF
is under active development, in close collaboration with Livingstone application
developers at NASA Ames. After considerable efforts resolving technical issues
in both LPF and relevant parts of Livingstone, we are now returning useful
results to application specialists, who in turn reciprocate much needed feedback
and suggestions on further improvements. The candidate subsumption error
condition is the latest fruit of this interaction. Directions for further work in-
clude new search strategies and heuristics, additional error conditions including
capture of application-specific criteria, improved post-treatment and display of
the large amount of data that is typically produced.

We are also investigating adapting LPF to use MIT’s Titan model-based
executive [1], which offers a more comprehensive diagnosis capability as well
as a reactive controller. This extends the verification capabilities to involve
the remediation actions taken by the controller when faults are diagnosed. In
this regard, LPF can be considered as evolving towards a versatile system-level
verification tool for model-based controllers.

12

Acknowledgments

This research is funded by NASA under ECS Project 2.2.1.1, Validation of
Model-Based IVHM Architectures, and partly performed by QSS Group Inc.
under CSRDS Task 091. The authors would like to thank Livingstone appli-
cation developers at NASA Ames, especially Adam Sweet, Anupa Bajwa and
Sandra Hayden for their active cooperation and Livingstone lead developer Lee
Brownston for his responsive support.

References

[1] B. Williams, M. Ingham, S. Chung and P. Elliot, Model-based Program-
ming of Intelligent Embedded Systems and Robotic Space Explorers. In
Proceedings of the IEEE Modelings and Design of Embedded Software Con-
ference, vol. 9, no.1 pp. 212-237, 2003.

[2] L. Fleming, T. Hatfield and J. Malin. Simulation-Based Test of Gas Trans-
fer Control Software: CONFIG Model of Product Gas Transfer System.
Automation, Robotics and Simulation Division Report, AR&SD-98-017,
(Houston, TX:NASA Johnson Space Center Center, 1998).

[3] C. Meyer, H. Cannon, Propulsion IVHM Technology Experiment Overview,
In Proceedings of the IEEE Aerospace Conference, (March 2003).

[4] B. Williams and P. Nayak, A Model-based Approach to Reactive Self-
Configuring Systems. Proceedings of the National Conference on Artificial
Intelligence, (August 1996).

[5] A. Bajwa and A. Sweet. The Livingstone Model of a Main Propulsion
System. In Proceedings of the IEEE Aerospace Conference, (March 2003).

13

