
Practical Formal Verification
of Diagnosability of Large Models

via Symbolic Model Checking

Roberto Cavada

Charles Pecheur

RIACS Technical Report 03.03

January 2003

Activity Report

Practical Formal Verification
of Diagnosability of Large Models

via Symbolic Model Checking

Roberto Cavada, ITC-IRST
cavada@irst.itc.it

Charles Pecheur, RIACS
pecheur@email.arc.nasa.gov

RIACS Technical Report 03.03

February 2003

Activity Report

This document reports on the activities carried out during a four-week visit of Roberto
Cavada at the NASA Ames Research Center. The main goal was to test the practical
applicability of the framework proposed by Pecheur and Cimatti, where a diagnosability
problem is reduced to a Symbolic Model Checking problem.

This work was supported by NASA ECS Task 2.2.1.1 “Validation of Model-Based IVHM
Architectures”, under Cooperative Agreement NCC 2-1006 with the Universities Space
Research Association (USRA) and under Contract NAS2-00065 with QSS Group, Inc.
Roberto Cavada's visit at NASA Ames was supported by QSS Group, Inc., under a
Training Exchange Program from AIPT.

Contents

1 Introduction 2

2 Symbolic Model Checking 2
2.1 The BDD-based approach . 2
2.2 The SAT-based approach . 3

3 Structure of the models 3
3.1 JMPL models, and conversion into SMV models 4
3.2 Structure of JMPL models . 4
3.3 Structure of SMV models . 4

3.3.1 Connecting variables and invariants removal 5
3.3.2 Twin models . 5
3.3.3 Compacting visible parts 6
3.3.4 Possible heuristics for extracting initial variable ordering . 7

4 Experimental evaluation 7
4.1 Tuning the BDD package for NuSMV 8
4.2 BDD vs SAT , and NuSMV vs smv-2.4b 8

5 Diagnosability of real models with NuSMV 9
5.1 Testing scenarios . 9
5.2 From scenarios to LTL and invariants properties 10
5.3 Incremental approach for context enforcement 10
5.4 Results . 11

5.4.1 Failure Scenario 1: PV03 stuck closed 11
5.4.2 Failure Scenario 6: SV31 stuck open 11
5.4.3 Failure Scenario 9: VR01 stuck open 12

6 Conclusions and future work 13

1

1 Introduction

This document reports on the activities carried out during a four-week visit
of Roberto Cavada at the NASA Ames Research Center. The main goal was
to test the practical applicability of the framework proposed in [1], where a
diagnosability problem is reduced to a Symbolic Model Checking problem.

Section 2 contains a brief explanation of major techniques currently used in
Symbolic Model Checking, and how these techniques can be tuned in order to
obtain good performances when using Model Checking tools.

Diagnosability is performed on large and structured models of real plants.
Section 3 describes how these plants are modeled, and how models can be sim-
plified to improve the performance of Symbolic Model Checkers.

Section 4 reports scalability results. Three test cases are briefly presented,
and several parameters and techniques have been applied on those test cases in
order to produce comparison tables. Furthermore, comparison between several
Model Checkers is reported.

Section 5 summarizes the application of diagnosability verification to a real
application. Several properties have been tested, and results have been high-
lighted.

Finally, section 6 draws some conclusions, and outlines future lines of re-
search.

2 Symbolic Model Checking

This section briefly describes the two main techniques currently used in Symbolic
Model Checking: BDD-based and SAT-based approaches. These techniques are
both implemented in NuSMV , the New Symbolic Model Verifier developed at
ITC-irst ([5]).

2.1 The BDD-based approach

Many Symbolic Model Checkers are currently based on Binary Decision Dia-
grams. BDDs are data structures that allow a compact and canonical symbolic
representation of sets of states. Further information about BDD-based symbolic
model checking can be found in [5, 1].

BDDs sometimes require a lot of tuning in order to be able to deal with large
space models. Here are the most important techniques and parameters that can
be used with BDDs:

Variables ordering This is the most important factor which can dramatically
improve the BDD-based approach. NuSMV allows to dynamically reorder
variables during the model construction. A good strategy consists in in-
teractively stopping the model construction and forcing a reordering after
some time, then restarting the construction using the saved ordering. The
process is reiterated until the construction successfully completes within
acceptable time.

2

Dynamic reordering In this case, the reordering is performed automatically
by the model checker when BDD grows beyond some threshold size.

Building method There are essentially two building methods: Monolithic and
Conjunctive Partitioning . Conjunctive Partitioning divides large BDDs
into several pieces, which often improves overall performance. The Con-
junctive Partitioning building method uses a threshold BDD size and a
couple other parameters (see [4],[9]).

Variable dependencies detection This technique, due to Bwolen Yang, searches
for unique dependencies between variables. When a dependency is found,
one variable is removed and substituted by the equivalent expression. (For
further details see [7, 8].) smv-2.4b is a modified version of the original
SMV tool from CMU that implements this advanced technique, which in
this context can lead to higher performances when constructing the BDD
representation. Currently NuSMV does not provide this functionality.

Reachability calculation This technique calculates the set of reachable states
(as a BDD) before performing the verification. This helps the verification
phase, not the model construction phase. Unfortunately the construction
phase is the most painful and critical phase in this verification context.

2.2 The SAT-based approach

The SAT-based approach does not use BDDs to construct the model. The
model and the property to be verified are instead converted in a time-bounded
propositional problem by the Bounded Model Checker. Then this propositional
problem is submitted to a SAT solver, which searches for a possible set of
assignments that satisfies the given problem.

The SAT-based approach is basically oriented towards bug detection, but it
also allows a induction-based approach, which can be used to validate invari-
ance properties. For more general properties, only LTL is currently allowed.
This means that the bug-detection for properties that contain the existential
quantifier is not allowed.

3 Structure of the models

We apply model checking to models used in NASA Ames’ Livingstone diagnosis
system. Livingstone confronts these models against observed response from the
plant (i.e. the physical system being diagnosed) to estimate states and diagnose
faults.

Livingstone models are written in JMPL (Java-based Model Programming
Language). JMPL is a modeling language designed to be easier to use for
modelers, and it is well-integrated in the Livingstone diagnosis system (see [6]).

3

3.1 JMPL models, and conversion into SMV models

Plants are modeled in JMPL, as a hierachy of modules and components. The
plant model can be split across several JMPL source files, typically with one
file for each module and component. The complete plant is denoted by the
highest module in the hierarchy. Visible variables (commands and observables)
are listed in a separate file, named the Harness file (hrn from here on).

In order to be verified by a SMV-based model checker (smv-2.4b and NuSMV
are two examples), the JMPL source files set must be compiled into one or more
SMV files. This operation is carried out by the jmpl2smv tool (see [6]). This
compiler gets the JMPL sources files, the hrn, a set of options, and produces a
single SMV source file.

One important option (-twin) allows to compile either a single model, or a
twin model, as used for verification of diagnosability in [1].

3.2 Structure of JMPL models

Models are constituted by hierarchically connected modules. Terminal nodes
of the hierarchy are Components. Each component has a private state and a
possible visible state (a subset of the interface of the component). A component
also has an initial state, which can be partially non-deterministic. Components
have a set of static constraints and a transition relation. Constraints can be
classified as follows:

• Connecting invariants. These are used to connect the module interfaces.
If two components A and B are logically connected, then a part of the
space of each one will be used to realize the connection. For example A
could contain variable x, and B the variable y, and the invariant x=y could
connect A and B.

• Behavior constraints. These are invariants on the physical behavior of the
model.

As explained in [1], the twin model is obtained by instantiating two identical
copies of the model, and then constraining their visible parts to be identical.

3.3 Structure of SMV models

Several techniques have been used in order to reduce the state space of the
generated SMV models, and to improve model checker performances.

What follows here is an example of single SMV model:

MODULE M1
VAR x : boolean; -- a visible variable
VAR y : M2; -- a contained component
-- ...

MODULE M2

4

VAR x : boolean; -- another visible variable
-- ...

MODULE main
VAR test : M1;
-- ...

3.3.1 Connecting variables and invariants removal

As already explained, in single models components are connected by specifying
invariants that equate variables of the connected components. Model checking
performance can be improved by replacing these two equal variables by a single
one.

We realized a script which searches for connecting invariants, finally re-
moving them and any associated redundant variable. The script searches for
invariants in the form M.x = N.y, where x and y variables, and M and N are to
generic hierarchy paths. When one is found, it is removed, and the declaration
for one of the variables, say M.x, is replaced by a macro definition referring to
N.y. In effect, the macro makes M.x equivalent to N.y throughout the model.

Note that Yang’s smv-2.4b automatically detects dependent variables, in-
cluding equal ones, and performs a similar simplification at the BDD level.
This explains the remarkable performance improvements it gives on Livingstone
models (see [6]).

3.3.2 Twin models

Basically a twin model is a pair of top-level modules, whose visible parts are
constrained to be equal. Here is how twin models are generated by jmpl2smv .

MODULE M1
VAR x : boolean; -- a visible variable
VAR y : M2; -- a contained component
-- ...

MODULE M2
VAR x : boolean; -- another visible variable
-- ...

MODULE twin
VAR test : M1;

MODULE main
VAR test : M1;
VAR _twin : twin;

5

The convention is that, given a single top-level SMV module named test, the
twin model contains two copies of that module named test and _twin.test.1

3.3.3 Compacting visible parts

In twin models the visible parts must be constrained to be identical. Specifically,
commands and sensors’ values must be the same on both sides. One way to do
this is to add a constraint that makes them equal, but a more efficient solution
is to merge them into a single variable shared between the twins.

Let us call the two sides in the twin couple as L and R (Left and Right,
corresponding to test and _twin.test above). All the visible parts can be
extracted from both the L and R models, and put into a separate hierarchy of
modules that is shared between the twin models. Here is the resulting twin
model, where M1_visible etc. contain the shared variables:

MODULE M1_visible:
VAR x : boolean; -- a visible variable
VAR y : M2_visible; -- a visible contained component

MODULE M1(visible)
DEFINE x := visible.x; -- removed visible variable
VAR y : M2(visible.y); -- a contained component

MODULE M2_visible
VAR x : boolean; -- another visible variable

MODULE M2(visible)
DEFINE x := visible.x;
-- ...

MODULE twin(visible)
VAR test : M1(visible);

MODULE main
VAR test_visible : M1_visible;
VAR test : M1(test_visible);
VAR _twin : twin(test_visible);

In the last example the visible parts are now shared between the L and R
sides. This is a systematic method to reduce the state space in twin models.

We realized a script which performs this systematic transformation auto-
matically. The script gets the SMV source of the twin model and the hrn as
input, and produces a new simplified SMV source as output.

1This asymmetry allows to keep compatibility with single-model specifications, and easily
transpose variables names to the twin model by prefixing with twin.

6

3.3.4 Possible heuristics for extracting initial variable ordering

Models are populated with a very large number of invariants. In particular,
models X-34 and PITEX contain in the order of 103 invariants. Model checkers
spend most of the time in the model construction, and in particular, for our test
cases, in constructing the invariants. We know that the construction time for
the BDD-based approach strongly depends on the variable ordering, so we tried
to statically extract and use some information about a possible better ordering
from invariants in the form:

V0 -> V1
V0 -> V2
...

A simple heuristic would make V0, V1 and V2 closed in the ordering file. We
implemented a script that generates a simple ordering file by using this heuristic.
But results are far long from an optimal ordering, because each variable can be
referenced by more than one invariant, so there is the problem of deciding where
a given variable should go.

4 Experimental evaluation

Three main models have been used for experimental evaluation:

RWGS An In-Situ Propellant Production Plant (see [2].)

X-34 The Main Propulsion System for a next-generation
Reusable Launch Vehicle (see [10])

PITEX A more advanced and complex version of X-34.

These are models of large, complex and structured plants. The main verifi-
cation activity centered the attention on the X-34 model. RWGS and PITEX
models have been used only for scalability analysis. The RWGS and X-34 mod-
els have been used to produce these comparison tables.

This section compares the NuSMV and smv-2.4b model checkers, both using
the BDD-based approach. For NuSMV different BDD parameters have been
tried. A table also compares the BDD-based and SAT-based approaches by
using NuSMV .

As will be shown, the BDD-based approach failed when dealing with such
large coupled systems. On the other hand, the SAT-based approach proved to be
easily able to deal with even the largest PITEX model, using a very reasonable
amount of resources.

Furthermore, the particular kind of properties required by the diagnosability
verification (reachability), allows to express those properties in LTL, which is
fully supported by the BMC module inside NuSMV .

7

4.1 Tuning the BDD package for NuSMV

Table 1 gives an idea on the actual impact the use of a good ordering file can
have on both building and checking performances. Benchmarking has been
carried out on the RWGS example, in a single (not twin) configuration.

1. We obtained a first construction without re-ordering. This phase took a
very long time.

2. We generated a first ordering, by using the sift algorithm. The obtained
ordering is labeled ord1. This phase took a relatively long time as well.

3. We generated a slightly better ordering by using the sift converge algo-
rithm. The obtained ordering is labeled ord2.

Times are given in seconds, while memory consumption is measured in mega
byte. The verification time refers to the time spent on verifying 20 properties
in the form “EF p”.

Building Checking
Method Var Ordering Time Space Time Space

(sec) (MB) (sec) (MB)
Monolithic – 1016 179 165 0
Monolithic ord1 22 26 9 0
Monolithic ord2 14 24 6 0
Threshold – 1020 179 165 0
Threshold ord2 16 24 7 0

Table 1: Model building and checking statistics on the RWGS example

Table 1 highlights the great improvement that a good ordering file can ac-
tually give to model checker performances. The second row shows that the
building time is dramatically reduced by using the ord1 ordering. Before model
construction, 900 seconds have been spent to obtain ord1. Third row shows that
a further improvement can be obtained by calculating a better ordering (ord2).
The variables ordering calculation required 25 seconds, but by using ord2 the
building time reduced from 22 to 14 seconds.

4.2 BDD vs SAT , and NuSMV vs smv-2.4b

Model building (or construction) has revealed to be the most critical phase when
dealing with this kind of large system. We compared how the BDD-based and
the SAT-based approaches perform during the building phase.2

2Actually, the SAT solver itself is not involved in this phase, rather, the Bounded Model
Checker (BMC) generates the set of constraints to be solved by SAT. In that sense, we may
be better speaking about BMC vs BDD approaches.

8

For the BDD approach, both smv-2.4b and NuSMV model checkers are com-
petitors in the comparison. Table 2 shows how much the Variable Dependencies
Detection technique implemented into smv-2.4b can improve performances.

Regarding the BMC-based construction time, we should point out that it
is strongly influenced by invariants that can be added in order to enforce a
diagnosability property.

Test-case Twin Coupled smv-2.4b (BDD) NuSMV (BDD) NuSMV (BMC)
RWGS No No 3/351 16/24 1/15
RWGS Yes No N/A N/A N/A
RWGS Yes Yes M T 1/26
X-34 No No 10/370 T 3/30
X-34 Yes No M T 3/30
X-34 Yes Yes M M 1/17
PITEX No No 241/396 N/A 2/26
PITEX Yes No N/A N/A 9/50
PITEX Yes Yes N/A N/A 2/28

Table 2: Model construction time/memory with different approaches and tools
(in sec/MB)

In Table 2, ’M’ means that the model checker could not build the model
because of size limit (over 1.5 Gb), while a ’T’ means that the timings limit has
been reached (24 hours). ’N/A’ means that the test has not been carried out,
either because the source was not available, or because we were not interested in
observing the result. In particular, this is the case for the PITEX model, which
we know is larger than the X-34 model. During this phase we partially used the
PITEX model only for scalability analysis for the SAT-based approach.

5 Diagnosability of real models with NuSMV

5.1 Testing scenarios

We derived diagnosability properties from documented test scenarios used for
testing the Livingstone application (see [10]). Each scenario has one or more
failing components. The model describes the propellant (fuel and oxidizer) feed
system of a space vehicle (tanks, pressurization circuits, etc). In all the cases we
used, the failed components are stuck valves. A test is passed if the Livingstone
system is able to report the correct fault, by choosing over a set of possible
candidates (see [11], and [6]).

Table 3 lists the scenarios we have taken into account. The rank is the
negated logarithm of the failure probability—in other words, higher ranks cor-
respond to less likely faults. In this context, we are operating in a fault detection
diagnosability problem (see [1]).

9

Scenario Component Failure Rank
1 PV03 Stuck Closed 2
2 SV33 Stuck Closed 2
6 SV31 Stuck Open 4
11 SV31 Stuck Closed 2
9 VR01 Stuck Open 3
13 VR01 Stuck Closed 1

Table 3: Scenarios list

5.2 From scenarios to LTL and invariants properties

Let’s call L and R the two coupled models used for verification, as already
explained in section 3.3.3. Given a condition cond on the state of the system,
we can express that cond is diagnosable by the invariant:

(L.cond -> R.cond)

which we verify by model checking the corresponding universally quantified
LTL form G (L.cond -> R.cond). For example, for the Scenario 1:

G (L.pv03.pv.mode=stuckClosed -> R.pv03.pv.mode=stuckClosed)

If the verification of this LTL property produces a counterexample, we found
a case in which the property pv03.pv.mode = stuckClosed is not diagnosable.

5.3 Incremental approach for context enforcement

Plant models represent the physical components, not how they are operated.
Operational conditions further restrict the possible behaviours. Even within
that envelope, the diagnosis of a specific component may be critical or even
relevant only under even more specific operational conditions.

If the model checker finds a counterexample for a given diagnosability prop-
erty, the trace must be carefully analyzed in order to distinguish between real
bugs in the model or in the plant, and bogus cases due to obvious, trivial or
unlikely behaviors.

By defining a context we can again verify the property, and reiterate the
process, looking for a real problem, or proving the refined diagnosability prop-
erty.

This context-enforcement can be achieved by specifying a constraint on:

• the initial state, or

• the transition relation, as an invariant property, or

• the property itself, as an additional condition (either propositional or, in
more complicated cases, involving temporal operators).

10

It is important to remark here that the supplied trace may denote a very
complicated case, whose interpretation might require considerable expertise in
the application being verified.

5.4 Results

The first attempt consisted in trying to verify all scenario properties, without
specifying any context. We obtained the expected result: all properties were
false, and a 2-step counter-example was found for each scenario. These were
trivial results involving multiple simultaneous failures; obviously out of the op-
erating envelope.

The next step consisted in centering the attention only on a few scenarios.
We put out attention on two cases, which are described in the next sections. The
most relevant result we obtained is described in the section regarding Failure
Scenario 9.

5.4.1 Failure Scenario 1: PV03 stuck closed

This scenario checks if diagnosis can tell whether PV03 is open or stuck closed.
Condition stuck open vs stuck closed is not taken into account, since we force
one model to operate in a nominal context (see below for context description).

One or more failures vs. no failure: In this case the context is given from
this invariant:

INVAR _twin.test._brokencount < 1

The property to be verified is:

G (test.pv03.pv.mode=stuckClosed -> !_twin.test.pv03.pv.mode=open)

Which results to be true by using the induction-based approach.

5.4.2 Failure Scenario 6: SV31 stuck open

This scenario checks if diagnosis system can detect whether SV31 is closed or
stuck open.

The property is:

G !((test.sv31.sv.mode = stuckOpen) & (_twin.test.sv31.sv.mode = closed))

We can express different contexts:

One failure vs. no failure: In this case the context is given from this invari-
ant:

INVAR test._brokencount < 2
INVAR _twin.test._brokencount < 1

11

In this case the property is true.

Two failures vs. no failure: INVAR test._brokencount < 3
INVAR _twin.test._brokencount < 1

In this case the failure is no more diagnosable. The supplied counterex-
ample shows that:

• test.sv31.sv.mode is of course stuckOpen.

• The microswitch test.sv31.openMs is also broken; since this mi-
croswitch senses whether PV03 is open, it signals a notOpen position,
even if the valve is open.

In this context failure rank increases to 7, which corresponds to a very
unlikely event.

No openMs failure vs. no failure: Here we impose that there is no failure
on the component test.sv31.openMs, by constraining the diagnosability
property. The context is:

INVAR _twin.test._brokencount < 1

and the property becomes:

G !(test.sv31.openMs.mode = nominal & test.sv31.sv.mode = stuckOpen
& _twin.test.sv31.sv.mode = closed)

In this case the invariant is true, so there are no other cases which can
yield non-diagnosable situations.

5.4.3 Failure Scenario 9: VR01 stuck open

Similarly to the previous scenario, this scenario checks if diagnosis system can
detect whether VR01 is closed or stuck open. This turned out to provide the
most interesting results.

The property is:

G !(test.vr01.mode = stuckOpen & _twin.test.vr01.valvePosition = closed)

The initial context is one failure vs. no failure, i.e.:

INVAR test._brokencount < 2
INVAR _twin.test._brokencount < 1

1. The property resulted to be false. NuSMV shows a counterexample where
VR01 is stuck open on one side and closed in the other, and the diagnosis
system cannot differentiate between the two.

12

VR01 is a venting valve, used to release excessive pressure out of a liquid
oxygen tank. The ambiguity we found suggests that diagnosis may fail
to notice that the valve is stuck open. Such a situation might vent all
the stored oxygen in the environment, which is definitely an undesired
outcome.

In order to understand what really happened, we presented these results
to one of the experts who constructed the Livingstone model. Together,
we discussed for a couple of hours, scrutined the produced traces, and
searched for a valid explanation.

We discovered that this trace is related to a particular case where there
is no pressurization in the oxygen tank, so that pressure rates get values
below thresholds that were not properly anticipated for in the model.

The expert acknowledged that this situation is interesting because it cap-
tured a missing constraint in the model (rates cannot suddenly reach those
value). She also commented that, on the other hand, this context is not
relevant in the real operational context.

2. We forced the oxygen tank pressurization, and the property became diag-
nosable, as expected. Concretely, we impose the context:

DEFINE ctx_pressure_up := ((test.sv01.valvePosition = open)
& (_twin.test.sv01.valvePosition = open)
& (test.sv03.sv.valvePosition = open)
& (_twin.test.sv03.sv.valvePosition = open));

6 Conclusions and future work

Basically our main result concerns the feasibility of the theoretical framework.
We demonstrated that it is possible easily use formal verification techniques in
a diagnosability context.

We also realized and tuned a set of tools that partially simplify the process.
Most importantly, we identified a list of capabilities which should be moved at
higher level (in the jmpl2smv compiler, for example), and a to-do list for future
activities.

On the model-checking side, we discovered that essentially the BDD-based
approach fails, due to the well-known space state explosion problem, given cur-
rent application complexity and available processing power. On the other hand,
the SAT-based approach proved to be sufficient and very efficient in all cases.
This is probably due to the natureof the models, so this approach might not
work in a more generic context.

About the verification activity, we did not find real bugs, but we obtained
one interesting situation which required the interaction with the model spe-
cialists. We demonstrated that the model X-34 misses some constraints about
non-realistic behaviors, and that a counterexample can suggest modelers to add

13

missing components. Above all, we demonstrated that the model checking tech-
niques can be successfully applied for the verification of diagnosability.

In the meantime, we got some notes and feedback about the nature of models,
readability of traces, and feasibility of the method.

This work can be extended in several directions:

Verification of the PITEX model PITEX model is more complex and larger
than the X-34 model. Nevertheless, we do not expect significant differ-
ences in performance when using the SAT-based approach.

Extension of jmpl2smv compiler Any job carried out by the scripts we con-
textually realized, could be moved inside jmpl2smv .

Variable Dependencies Detection in NuSMV The BDD package in NuSMV
could be extended in order to perform this functionality.

Induction approach extension The BMC module in NuSMV could be ex-
tended if needed, in order to deal with a more than two-steps induction
approach.

Traces readability Traces are very hard to read at the moment, because they
separate and do not correlate the variables from the two coupled models.
A more advanced visualizer could highlight differences and similar values
for Left and Right sides in twin models.

Acknowledgements

This work has been carried in close collaboration with the PITEX Experiment
Team at NASA Ames. We are especially thankful to Dr. Anupa Bajwa, who
provided all the needed information and support regarding the PITEX Living-
stone model, and kindly devoted a significant part of her time in numerous very
helpful conversations with us.

References

[1] C. Pecheur, A. Cimatti Formal Verification of Diagnosability via Symbolic
Model Checking

[2] Daniel Clancy, William Larson, Charles Pecheur, Peter Engrand, Charles
Goodrich. Autonomous Control of an In-Situ Propellant Production Plant.

[3] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic Model Checking
without BDDs. Tools and Algorithms for Construction and Analysis of Sys-
tems, In TACAS’99, March 1999.

[4] R. K. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R. K. Brayton. Effi-
cient BDD algorithms for FSM synthesis and verification. In IEEE/ACM
Proceedings International Workshop on Logic Synthesis, Lake Tahoe (NV),
May 1995.

14

[5] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M.
Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2: An OpenSource Tool
for Symbolic Model Checking. Proceedings of Computer Aided Verification
(CAV 02), 2002.

[6] Charles Pecheur, Reid Simmons. From Livingstone to SMV: Formal Verifi-
cation for Autonomous Spacecrafts. Proceedings of First Goddard Workshop
on Formal Approaches to Agent-Based Systems, NASA Goddard, April 5-7,
2000. To appear in Lecture Notes in Computer Science, Springer Verlag.

[7] Bwolen Yang, SMV with Macro Expansion, CAV 99. Can be found at
http://www-2.cs.cmu.edu/~bwolen/software/

[8] B. Yang, R. Simmons, R. E. Bryant, D. R. O’Hallaron. Optimizing Sym-
bolic Model Checking for Contraint-Rich Models.

[9] R. Cavada, A. Cimatti, E. Olivetti, M. Pistore, M. Roveri, NuSMV 2.1
User Manual. Available at http://nusmv.irst.itc.it

[10] A. Bajwa, A. Sweet, The Livingstone Model of a Main Propulsion System,
to appear in: Proceedings of IEEE Aerospace Conference, March 2003.

[11] Brian C. Williams, P. Pandurang Nayak, A Model-based Approach to Re-
active Self-Configuring System, Appears in the Proceedings of AAAI-96

15

