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Abstract

Artifical Intelligence (AI) is useful. AI can deliver more functionality for reduced
cost. AI should be used more widely but won’t be unless developers can trust ada-
pative, nondeterministic, or complex AI systems.

Verification and validation is one method used by software analysts to gain that
trust. AI systems have features that make them hard to check using conventional
V&V methods. Nevertheless, as we show in this article, there are enough alternative
readily-available methods that enable the V&V of AI software.

1 Introduction

Artificial Intelligence (AI) is no longer some bleeding technology that is hyped
by its proponents and mistrusted by the mainstream. In the 21st century,
AI is not necessarily amazing. Rather, it is often routine. Evidence for the
routine and dependable nature of AI technology is everywhere (see the list of
applications in [1]).

AI approach has always been at the forefront of computer science research.
Many hard tasks were first tackled and solved by AI researchers before they
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transitioned to standard practice. Those examples include time-sharing oper-
ating systems, automatic garbage collection, distributed processing, automatic
programming, agent systems, reflective programming and object-oriented pro-
gramming.

This tradition of AI leading the charge and solving the hard problems con-
tinues to this day. AI offers improved capabilities at a reduced operational
cost. For example, Figure 1 describes the AI used in NASA’s Remote Agent
Experiment (RAX) [2]. For over a day, this system ran a deep-space probe
without any help from mission control. Such AI-based autonomy is essential
to future deep space missions. NASA needs such autonomous software so that
deep space probes can handle unexpected or important events billions of miles
away from earth when they are hours away from assistance by mission control.

AI software can be complex and the benefits of complexity are clear. Some
applications such as the RAX described in Figure 1 are inherently complex
and require an extension to existing technology.

However, the cost of complexity is that complex systems are harder to un-
derstand and hence harder to test. Complex systems like can hide intricate
interactions which, if they happen during flight, could compromise the mis-
sion. For example, despite a year of extensive testing, when Remote Agent
was first put in control of NASA’s Deep Space One mission, it froze because
of a software deadlock problem (RAX was re-activated two days later and
successfully completed all its mission objectives). After analysis, it turns out
that the deadlock was caused by a highly unlikely race condition between two
concurrent threads inside Remote Agent’s executive. The scheduling condi-
tions that caused the problem to manifest never happened during testing but
indeed showed up in flight [2].

Hardware engineers solve such problems with hardware redundancy (when one
component fails, its back-up wakes up and takes over). However, redundancy
may not solve software reliability problems. Hardware components fail statis-
tically because of wear or external damage. Software components programs
fail almost exclusively due to latent design errors. Failure of an active system
is thus highly correlated with failure of a duplicate back-up system (unless
the systems use different software designs, as in the Space Shuttle’s on-board
computers).

If redundancy may not increase the reliability of AI software, what else should
we do to check our AI software? How should standard verification and valida-
tion (V&V) be modified to handle AI systems? What are the traps of V&V
of AI software? What leverage for V&V can be gained from the nature of AI
software? This article offers an overview of the six features of AI systems that
a V&V analysts must understand. An AI system may be:
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NASA’s deep space missions require autonomous spacecrafts that don’t rely on
ground control. The Remote Agent Experiment (RAX) was an experiment in au-
tonomy technology: for two days, RAX provided on-board AI control for the Deep
Space One probe, while it was 60,000,000 miles from Earth.
RAX had three main components. The Planner & Scheduler (PS) took general
goals and determined detailed activities needed to achieve the goals. If a hardware
problem developed that prevents execution of the plan, the planner made a new plan,
taking into account degraded capabilities. The Smart Executive (EXEC) interpreted
the plans and added more detail to them, then issued commands to rest of the
satellite. Lastly, the Mode Identification and Recovery (MIR) component (based on
the Livingstone diagnosis system) acted like a doctor, monitoring the spacecraft’s
health.
If something went wrong, MIR would detect it and report it to EXEC. Exec could
then consult the “doctor” for simple procedures that may quickly remedy the prob-
lem. If those simple procedures could not resolve the problem, EXEC asked PS for
a new plan that still achieved the mission goals while accounting for the degraded
capabilities.

Fig. 1. The Remote Agent Experiment, from
http://cmex-www.arc.nasa.gov/CMEX/RemoteAgent.html

3



(1) complex software;
(2) declarative and model-based, and sometimes knowledge-level software;
(3) nondeterministic or even adaptive software.

Fortunately, not all AI systems have all the above features since each can
come with a significant cost. However, each of these features grants significant
benefits that can make the costs acceptable.

The rest of this article is structured around this list of features of an AI
system. Each feature will be defined and their associated cost and benefits
will be discussed. To help the reader who is a not an AI specialist, many of
our sections start with short tutorials.

Note that the approach of this review is different to the traditional reviews of
AI verification (e.g. [3–15]) or AI (e.g. [16–24]). Much has changed since the
early days of AI and the field has moved on to more than just simple rule-based
systems. While other articles offer success stories with that representation
(e.g. [25–28] and Chapt. 8,30,31,34 in [29]), this review focuses on the features
of modern AI that distinguishes it from conventional procedural software; e.g.
nondeterministic adaptive knowledge-level systems. If the reader is interested
in that traditional view, then they might care to read the references in this
paragraph (in particular [4, 24, 28, 29]) or one of the many excellent on-line
bibliographies on V&V of AI systems 1 .

2 AI Software can be Complex

The rest of this paper stresses what is different about AI systems and how those
differences effect V&V for AI. Before moving on to that material, this section
observes that AI software is still software, albeit sometimes quite complex
software. Hence, methods developed for assessing normal software systems
still apply to AI systems. V&V analysts should view this article as techniques
that augment, not replace their standard V&V methods such as peer reviews,
automated test suites, etc [30–32].

In this section, we review the state-of-the-art in verifying complex software.
Many of these techniques are routinely applied at NASA when verifying com-
plex AI systems such as RAX.

We start with conventional testing as a baseline, then introduce more ad-
vanced formal methods: run-time monitoring, static analysis, model checking
and theorem proving. Those methods vary in the strength of the verdicts they
provide, as well as the level of expertise they require—generally speaking,

1 e.g. http://www.csd.abdn.ac.uk/~apreece/Research/vvbiblio.html

4



Testing
Run-Time
Monitoring

Static
Analysis

Model
Checking

Theorem
Proving

Ex
pe
rti
se

Strength

Fig. 2. The verification methods spectrum.

more thorough approaches require more expertise. This can be laid out as the
“verification methods spectrum” shown in Figure 2 2 .

2.1 Testing

Traditionally, software verification is done using scenario-based testing. The
system to be verified is embedded into a test harness that connects to the
inputs and outputs of that component, and drives it through a suite of test
runs. Each test run is an alternated sequence of provided inputs and expected
outputs, corresponding to one scenario of execution of the tested component.
An error is signaled when the received output does not meet the expected one.

Even for simple systems, the design and maintenance of test suites is a difficult
and expensive process. It requires a good understanding of the system to be
tested, to ensure that a maximum number of different situations are covered
using a minimum number of test cases. Running the tests is also a time-
consuming task, because the whole program code has to be executed and
everything must be re-initialized before each test run. In the development of
complex systems, it is quite common that testing the software actually takes
more resources than developing it.

While traditional testing may be enough for more conventional software, it
falls short for complex AI software, mainly because the range of situations
to be tested is incomparably larger. A typical intelligent program implicitly
incorporates responses to a very large space of possible inputs (for example,
consider the possible interaction sequences that an autonomous agent like
RAX may face). The internal state of the program is typically huge, dynam-

2 Adapted from John Rushby, in slides of [33]. This spectrum is notional and ex-
presses trends rather than absolute truths. In particular, a comparative experimen-
tal evaluation conducted at NASA [34] concluded that static analysis may require
a deep understanding of its underlying algorithms to be used effectively.
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ically allocated (heap memory, garbage collection) and may involve complex
data structures (knowledge, rules, theories). It depends on the past history
of the system in intricate ways. AI systems may involve several concurrent
components, or other sources of non-determinism.

Because of all these factors, a test suite can only exercise a very limited portion
of the possible configurations, and it is very hard to assess how much has been
covered and therefore measure the residual risk of errors.

2.2 Run-Time Monitoring

Run-time monitoring, or run-time verification, refers to advanced techniques
for scrutinizing artifacts from an executing program (variables, events, typ-
ically made available through program instrumentation), in order to detect
effective or potential misbehaviors or other useful information.

Simple runtime monitoring methods have been used for decades. For example,
it is standard practice for programmers to add conditionals to their code that
print warning messages if some error condition is satisfied, or to generate
and scan additional logging messages for debugging purposes. In essence, run-
time verification automates the otherwise strenuous and error-prone task of
reviewing these logs manually.

This analysis can be conducted after-the-fact on stored execution traces, but
also on-the-fly while the program is executing. In this latter case, the need
to store the execution trace is alleviated, and the monitor can also trigger
recovery mechanisms as part of a software fault protection scheme.

Recently, the sophistication of runtime monitoring methods has dramatically
increased. Commercial tools such as Temporal Rover [35] can instrument a
program to execute inserted code fragments based on complex conditions ex-
pressed as temporal logic formulae (see Figure 3). New algorithms can detect
suspicious concurrent programming patterns (data races [36], deadlocks [37])
that are likely to cause an error, even if no error occurs on the observed trace.

Runtime monitoring typically requires little computing resources and therefore
scales up well to very large systems. On the other hand, it will only observe a
limited number of executions and thus gives only uncertain results. In the case
of error predictions, it can also give false negatives, i.e. flag potential errors
that cannot actually occur.

One example of a runtime monitoring system is Java Path Explorer (JPaX)
[37]. Given a specification of properties to be monitored, JPaX instruments a
Java program to generate a trace of relevant events. JPaX also produces an
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A temporal logic is a classical logic augmented with operators to reason
about the evolution of the model over time. Temporal logic allows to express
conditions over time, such as “any request is always eventually fulfilled”.
For example, (propositional) linear temporal logic, or LTL uses the following
operators:

Property Reads Means p holds . . .

◦p “next p” . . . in the next state

2p “henceforth p” . . . in all future states

3p “eventually p” . . . in some future state

p U q “p until q” . . . in all states until q holds

Fig. 3. About temporal logic.

observer program that reads that trace and verifies the properties. The trace
can be streamed through a socket, to allow local or remote on-the-fly monitor-
ing. Both user-provided temporal logic conditions and generic deadlock and
data race conditions can be monitored.

In [38], run-time monitoring is applied (in conjunction with automated test-
case generation) to verify the controller of the K9 planetary rover. The con-
troller is a large multi-threaded program (35,000 lines of C++) that controls
the rover according to a flexible plan generated by a planning program. Each
test case amounts to a plan, for which a set of temporal properties are de-
rived, according to the semantics of the plan. The EAGLE system [39] is then
used to monitor this properties. This system is fully automated and unveiled
a flaw in plan interpretation, that indeed occurred during field tests before it
was fixed in the controller. A potential deadlock and a data race were also
uncovered.

2.3 Static Analysis

Static Analysis consists in exploring the structure of the source code of a pro-
gram without executing it. It is an important aspect of compiler technology,
supporting type analysis and compiler optimizations. A good reference text-
book on the topic can be found in [40]. Static analysis includes such aspects as
control- and data-flow analysis (tracking the flows of execution and the prop-
agation of data in the code), abstract interpretation (computing abstract ap-
proximations of the allowed ranges of program variables) and program slicing
(capturing the code portions that are relevant to a particular set of variables
or a function).

In principle, static analysis can be applied to source code early in the devel-
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Fig. 4. Slicing in Grammatech’s CodeSurfer tool (see
http://www.grammatech.com/products/codesurfer/example.html).

opment and is totally automatic. There is, however, a trade-off between the
cost and the precision of the analysis, as the most precise algorithms have a
prohibitive complexity. More efficient algorithms make approximations that
can result in a large number of false positives, i.e. spurious error or warning
messages.

Two commercial static analysis tools are Grammatech’s CodeSurfer and the
PolySpace Verifier [41]. Figure 4 shows CodeSurfer using a static control flow
analysis to find the code not reachable from the main function. Such code is
dead code and represents either over-specification (i.e. analysts exploring too
many special cases) or code defects (e.g. the wrong items are present in a
conditional). In Figure 4 the code sections reached from main are shown with
dark colored marks in the right-hand-side of the display. Note that in this
case, most of the code is not reachable from the main program.

PolySpace uses abstract interpretation to find potential run-time errors in (C
or Ada) programs such as:

• access to non-initialized variables,
• unprotected shared variables in concurrent programs,
• invalid pointer references,
• array bound errors,
• illegal type conversions,
• arithmetic errors (overflow, underflow, division by zero, . . . ),
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• unreachable code.

The output of the tool consists of a color-coded version of the program source
code, as shown on Figure 5. Green code is guaranteed free from errors, red code
is sure to cause errors, orange code may cause errors (depending on execution
paths or because the analysis was inconclusive), and grey code is unreachable.

grey (unreachable)

red (error)

orange (warning)

green (ok)

Fig. 5. An example of color-coded source code produced by the PolySpace Verifier.
From http://www.polyspace.com/datasheets/c_psde.htm (callouts added).

Once the code to be analyzed has been identified, static analysis tools such
as CodeSurfer and PolySpace are fully automatic. However, the experiment
reported in [34] concludes that their use can be a labor-intensive, highly it-
erative process, in order to: (i) isolate a proper self-standing code set to be
analyzed, (ii) understand and fix the reported red errors, (iii) adjust analysis
parameters to reduce the number of false alarms. The last point can be very
detrimental, as the analysis tends to return a very large number of mostly
spurious “orange” warnings, making it very hard to identify real errors. The
C Global Surveyor tool (CGS), currently under development at NASA, drasti-
cally reduces this problem by specializing the analysis algorithms to the coding
practices of a specific class of applications [42].
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2.4 Model Checking

Model Checking consists in verifying that a system (or a model thereof) satis-
fies a property by exhaustively exploring all its reachable states. Model check-
ing was invented in the 1980s to analyze communication protocols [43,44], and
is now routinely employed in verification of digital hardware. Several mature
and powerful model checkers are available and widely used in the research
community; SPIN [45] and SMV [46,47] are probably the best known. See [48]
for a comprehensive theoretical presentation, and [49] for a more practical
introduction.

A model checker searches all pathways of the system looking for ways to violate
the property. This requires that this state space be finite and tractable: model
checking is limited by the state space explosion problem, where the number
of states can grow exponentially with the size of the system. 3 Tractability is
generally achieved by abstracting away from irrelevant details of the system. If
a violation is found, the model checker returns the counter examples showing
exactly how the property is violated. Such counter examples are useful in
localizing and repairing the source of the violation.

Model checking requires the construction of two models:

• The systems model is an abstract description of the dynamic, generally
concurrent behavior of a program or system. For tractability reasons, it is
usually not the complete code from the implementation but rather some
abstract verification model of the application, capturing only the essential
features that are relevant to the properties to be checked.
• The properties model is a specification of the requirements that should hold

across the systems model. The properties model is often expressed as a
temporal logic constraint. 4

Model checkers often impose their own modeling language for both the systems
and the properties, though more and more tools now apply directly to common
design and programming languages (UML, Java), either natively or through
translation.

3 When the state space is too large or even infinite, model checking can still be
applied: it will not be able to prove that a property is satisfied, but can still be a
very powerful error-finding tool.
4 Depending on the model checker being used, properties are sometimes expressed
in other forms, such as invariants that must hold in every state, regular expressions
that execution traces must match, or other dynamic system models whose executions
must agree (in some precisely defined sense) with those of the verified system (see
e.g. [50]).
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Although model checkers are automatic tools, the benefits of model checking
come at a cost that is often very significant. That cost can be divided into
three components:

• writing cost: the initial cost of developing the systems model and the prop-
erties model, in a form accepted by the model checker;
• running cost: the cost of actually performing the model checking, as many

times as necessary; and
• re-writing cost: the cost of iteratively modifying the models until model

checking can complete successfully and provide acceptable results.

With traditional model checking tools, both the systems model and the prop-
erties model have to be written in their own tool-specific language, which
often results in high writing cost. In particular, scarce and expensive PhD-
level mathematical expertise may be required to properly encode properties
in formal temporal logic.

Once models have been completed, the model checker explores all the interac-
tions within the program. In the worst case, the number of such interactions is
exponential on the number of different assignments to variables in the system.
Hence, the running cost of this query can be excessive. This large running cost
generally forces analysts to simplify the formal models, for example by remov-
ing parts or functions, abstracting away some details, or restricting the scope
of the analysis. Such a rewrite incurs the rewrite cost. On the other hand, sim-
plification may take away elements that are relevant to the properties being
verified, so a balance must be found between tractability and accuracy of the
analysis. This typically requires several iterations and a significant amount of
expertise in both the tools and the application being verified.

Much research has tried to reduce these costs. The writing of systems mod-
els can be avoided by applying model checkers directly to readily available
representations, such as design models or program code. For example, the
BANDERA system extracts systems models from JAVA source code and feeds
them into SMV or SPIN machine [51]. Java PathFinder applies model check-
ing directly to Java bytecode, using its own custom Java virtual machine [52].
Other approaches such as SCR [53–55] or simple influence diagrams [56] pro-
pose simplified modeling environments where users can express their models
in a simple and intuitive framework, and then map them into model checkers
such as SPIN.

Interestingly enough, AI software can offer good opportunities for model check-
ing, as a consequence of using model-based or knowledge-based approaches.
This aspect is discussed in detail in Section 3; for now let us point out that the
models that are interpreted in AI systems tend to be abstract enough to be
readily amenable to model checking, with only minor adaptation writing costs.
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Pecheur and Simmons’ verification of models used for autonomous diagnosis
using the SMV synbolic model checker is a good example [57].

On the properties side, Dwyer, Avrunin & Corbett [58, 59] have developed a
taxonomy of temporal logic patterns that covers most of the properties observed
in real-world applications. For each pattern, they have defined an expansion
from the intuitive pseudo-English form of the pattern to a formal temporal
logic formula. 5 These patterns are simpler and more intuitive than their log-
ical counterpart, and shield the analysts away from the complexity of formal
logics. For example, consider the following property on an elevator:

Always, the elevator door never opens more than twice between the source
floor and the destination floor.

If P is the elevator doors opening and Q is the arrival at the source floor and
R arrival at the destination floor, then the temporal logic formula for this
property is:

2((Q ∧3R)→ ((¬P ∧ ¬R) U (R ∨ ((P ∧ ¬R) U (R ∨ ((¬P ∧ ¬R)

U (R ∨ ((P ∧ ¬R) U (R ∨ (¬P ∨R))))))))))

In contrast, this property can be expressed using the “bounded existence”
temporal logic pattern as “transitions to P -states occur at most 2 times be-
tween Q and R”, and then be automatically translated to the form above.
The translator in [57] offers a similar facility, though focused on more specific
property classes.

These tools reduce the writing cost but don’t necessary reduce the running cost
or the rewriting cost. The rewriting cost is incurred only when the running cost
is too high and the models or constraints must be abbreviated. There is no
guarantee that model checking is tractable over the constraints and models
built quickly using temporal logic patterns and tools like SCR. Restricted
modeling languages may generate models simple enough to be explored with
model checking-like approaches, but the restrictions on the language can be
excessive. For example, checking temporal properties within simple influence
diagrams can take merely linear time [56], but such a language can’t model
common constructs such sequences of actions or recursion. Hence, analysts
may be forced back to using more general model checking languages.

Despite decades of work and ever-increasing computing power, the high run-
ning cost of such general model checking remains a major challenge. Different

5 Actually, to several logic variants, including Linear Temporal Logic (LTL), Com-
putation Tree Logic (CTL), Graphical Interval Logic (GIL), Quantified Regular
Expressions (QRE) and INCA Queries.
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techniques have proven to be useful in reducing the running cost of model
checking:

• Symbolic Methods represent and process parts of the state symbolically to
avoid enumerating each individual value that they can take. This can be
done at the level of individual model variables [60] or over the model as
a whole, using boolean encodings such as binary decision diagrams [46] or
propositional satisfiability solvers [61].
• Abstraction can be applied in a principled way to map large or infinite

concrete spaces into small abstract domains. data abstraction applies to
individual variables (e.g. abstracting an integer to its sign) [62], while pred-
icate abstraction uses the values of predicates obtained from the model [63].
In either case, the abstraction is usually not exact and produces spurious
traces (i.e. for which no concrete trace exists in the original model).
• Partial Order Reduction analyzes dependency between concurrent opera-

tions to avoid exploring multiple equivalent permutations of independent
operations. This is further discussed in Section 5.3.
• Symmetry Reduction uses symmetry in the system (e.g. identical agents) to

avoid exploring multiple symmetrical states or paths [64,65].
• Compositional Reasoning divides the systems model into separate compo-

nents, which can be reasoned about separately [66–68]. This generally in-
volves some form of assume/guarantee reasoning, to capture the interde-
pendency between the different components.
• Model Reduction replaces the systems model by a reduced, simpler model

that is equivalent with respect to the property being verified. For example,
the BANDERA system [51] can automatically extract (slice) the minimum
portions of a JAVA program’s byte codes which are relevant to particular
properties models.

While the above techniques have all been useful in their test domains, not
all of them are universally applicable. Certain optimizations require expensive
pre-processing, or rely on certain features of the system being studied. Not all
systems exhibit reducible symmetry or concurrency that is amenable to partial
order reduction. Compositional analysis is hard for tightly connected models.
In the general case, model checking techniques are still limited to models
of modest size, and obtaining these models from real applications requires
significant work and expertise.

Despite these limitations, model checking is a widely used tool for AI systems
at institutions like NASA. For example, in 1997, a team at NASA Ames used
the Spin model checker to verify parts of the RAX Executive and found five
concurrency bugs [69]. Although it took less than a week to carry out the
verification activities, it took about 1.5 work-months to manually construct a
model that could be run by Spin in a reasonable length of time, starting from
the Lisp code of the executive. The errors found were acknowledged and fixed
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by the developers of the executive. As it turns out, the deadlock that occurred
during the in-flight experiment in 1999 was caused by an improper synchro-
nization in another part of the Executive, but was exactly of the same nature
as one of the five bugs detected with Spin two years before. This demonstrates
how this kind of concurrency bug can indeed pass through heavy test screens
and compromise a mission, but can be found using more advanced techniques
such as model checking. In the same vein, compositional verification has been
applied to the K9 Rover executive [70]. Further examples can be found in
the Proceedings of the recent AAAI 2001 Spring Symposium on Model-Based
Validation of Intelligence 6 .

2.5 Theorem Proving

Theorem provers build a computer-supported proof of the requirement by log-
ical induction over the structure of the program. In principle, theorem provers
can use the full power of mathematical logic to analyze and prove proper-
ties of any design in its full generality. For example, the PVS system [71] has
been applied to many NASA applications (e.g. [72]). However, these provers
require a lot of efforts and skills from their users to drive the proof, making
them suitable for analysis of small-scale designs by verification experts only.
In contrast, the other methods discussed in the previous sections are largely
automated, and thus more convenient for verification as part of a software de-
velopment process. For this reason, theorem proving is still mostly limited to
a few academic studies and regarded as inapplicable in an industrial setting.

This view may change, however, as proof systems feature increasingly powerful
proof strategies, that can automatically reduce most of the simpler proof obli-
gations. Also note that recent developments in formal verification are blurring
this distinction between proof-based and state-based approaches: on one side,
proof systems are extended with model checkers that can be used as decision
procedures inside larger proofs [73]; on the other side, novel symbolic model
checking approaches use proof-based solvers to prune out impossible paths in
the symbolic state space [60,74].

3 Model-based AI Systems

Having discussed how V&V AI can leverage techniques developed for software
engineering problems, we now turn to the special features of AI that change the
V&V task. This section discusses model-based. Subsequent sections will discuss

6 http://ase.arc.nasa.gov/mvi/
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knowledge-level systems, nondeterminism, adapation, and their implications
for V&V.

Every V&V analyst knows that reading and understanding code is much
harder than reading and understanding high-level descriptions of a system.
For example, before reading the “C” code, an analyst might first study some
high-level design documents. The problem with conventional software is that
there is no guarantee that the high-level description actually corresponds to
the low-level details of the system. For example, after the high-level block di-
agram is designed, a programmer might add a call between blocks and forget
to update the high-level block diagram.

This disconnect between the specification and the implementation raises signif-
icant issues for formal verification. Often, formal verification techniques based
on model checking (as opposed to those based on proof systems 7 ) are able to
efficiently check all possible execution traces of a software system in a fully
automatic way. However, the system typically has to be manually converted
beforehand into the syntax accepted by the model checker. This is a tedious
and complex process, that requires a good knowledge of the model checker,
and is therefore usually carried externally by a formal methods expert, rather
than by the system designer themselves.

A distinct advantage of model-based AI systems is that the high-level descrip-
tion is the system. A common technique used in AI is to define a specialized,
succinct, high-level modeling language for some domain. This high-level lan-
guage is then used to model the domain. If another automatic tool is used
to directly execute that notation, then we can guarantee that the high-level
model has a correspondence to the low-level execution details 8 .

These models are often declarative and V&V analysts can exploit such declar-
ative knowledge for their analysis.

3.1 About Declarative Knowledge

Declarative representations can best be understood by comparing them to
procedural representations used in standard procedural languages such as “C”.
Procedural representations list the ordering of activities require to complete

7 Which can provide even more general results but require an even more involved
and skilled guidance.
8 This article defines the term “model” in its most common usage; i.e. the thing
that is generated by analysts when they record information about their domain.
Logic programming theorists prefer the term “theory”. In logic, a “model” is some
instance of a “theory” and is generated automatically at runtime.
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some task. Procedural knowledge often manifests itself in the doing of some-
thing and may be hard to share with others except in the specific context
where the procedural knowledge was developed.

V&V analysts know how hard it can be to un-tangle procedural knowledge
such as a “C” program. Declarative knowledge describes facts and relation-
ships within a domain. Declarative knowledge can be easier to understand
than procedural knowledge; it can be easier to modify, easier to communicate
to others, and easier to reuse for different purposes.

While procedural knowledge is about how, declarative knowledge is often state-
ments about what is true in a domain. For example, consider the following piece
of procedural knowledge. This implementation reports that you have “X” if it
finds any evidence for any of the sub-types of “X”. Note that this is knowledge
about how to navigate a hierarchy of diseases, and their symptoms.

if ((record.disease(X)==found) &&

(diseases = record.disease(X).subtypes)

) for(disease in diseases)

for(symptom in disease.symptoms)

for (observation in observations)

if symptom == observation

printf("You have %s which is a type of %s!", disease, X);

return 1

Suppose we wanted to report the disease that we have the most evidence for;
i.e. the disease that has the most symptoms amongst the available observations.
In this procedural representation, this change would imply extensive modifi-
cation to the code. An alternate approach would be to use declarative repre-
sentations that queried the following facts:

subtype(bacterial, measles). symptom(measles, temperature).

subtype(injury, carAccident). symptom(measles, spots).

subtype(bacterial, gastro). symptom(gastro, temperature).

symptom(gastro, dehydration).

symptom(carAccident, wounds).

Declarative representations free the analyst from specifying tedious procedural
details. For example, the core logic of the above procedural code is that we
have evidence for a disease is we have any observations consistent with
subtyes of that disease. This can be expressed directly and declaratively as
follows:

%comments start with a percent sign

evidence(Disease,SubType,Evidence):- % we have evidence if..

subtype(Disease,SubType), % we can find a subtype AND

symptom(SubType,Evidence), % AND that subtype has symptoms

observation(Evidence). % AND we can observe those symptoms

This declarative representation is useless without some interpreter that can
exercise it. Our example here uses the syntax of the Prolog logic programming
language [75]. In that language, upper case words are variables and lower case
words are constants.
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The major disadvantage of procedural knowledge is that it can be opaque and
inflexible. Declarative knowledge, on the other hand, is far more flexible since
the knowledge of what is separated from the how, This means that the what
can be used in many ways.

For example, suppose we want to drive the diagnosis backwards and find what
might cause spots. To do this, we first must fool Prolog into believing that all
observations are possible. Since we are using declarative representations, this
is simple to do: we just make an “anything goes” assertion:

observation(_).

Here, the “ ” is an anonymous variable that matches anything at all. In the
language of Prolog, this means that we will assume any observation at all. With
this “anything goes” in place, we can now drive the evidence rule backwards
to find that spots can be explained via a bacterial infection.

?- evidence(Disease,SubType,spots).

Disease = bacterial

SubType = measles

A more complicated query might be to find evidence that disproves some
current hypothesis. For example, suppose we believe the last query; i.e. the
observed spots can be explained via a bacterial infection. Before we com-
mence treatment, however, it might be wise to first check for evidence of other
diseases that share some of the evidence for measles. Since our knowledge is
declarative, we need not change any of the above evidence rule. Instead, we
just reuse it in a special way:

differentialDiagnosis(Disease,Old,Since,New,If) :-

evidence(Disease,Old,Since),

evidence(Disease,New,Since), % Old and New share some evidence

evidence(Disease,New,If),

not evidence(Disease,Old,If). % New has some evidence not seen in Old

With this in place, we can run the following query to learn that measles can
be distinguished from gastro if dehydration can be detected:

?- differentialDiagnosis(bacterial,Old,Since,New,If).

Old = measles

Since = temperature

New = gastro

If = dehydration

While the declarative version of knowledge might be faster to write and change,
it may be slower to run. Procedural knowledge can be highly optimized to take
advantage of low-level details of a system. In the 1970s, this was taken to be
a major disadvantage of declarative knowledge. In the 21st century, this is
much less of an issue. Not only are computers much faster now, but so are the
interpreters for our declarative systems (e.g. [76, 77]), particularly when the
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Fig. 6. Translator from Livingstone to SMV (MPL is Livingstone’s modeling lan-
guage).

representation can be restricted to some subset of full logic (e.g. [78,79]).

3.2 Declarative Models and V&V

The ability to build simple queries for a declarative model greatly reduces the
effort required for V&V. For example, one method for V&V of model-based
systems is to build a profile of an average model. The TEIREISIAS [80] rule
editor applied a clustering analysis to its models to determine what parameters
where related; i.e. are often mentioned together. If proposed rules referred to
a parameter, but not its related parameters, then TEIREISIAS would point
out a possible error.

Declarative modeling tend to only use a small number of modeling constructs.
This simplifies the construction of translators from one modeling language to
another, and in particular from AI modeling languages to verification mod-
eling languages such as those used by model checkers (as discussed in §2.4).
Moreover, the reasoning algorithms used in AI typically suffer from similarly
high complexity metrics as model checking, and therefore the size and com-
plexity of AI models is already limited by the scalability of their intended
usage. Indeed, AI fields such as planning and scheduling have much in com-
mon with model checking, in the way they both explore a state space described
by a model. This similarity has lead to some cross-fertilization between the
two fields in the recent years, with verification adopting search heuristics from
planning on one hand [81] and planners based on verification technology such
as BDDs on the other hand [82].

For example, Pecheur and Simmons have developed a translator to convert
Livingstone models to SMV [57]. Livingstone is a model-based health moni-
toring system developed at NASA [83]. It tracks the commands issued to the
device and monitors device sensors to detect and diagnose failures. To achieve
this, Livingstone relies on a model of the device that describes, for each com-
ponent, the nominal and abnormal functioning modes, how these modes are
affected by commands and how they affect sensors. The translator enables
exhaustive analysis of those models using the powerful SMV model checker.
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The essence of the translation is fairly straightforward, thanks to the similar
semantics framework used in both Livingstone and SMV. The translator also
supports user-oriented specification patterns and variables to express common
classes of properties such as consistency or existence of a broken component.
These declarations are captured and converted into the core temporal logic
syntax accepted by SMV. Finally, the execution traces returned by SMV can
be converted back into Livingstone syntax. Together, these three translation
capabilities (model, properties, trace) isolate the Livingstone application de-
veloper from the peculiarities of SMV and provide the functional equivalent
of a symbolic model checker for Livingstone, as depicted if Figure 6.

The translator has been used at NASA Kennedy Space Center by the develop-
ers of a Livingstone model for the In-Situ Propellant Production (ISPP), a sys-
tem that will produce spacecraft propellant using the atmosphere of Mars [84].
The latest version of the ISPP model, with 1050 states, could still be processed
in less than a minute using SMV optimizations (re-ordering of variables). The
Livingstone model of ISPP features a huge state space but little depth (all
states can be reached within at most three transitions), for which the sym-
bolic processing of SMV is very appropriate.

This tool can be used to check general sanity properties (e.g. consistency,
absence of ambiguity, no conflicting transitions) or specific expected prop-
erties of the modeled device (e.g. flow conservation, functional dependency
between variables). More recently, the technique has been extended to verify
diagnosability properties, i.e. the possibility for an ideal diagnosis system to
infer accurate and sufficient information on the state of the device from its
observed behavior [85]. Diagnosability amounts to the absence of certain pair
of traces with identical observations, which can be turned into a simple model
checking problem over a duplicated version of the original model.

Model checking is powerful, but can be complicated. Feather and Smith report
that a much simpler model-based technique can still be very insightful [86].
When asked to check the planner module of NASA’s Remote Agent Experi-
ment (RAX; see Figure 1 and [87]), they developed the architecture of Figure 7.
RAX’s planner automatically generated plans that responded to environmen-
tal conditions while maintaining the constraints and type rules specified by
human analysts. An important feature of the planner was the declarative na-
ture of the constraints being fed into the planner and the plans being gener-
ated. Feather and Smith found these plans could be easily and automatically
converted into the rows of a database. Further, the constraints could also be
easily and automatically converted to queries over the database. As a result,
given the same input as the planner, they could build a simple test oracle that
could check if the planner was building faulty plans. Note that, formally, the
Feather and Smith method can be considered as an example of (after-the-fact)
run-time monitoring (which was discussed above in §2.2).
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Fig. 7. A framework for model-based V&V.

The Feather and Smith method can be very cost-effective and applied quite
widely:

• The rectangles in Figure 7 denoting the sections that must be built manu-
ally. Once these sections are built, they can be reused to check any number
of plans.
• The architecture of Figure 7 could be generalized to any device that accepts

declarative constraints as inputs and generates declarative structures as
output.

Preece reports other simple but effective V&V tools that utilize the model-
based nature of AI systems [4]. Preece studied rule-based models which are
lists of statements of the following form:

if

premise︷ ︸︸ ︷
La ∧ Lb ∧ Lc ∧ . . . then

conclusion︷ ︸︸ ︷
Lx ∧ Ly ∧ Lz ∧ . . .

The Preece analysis defined a taxonomy of verification issues for rule-based
models (see Figure 8) and argued that a variety of AI model-based verifi-
cation tools target different subsets of these issues (perhaps using different
terminology).

The Preece taxonomy require meta-knowledge about the terms found within
a knowledge base (which Preece et.al. call literals):

• A literal Li is askable if it represents a datum that the rule-base can request
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Anomaly ←



Redundant←


Unusable

Redundant←

 Duplicate

Subsumed

Ambivalence← Conflict

Circularity

Deficiency ←

 Missing rules

Missing values

Fig. 8. The Preece hierarchy of verification errors.

Application

mmu tapes neuron displan dms1 errors/anomalies

subsumed 0 5
5 0 4/9 5/59 14/73 = 19%

missing rules 0 16/16 0 17/59 0 33/75 = 44%

circularity 0 0 0 20/24 0 20/24 = 83%

Fig. 9. Ratio of errors/anomalies seen in real-world expert systems. From [7]. “Sub-
sumed” reports repeated rule conditions. “Missing rules” denote combination of
attribute ranges not seen in any rule. “Circularity” reports loops found in the de-
pendency graph between variables in the system.

from the outside world.
• A literal Li is a final hypothesis if it is declared to be so by the rule-base’s

author and only appears in a rule conclusion.
• A rule is redundant if the same final hypotheses are reachable if that rule

was removed. An unusable redundant rule has some impossible premise.
A rule-base is deficient if a consistent subset of askables leads to no final
hypotheses. A duplicate redundant rule has a premise that is a subset of
another rule premise.
• Preece defined duplicate rules for the propositional case and subsumed re-

dundant rules for the first-order case. In the first-order case, instantiations
have to be made to rule premise variables prior to testing for subsets.
• Preece defined ambivalence as the case where, given different consistent

subset of askables, a rule-base can infer the same final hypotheses.

Preece stresses that the entries in their taxonomy of rule-base anomalies may
not be true errors. For example, the dependency network from a rule-base may
show a circularity anomaly between literals. However, this may not be a true
error. Such circularities occur in (e.g.) user input routines that only terminate
after the user has supplied valid input.

More generally, Preece argued convincingly that automatic verification tools
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Fig. 11. Explicit problem solving (PSM) meta-knowledge: A simple KADS-style
PSM for diagnosis. Abstract and hypothesis are primitive inferences which may
appear in other PSMs. From [88].

can never find “errors”. Instead, they can only find “anomalies” which must
be checked manually. The percentage of true errors, i.e. errors/anomalies can
be quite small. For example, Figure 9 shows the errors/anomalies ratios seen in
five KBSs. Note that not all anomalies are errors.

4 The Knowledge Level

After decades of model-based programming, certain common model-based
tasks were identified. That is, model-based programming became viewed like
assembler code on top of which a range of knowledge-level problem solving
methods (PSMs) are implemented.

A standard hierarchy of PSMs is shown in Figure 10. In this view, RAX’s
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MIR (diagnosis) component (described in Figure 1) is one kind of diagnosis
PSM. Another diagnosis PSM is shown in Figure 11. In that figure ovals
denote functions and rectangles denote data structures. Formally, that figure
represents a mapping from data d to an hypothesis h via intermediaries Z and
other data Ri:

abstract(data(d), R1, obs(Z))
∧

hypothesis(obs(Z), R2, hyp(h))

Various design and code libraries were built around these knowledge-level
PSMs e.g. cognitive patterns [89]; CommonKADS [90–92]; configurable role-
limiting methods [93, 94]; MIKE [95]; the Method-To-Task approach [96];
generic tasks [97]; SPARK/BURN/FIREFIGHTER [98]; model construction
operators [99]; components of expertise [100]; and the systems described in [89,
92, 97, 101–104]. The advantage of these PSMs is that they offer an organiza-
tional layer on top of model-based methods. V&V analysts can use this layer
as an indexing method for their evaluation techniques.

For example, van Harmelen & Aben [88] discuss formal methods for repairing
the diagnosis PSMs of Figure 11. V&V analysts can restrict their analysis of
this model to the three ways this process can fail:

(1) It can fail to prove abstract(data(d), R1, obs(Z)); i.e. it is missing abstrac-
tion rules that map d to observations.

(2) It can fail to prove hypothesize(obs(Z ′), R2, hyp(h)); i.e. it is missing
causal rules that map Z ′ to an hypothesis h.

(3) It can prove either subgoal of the above process, but not the entire con-
junction; i.e. there is no overlap in the vocabulary of Z and Z ′ such that
Z = Z ′.

Case #1 and #2 can be fixed by adding rules of the missing type. Case #3
can be fixed by adding rules which contain the overlap of the vocabulary
of the possible Z values and the possible Z ′ values. More generally, given
a conjunction of more than one sub-goal representing a PSM, fixes can be
proposed for any sub-goal or any variable that is used by > 1 sub-goal.

Another knowledge-level V&V technique is to audit how the PSMs are built.
Knowledge not required for the PSM of the application is superfluous and can
be rejected. In fact, numerous AI editors are PSM-aware and auto-configure
their input screens from the PSM such that only PSM-relevant knowledge can
be entered by the user. For example:

• RIME’s rule editor [25, 105] acquired parts of the KB minority-type meta-
knowledge for the XCON computer configuration system [28]. RIME as-
sumed that the KB comprised operator selection knowledge which controlled
the exploration of a set of problem spaces. After asking a few questions,
RIME could auto-generate complex executable rules.
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• SALT’s rule editor interface only collected information relating directly to
its propose-and-revise inference strategy. Most of the SALT rules (2130/3062 ≈
70%) were auto-generated by SALT.
• Users of the SPARK/ BURN/ FIREFIGHTER (SBF) [98] can enter their

knowledge of computer hardware configuration via a click-and-point editor
of business process graphs. SBF reflects over this entered knowledge, then
reflects over its library of PSMs. When more than one PSM can be selected
by the entered knowledge, SBF automatically generates and asks a question
that most differentiates competing PSMs.

PSM-aware editors can not only assist in entering knowledge, but also in test-
ing and automatically fixing the entered data. For example, in the case where
numerous changes have to be made to a PSM, if the user does not complete all
those changes, then the PSM may be broken. Gil & Tallis [106] use a script-
ing language to control the modification of a multi-PSM to prevent broken
knowledge. These KA scripts are controlled by the EXPECT TRANSAC-
TION MANAGER (ETM) which is triggered when EXPECT’s partial evalu-
ation strategy detects a fault. Figure 12 shows some speed up in maintenance
times for two change tasks for EXPECT KBS, with and without ETM. Note
that ETM performed some automatic changes (last row of Figure 12).

5 AI Software can be Nondeterministic

The main challenge in verifying AI software (or, for that matter, any kind
of complex system) comes from the number of different possible executions
that have to be taken into account. We refer broadly to this uncertainty on a
system’s future behavior as non-determinism. Non-deterministic choices come
from incoming external events, scheduling of concurrent tasks, or even inten-
tional random choices in the program, to name a few. Every choice point in
the execution results in as many possible subsequent execution branches. Typ-
ically, those choices compound into exponentially many possible executions.
This is known as the state space explosion phenomenon.

Non-determinism can be either external or internal :

Simple task #1 Harder task #2

no ETM with ETM no ETM with ETM

S4 S1 S2 S3 S2 S 3 S1 S2

Time completing transactions 16 11 9 9 53 32 17 20

Total changes 3 3 3 3 7 8 10 9

Changes made automatically n/a n/a 2 2 n/a n/a 7 8

Fig. 12. Change times for ETM with four subjects: S1. . . S4. From [106]
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External non-determinism results from input or events coming from the
environment. Examples include system configuration and initialization,
invocation parameters, messages, discrete events, continuous data streams.
In the case of model-based systems, the models themselves constitute a huge
choice space, as far as the interpreter is concerned.

Internal non-determinism result from the system itself. A common source
is concurrency, where scheduling choices are made between concurrent
executions (for example, a knowledge system that processes knowledge up-
dates concurrently). Another case is stochastic, where the system itself is
deliberately making random (or pseudo-random) choices.

The important distinction between these two is that while external non-
determinism is controllable (and therefore can, in principle, be tested), internal
non-determinism is not, which poses an additional problem to the verifier: the
same test case may produce different results when run several times, and it is
hard to measure or control the coverage of internal non-deterministic choices.

Conventional sequential programs are usually (internally) deterministic, in
that they contain hard-wired decision paths that result in a functional map-
ping from inputs to outputs. The same is true of many applicative AI algo-
rithms taken in isolation. However, as these algorithms get implemented and
assembled together to build complex intelligent software, additional nondeter-
minism is introduced in the form of concurrent components executing asyn-
chronously. This is particularly the case for reactive systems such as robotic
controllers, that have to react in a timely manner to external stimuli occurring
at unredictable times. These systems can resort to anytime algorithms, whose
output depends on how long they are allowed to run. In typical concrete cases,
nondeterminism is thus an issue that V&V analysts of AI systems have to face.

The rest of this section discusses V&V and these different types of nondeter-
minism.

5.1 Environmental Nondeterminism

The standard method of managing environmental nondeterminism is to build
a operational profile modeling the probability that a certain variable setting
will appear at runtime [107]. The range of possible inputs can now be sampled
via the operational profile. The operational profile can be used to generate rep-
resentative nominal inputs. Also, by inverting the profile, unlikely off-nominal
test cases can also be generated.

In the case of AI agents performing tasks in dynamic environments for deep
space missions, building an accurate operational profile is a very difficult task.
In turns our that operational profile errors can be compensated by increas-
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Fig. 13. Sensitivity of reliability-growth models to operational profile errors vs test-
ing accuracy. Hand-translated from [108].

ing the number of tests. Figure 13 shows Pasquini’s study where the original
operational profile OPe was compared to three profiles containing an increas-
ing number of errors. The mutants were called (in order of increasing errors)
OP1, OP2, OP3. The inaccuracies in the operational profiles were very appar-
ent after a small number of tests. However, above 100 tests randomly selected
from each profile, the errors of the different profiles converged and after a 1000
tests, the effects of those errors were negligible.

The system studied by Pasquini was not a complex AI system. It is reason-
able to assume that more complex systems would require exponentially more
tests to compensate for errors in the operational profile. In many real-world
situations, it is not practical to run a very large number of tests. Figure 14
shows the pre-launch test regime for the remote agent. The testing team had
to share certain test rigs with numerous other development teams. As those
test rigs got more elaborate (e.g. increasing fidelity to the actual in-flight soft-
ware/hardware combination), they were slower to run and all the development
teams, including the testers, got less and less access. Figure 14 shows that
Remote Agent launched after 610 tests. Therefore, mere operational profile
sampling may be inadequate for AI systems.

Various researchers have explored intelligent methods for sampling a program’s
input space. For example, Smith et.al. [110] characterized the inputs to the

test platform speed

phase hardware flight software test:real # tests

1 nil some 35:1 269

2 nil some 7:1 ≈ 300

3 nil some 1:1 ≈ 20

4 nil all 1:1 10

5 flight spare all 1:1 10

6 flight spare all 1:1 1

7 actual satellite all 1:1 1

total: ≈ 611

Fig. 14. Number of documented pre-launch tests for that RAX NASA satellite as it
moved from software simulations (in phase 1) to some hardware test benches (phase
5 and 6), the finally to the actual mission (phase 7). From [109].
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RAX planner as an n-dimensional parameter space and used orthogonal arrays
to select a manageable number of cases that exercises all pair-wise combina-
tions of parameter values. In this rig, an intelligent sample of RAX’s input
space required a number of tests that is logarithmic on the number of RAX’s
input parameters.

5.2 Stochastic Nondeterminism

Often, AI algorithms use some internal random choice to break out of dead-
ends or to explore their models. Such stochastic methods can be remarkably
effective. For example, stochastic choice has been observed to generate plans in
AI systems one to two orders of magnitude bigger than ever done before with
complete search [78, 111]. Yet another source of stochastic nondeterminism is
adaptation when a system’s behavior changes as a result of new experience.
Adaptation is discussed later (see §6).

A concern with stochastic nondeterminism is that the variance in the system’s
output will be so wild that little can be predicted or guaranteed about the
system’s performance at runtime. Before a V&V analyst can certify such a
wildly varying system, they might first need to constrain it to the point where
definite predictions can be made about the system’s behavior. A typical way to
find these controlling constraints is to instrument the system so that internal
choices become visible and controllable, effectively turning them into external
choices.

Some empirical results suggest that if instrumentation is successful, then the
subsequent learning of controllers may be quite simple. The funnel assump-
tion is that within a nondeterministic program there exists a small number
of assumptions that control which nondeterministic option the program will
take [112]. This assumption appears in multiple domains, albeit using different
terminology: master-variables in scheduling [113]; prime-implicants in model-
based diagnosis [114] or machine learning [115], or fault-tree analysis [116];
backbones or back doors in satisfiability [117–119]; dominance filtering used
in Pareto optimization of designs [120]; and the minimal environments in the
ATMS [121]. Whatever the name, the intuition is the same: whatever happens
in the larger space of the program is controlled by a few variables.

There is much empirical and analytical evidence that narrow funnels are found
in many models. Menzies and Singh argue that the whole field of soft comput-
ing utilizes that assumption [112]. Later in this article, in §6.5, we will discuss
the TAR3 learner. TAR3 was built as a test of the narrow funnel assumption.
If such funnels exist, they would appear as variable bindings with a much
higher frequency in preferred situations. TAR3 collects such frequency counts,
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normalizes and accumulates them. When applied to models with stochastic
nondeterminism, TAR3 can find a very small set of treatments that constrain
the nondeterminism, while selecting for better overall system behavior (see
the examples in [122,123]).

The caveat here is that the nondeterministic system must be exercised suffi-
ciently to give TAR3 enough data to learn the funnels. For more on that issue,
see §6.2.

5.3 Concurrency Nondeterminism

At the conceptual level, AI algorithms are typically sequential (though pos-
sibly non-deterministic). In real applications, though, concurrency is often
present. For example:

• A knowledge base receives and processes queries and updates concurrently.
• An intelligent robot controller responds to physical stimuli occurring at

unpredictable times.
• A chess playing program is distributed over many processors for improving

performance.
• Intelligent web services communicate with each other to negotiate some

business contract.

Concurrency errors have been known to cause trouble in AI software. As we
mentioned in the introduction, the error that caused a deadlock during the
RAX experiment on-board Deep Space One was a typical concurrency error.

Concurrency is a particular form of non-determinism, and thus a major source
of concern for V&V. Concurrency-related flaws typically result in race condi-
tions, which manifest themselves only under specific timings of events and
are very hard to detect and reproduce. This leads to critical systems being de-
signed to minimize concurrency risks, using strictly sequenced chains or cycles
of execution, or with tightly isolated concurrent components.

Model checking is well suited to verifying concurrent systems, and has been
originally developed in that domain. As opposed to a conventional test-bed,
the model checker has full control over the scheduling of concurrent executions
and can therefore explore all non-deterministic alternatives.

Concurrency-related state-space explosion can be addressed using a particular
class of optimization called partial-order reduction (POR). This is based on
the “diamond” principle (↙↘↘↙) : if two concurrent operations are independent,
then it does not matter in which order they are executed. This can be used to
dramatically cut down the search space, provided that (sufficient conditions
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for) independence between operations can be asserted [124,125]. Implementa-
tions exploiting this technique can constrain how the space is traversed [126],
or constructed in the first place [127].

6 Adaptive AI Systems

In the language of the previous section, adaption is another source of nonde-
termism. Depending on the learning method, adapation can either be:

• Stochastic nondeterminism when some random choice is used in the learning,
e.g. in genetic algorithms;
• Environmental nondeterminism when the learning changes according to the

data passed into the system from the outside.

Regardless of the source of nondeterminism, the net result is that adaptive
systems can adjust their own internal logic at runtime. Adaptive systems have
the benefit that the software can fix itself. For example, a planning system
might find a new method to generate better plans in less time. The problem
with adaptive systems is that the adaption might render obsolete any pre-
adaption certification.

There are many different adaptive systems such as decision explanation-based
generalization [128, 129], chunking [128, 129], genetic algorithms [130], simu-
lated annealing [131], tree learners [132], just to name a few. An example of
decision tree adaptation is shown in Figure 15. In that figure, the decision tree
on the right was generated from the data on the left. We see that we do not
play golf on high-wind days when it might rain.

Despite there being many different learning methods, there exist several adap-
tive V&V criteria that can be applied to all learners: external validity, learning
rates, data anomaly detectors, stability, and readability. These are discussed
below.

6.1 External Validity

While the method of adaptation can vary the goal of the different methods
is similar. Adaptation builds or tune some theory according to a set of new
examples. Therefore, to validate any adaptive system, it is useful to start with
validating that enough examples are available to support adequate adaptation.

When checking that enough data was available for the adaptation, good ex-
perimental technique is important. If the goal of adaptation is to generate
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models that have some useful future validity, then the learnt theory should be
tested on data not used to build it. Failing to do so can result in a excessive
over-estimate of the learnt model. For example, Srinivasan and Fisher report
an 0.82 correlation (R2) between the predictions generated by their learnt de-
cision tree and the actual software development effort seen in their training
set [133]. However, when that data was applied to data from another project,
that correlation fell to under 0.25. The conclusion from their work is that a
learnt model that works fine in one domain may not apply to another.

One standard method for testing how widely we might apply a learnt model
is N-way cross validation:

• The training set is divided into N buckets. Often, N=10.
• For each bucket in turn, a treatment is learned on the other N − 1 buckets

then tested on the bucket put aside.
• The prediction for the error rate of the learnt model is the average of the

classification accuracy seen during the N-way study.

In essence, N-way cross validation is orchestrating experiments in which the
learnt model is tested ten times against data not seen during training.

When assessing different adaptation mechanisms, the N-ways are repeated M
times. In a 10-by-10 cross-validation study, the ordering of examples in a data
set is randomized 10 times and a separate 10-way study is conducted for each
of the ten random orderings. Such 10-by-10 study generates 100 training and
100 test sets and each of these should be passed to the different learners being
studied. This will generate a mean and standard deviation on the classification
accuracy for the learners being studied and these should be compared with a
t-test with 10 degrees of freedom (and not 99, see [134]).

Data Learnt theory

#outlook, temp, humidity, windy, class

#------- ---- -------- ----- -----

sunny, 85, 85, false, dont_play

sunny, 80, 90, true, dont_play

overcast, 83, 88, false, play

rain, 70, 96, false, play

rain, 68, 80, false, play

rain, 65, 70, true, dont_play

overcast, 64, 65, true, play

sunny, 72, 95, false, dont_play

sunny, 69, 70, false, play

rain, 75, 80, false, play

sunny, 75, 70, true, play

overcast, 72, 90, true, play

overcast, 81, 75, false, play

rain, 71, 96, true, dont_play

start

outlook=overcast

outlook=sunny

outlook=rain dont_play

playhumidity <= 75

humidity > 75

windy = true

windy = false

Fig. 15. Decision-tree learning. Classified examples (left) generate the decision tree
(right).
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Fig. 16. M-by-N sequences studies on six data sets.

6.2 Learning Rates

Another important criteria for any learning is that of learning rates; i.e. how
does the learnt theory change over time as more data is processed.

One way to study learning rates is via a sequence study. This is a variant on
a 10-way study but this time training occurs on an increasing percentage of
the available data. More precisely:

• The data is divided into N buckets.
• X

N
-th of the data for X ∈ {1, 2, . . . N − 1} is used for training;

• The remaining N−X
N

of the data is used for testing.

Note that the sequence stops at N − 1 since training on N
N

of the data would
leave nothing for the test suite (1 − N

N
= 0). In a M-by-N sequence study,

the above process is repeated M times with the ordering of the example data
randomized before each N-sequence study. The mean and standard deviation
of the accuracy at each N value is reported. M-by-N sequence studies let us
check how early learning stabilizes as more data is used in the training.

Figure 16 show results of a M-by-N sequence study for six data sets us-
ing <M=N=20>. In this study, the same decision tree learner was used as
seen in Figure 15. The vertical-axis ranges from zero to 100% accuracy. The
horizontal-axis shows the training set growing in size. The whiskers in Fig-
ure 16 show ±1 standard deviation of the 20 experiments conducted at a
particular N value.

Figure 16 is divided into three groups. On the left-hand column are data sets
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where the adaptation needs more examples than what is currently available:

• The standard deviation in the classification accuracies of the top-left are
very large. Clearly, in that data set, training is insufficient for stable future
predictions.
• The mean classification of the bottom-left plot is very low (less than 40%),

even though all the available training data has been passed to the learner.
The accuracy improves as the training set grows but much more data would
be required before a V&V analyst could check if adaptation is performing
adequately in that domain.

The middle column of Figure 16 shows examples were the learning improves
dramatically during the sequence, rises to medium or high level accuracies,
then plateaus before we exhaust all the data in this domain. The conclusion
from these two plots would be that we are collecting adequate amounts of data
in this domain and that the benefits of further data collection might be quite
low.

The right-hand column of Figure 16 shows examples where, very early in the
sequence, the adaption reaches medium to high levels and does not improve
as more data is supplied. For these domains, a V&V analyst would conclude
that too much data was collected in this domain.

Note that the the learning never achieves 100% accuracy. Making some errors
is fundamental to the learning task. If something adapts perfectly to past ex-
ample, then it can over-fit to the data. Such over-fitted adaption can obsess on
minor details in the training data and can perform poorly on future examples
if those future examples contain trivial differences to the training example.

Studying the shape of these sequence learning curves is an important V&V
technique for adaptive real-time systems. Consider a real-time controller that
must adapt to sudden changes to an aircraft; e.g. the flaps on the left wing
have suddenly frozen. The V&V task here would be to predict the shape of
these curves in the space of possible future input examples. Such predictions
would inform questions such as “would the controller adapt fast enough to
save the plane?”.

There are many ways to explore the space of possible future input examples.
One way is the sequence study shown above: the ordering of existing data is
randomized many times and, each time, the learner learns for that sequence of
data. Another way would be to generate artificial examples from distributions
seen in current data or from known distributions in the environment. Yet
another way is to define an anomaly detector which triggers if newly arriving
data is different to data which the learner has previously managed [135,136].
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Fig. 17. Applications of anomaly detection. From [137].

6.3 Data Anomaly Detectors

Figure 17 shows a general framework for wrapping a learner in anomaly de-
tectors. When new data arrives a pre-filter could reject the new input if it
is too anomalous. Any accepted data is then passed to the adaptive module.
This module offers some conclusion; e.g. adds a classification tag. The out-
put of the adaption module therefore contains more structure than the input
example so a second post-filter anomaly detector might be able to recognize
unusual output from the learner. If so, then some repair action might be taken
to (e.g.) stop the output from the learner effecting the rest of the system. In
effect, Figure 17 is like an automated V&V analyst on permanent assignment,
watching over the adaptive device.

Figure 18 shows an example of a pre-filter anomaly detector. That figure is
a representation of high dimensional data collected from nominal and five
off-nominal modes from a flight simulator passed through a support vector
machine. Support vector machines recognizing the borderline examples that
distinguish between different classes of data. Such machines run very quickly
and scale very well to data sets with many attributes. The crosses in Figure 18
show training examples and the closed lines around the circles represent the
border between “familiar” and “anomalous” data. Our learner should be able
to handle failure mode 5 since data from that mode falls mostly in the “fa-
miliar” zone. However, Failure Mode 2 worries us the most since much of the
data from that mode falls well outside the “familiar” zone.

Figure 18 only shows anomaly detection. After detection, some repair action is
required. The precise nature of the repair action is domain-specific. For exam-
ple, in the case of automatic flight guidance systems, the repair action might
be either “pass control to the human pilot” or, in critical flight situations, “hit
the eject button”.
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Fig. 18. Identifying anomalous data. From [137].

6.4 Stability

Apart from studying the above, a V&V analyst for an adaptive system might
also care to review the results of the learning. When a V&V analyst is reading
the output of a learner, one important property of the learning is stability; i.e.
the output theory is the same after different runs of the learner.

Not all learners are stable. For example, decision tree learners like the one
used in Figure 15 are brittle; i.e. minor changes to the input examples can
result in very different trees being generated [138]. Also, learners that use ran-
dom search can leap around within the learning process. For example, genetic
programming methods randomly mutate a small portion of each generation of
their models. Such random mutations may generate different theories on differ-
ent runs. Therefore, if an output theory is to be manually inspected, it is wise
to select learners that generate stable conclusions. For example, Burgess and
Lefley report [139] that in ten runs of a neural net and genetic programming
system trying to learn software cost estimation models, the former usually
converged to the same conclusion while the latter could generate different
answers with each run.
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6.5 Readability

Lastly, another interesting V&V criteria for a learner is readability; i.e. assess-
ing if the the output from the learner is clear and succinct.

Not all learners generate readable output. For example, neural net and Bayes
classifiers store their knowledge numerical as a set of internal weights or table
values that are opaque to the human reader. Research in neural net validation
often translate the neural net into some other form to enable visualization and
inspection (e.g. [140]). Even learners that use symbolic, not numeric, repre-
sentations can generate unreadable output. For example, Figure 19 was learnt
from 506 examples of low, medium low, medium high, and high quality houses
in Boston. While a computer program could apply the learnt knowledge, it is
virtually unreadable by a human.

Some learners are specifically designed to generate succinct, simple, readable
output. The TAR3 treatment learner [122,123,141–146] seek the smallest num-
ber of attribute ranges that most select for preferred classes and least select
for undesired classes. Treatments are like constraints which, if applied to the
test set, selects a subset of the training examples. A treatment is best if it
most improves the distribution of classes seen in the selected examples. From
the same data as used in Figure 19, TAR3 learns Equation 1:

best = (6.7 ≤ RM < 9.8) ∧ (12.6 ≤ PTRATION < 15.9) (1)

That is, good houses can be found by favoring houses with 7 to 9 rooms
in suburbs with a parent-teacher ratio in the local schools of 12.6 to 15.9;
The effects on the distribution of selected houses by Equation 1 are shown in
Figure 20. In the raw data, the quality of houses was evenly distributed. In
the treated data, most of the selected houses (97%) are now high quality.

Which is a better representation of the data? The details of Figure 19 or the
high-level summary of Equation 1? That choice is up to the reader but if they
are a busy V&V analyst struggling to understand an adaptive system, they
might be attracted to the succinctness of Equation 1.

7 Conclusion

This paper offers a diverse set of technologies to support the V&V of adaptive
systems. If there is a single conclusion from such a diverse survey is that devel-
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Fig. 19. A learnt decision tree. Classes (right-hand-side), top-to-bottom, are “high”,
“medhigh”, “medlow”, and “low” This indicates median value of owner-occupied
homes in $1000’s. Decision tree learnt from the 506 cases in HOUSING example set
from the UC Irvine repository (http://www.ics.uci.edu/~mlearn/).
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Fig. 20. Treatments learnt by TAR3 from the data used in Figure 19. That dataset
had the class distribution shown left-hand-side. Actions that most increase housing
values are shown in the right column.

opers should not be afraid of AI. AI is useful. AI can deliver more functionality
for reduced cost. AI should and will be used more widely.

On the other hand, AI systems have features that make them hard to check us-
ing conventional methods. Nevertheless, there are enough alternative readily-
available methods that enable the V&V of AI software:

• AI software can be complex. Powerful methods like model checkers and
static analysis tools has evolved in the software engineering area to simplify
the task of checking such complex systems. Many of those methods can be
applied to AI systems.
• The model-based nature of AI systems makes it easier for V&V analysts to

extract features from a system and this can be exploited in several ways.
• Sometimes, the inference associated with those models falls into one of a

small set of commonly-used knowledge-level problem solving methods and
specialized V&V techniques are appropriate for different problem solving
methods.
• AI systems can be nondeterministic. Different methods apply for the V&V

of nondeterministic systems depending on the nature of the nondeterminism
(environmental, concurrent, stochastic).
• Adaptive systems are an extreme for of stochastic nondeterministic systems.

The V&V of adaptive systems can apply such criteria like external validity,
learning date, stability, etc.
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