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Abstract

Autonomous embedded controllers are seen as a critical technology to enable new mission objectives and
scale down operating costs for space applications. However, the validation of intelligent controls software
poses a huge challenge, where traditional testing approaches fall short of providing the required level of
confidence for such safety-critical applications. This is an overview of recent research in applying modern,
analytical verification technologies and tools to the validation of autonomy software, in the context of
space applications, at NASA Ames Research Center in California, with a particular focus on model-based
approaches to autonomous control, and more specifically fault diagnosis systems. We have developed and
experimented with two lines of tools, both related to model checking techniques. Verifying diagnosis systems
and models has led to considering the issue of diagnosability, in the sense of checking whether a system
provides sufficient observations to determine and track its internal state with sufficient accuracy. We discuss
how this kind of question can be reduced to a modified model checking problem. Diagnosability analysis
also expands to the domain of epistemic (i.e. knowledge) models and logics.

1 Overview

Embedded controllers are more and more pervasive and feature more and more advanced capabilities. For
space applications in particular, the development of autonomous controllers, capable of standalone operation in
unpredictable situations, all the way up to mission-level concerns, is seen as a critical technology to enable new
mission objectives and scale down operating costs. On the flip side, the validation of intelligent controls software
poses a huge challenge, both due to the increased complexity of the system itself and the broad spectrum of
normal and abnormal conditions in which it has to be able to operate. Traditional testing approaches fall short
of prviding the required level of confidence for such safety-critical applications.

This paper supports a presentation of recent research in applying modern, analytical verification technologies
and tools to the validation of autonomy software, in the context of space applications, at NASA Ames Research
Center in California. In particular, the work focuses on analysing model-based approaches to autonomous
control, and more specifically fault diagnosis systems, as exemplified by NASA Ames’ Livingstone system. The
content of this paper is largely based on selected excerpts from prior publications [1, 2, 3, 4, 5].

We have developed two lines of tools and experimented with those tools on real-size problems taken from
NASA applications. Under different angles, both approaches stem from the verification discipline known as
model checking. The first approach, presented in [3] and in Section 4, addresses the verification of the domain
models used for model-based diagnosis. The second approach, presented in [2] and in Section 3, augments
classical testing approaches with fine control and automation capabilities inspired from model checking.

Verifying diagnosis systems and models has led to considering the issue of diagnosability: given a partially
observable dynamic system, and a diagnosis system observing its evolution over time, how to verify (at design
time) whether the system provides sufficient observations to determine and track (at run-time) its internal
state with sufficient accuracy. This kind of question can be answered by looking for pairs of scenarios that
are observationally indistinguishable, but lead to situations that are required to be distinguished. This search
amounts to a modified model checking problem, and we have extended our tools to support that kind of analysis.
This is explained in [4] and in Section 5.

Diagnosability analysis is obviously very relevant to hazard analysis in the context of space-bound fault pro-
tection systems, but is also an incarnation of the more general notion of observability, which has applications in
such areas human interfaces or security protocols. When coupled to the complementary notion of controllability



(or, in the case of failures, recoverability), it expands to the domain of epistemic (i.e. knowledge) models and
logics, and the verification techniques that apply to them. This is discussed in [5] and in Section 6.

2 Background

2.1 Livingstone

Livingstone is a model-based health monitoring system developed at NASA Ames [6]. It uses a symbolic, qual-
itative model of a physical system, such as a spacecraft, to infer its state and diagnose faults. Livingstone is
one of the three parts of the Remote Agent (RA), an autonomous spacecraft controller developed by NASA
Ames Research Center jointly with the Jet Propulsion Laboratory. The two other components are the Plan-
ner/Scheduler [7], which generates flexible sequences of tasks for achieving mission-level goals, and the Smart
Executive [8], which commands spacecraft systems to achieve those tasks. Remote Agent was demonstrated in
flight on the Deep Space One mission (DS-1) in May 1999, marking the first control of an operational spacecraft
by AT software [9]. Livingstone is also used in other applications such as the control of a propellant production
plant for Mars missions [10], the monitoring of a mobile robot [11], and intelligent vehicle health management
(IVHM) for the X-37 experimental space transportation vehicle.

The Livingstone engine has two complementary modules. The Mode Identification module (MI) estimates
the current state of the system by tracking the commands issued to the device. It then compares the predicted
state of the device against observations received from the actual sensors. If a discrepancy is noticed, Livingstone
performs a diagnosis by searching for the most likely configuration of component states that are consistent with
the observations. Using this diagnosis, the Mode Recovery module (MR) can suggest an action to recover to a
given goal configuration.

The model used by Livingstone describes the normal and abnormal functional modes of each component in
the system, using a declarative formalism called MPL. The model is composed from a hierarchy of elementary
components, assembled into compound modules. Each component definition may have parameters and describes
the attributes and modes of the component. Attributes are the state variables of the component, ranging over
qualitative, discrete values: continuous physical domains have to be abstracted into discrete intervals such as
{low, nominal, high} or {neg, zero, pos}. Modes identify both nominal and fault modes of the component.
Each mode specifies constraints on the values that variables may take when the component is in that mode,
and how the component can transition to other modes (by definition, spontaneous transitions to any fault mode
can happen from any mode). The Livingstone model thus represents a combination of concurrent finite-state
transition systems.

2.2 Model Checking

Model checking is a verification technology based on the exhaustive exploration of a system’s achievable states.
Given a model of a concurrent system and an expected property of that system, a model checker will run through
all possible executions of that system, including all possible interleavings of concurrent threads, and report any
execution that leads to a property violation. We refer the reader to [12] and [13] for a general introduction to
the theory and practice of model checking.

Classical, explicit-state model checkers such as SPIN [14] do this by generating and exploring every single
state. In contrast, symbolic model checking manipulates whole sets of states at once, implicitly represented
as the logical conditions that those states satisfy. These conditions are encoded into data structures called
(Ordered) Binary Decision Diagrams (BDDs) [15], that provide a compact representation and support very
efficient manipulations.

Symbolic model checking can often address much larger systems than explicit state model checkers. It has
traditionally been applied to hardware systems, and is increasingly being used to verify software systems as
well. It does not work well for all kinds of models, however: the complexity of the BDDs can outweigh the
benefits of symbolic computations, and BDDs are still exponential in the size of the system in the worst case.

We have been using the Symbolic Model Verifier (SMV), from Carnegie Mellon University (CMU) [16]. SMV
was the first and is still one of the most widely used symbolic model checkers. The SMV software takes as input
a model to be verified, written in a custom modeling language. This model also contains the properties to be
verified, written in a variant of temporal logic known as Computation Tree Logic or CTL. Upon completion,
SMV reports a true/false answer for each specified property, along with an execution trace witnessing the



property violation, in case of a false answer. Internally, SMV uses BDD-based symbolic model checking as
described in the previous section. SMV does not reorder variables by default, but provides options to apply
reordering and to export and import variable orderings in text files that can be modified by the user. A new,
upward-compatible version of SMV, called NuSMV [17], has been re-built from scratch at IRST (Trento, Italy),
in collaboration with CMU. NuSMV features much improved performance, and a cleaner, well documented and
modular source code amenable to customization.

3 Simulation-Based Verification

This section is based on [2], and is joint work with Tony Lindsey (QSS).

This section discusses a flexible framework for simulating, analyzing and verifying autonomous controllers.
The proposed approach applies state space exploration algorithms to an instrumented testbed, consisting of the
actual control program being analyzed embedded in a simulated operating environment. This framework forms
the foundation of Livingstone PathFinder (LPF), a verification tool for autonomous diagnosis applications based
on NASA’s Livingstone model-based diagnosis system.

The approach we follow in the work presented is a composite between conventional testing and model
checking, here referred to as simulation-based verification. Similar to conventional testing, it executes the
real program being verified rather than an abstract model derived from the system. In order to support its
interactions, the program is embedded in a testbed that simulates its environment. On the other hand, as in
model checking the execution ranges over an entire graph of possible behaviors as opposed to a suite of linear
test cases. In the optimal setting, each visited state is marked to avoid redundant explorations of the same
state and can be restored for backtracking to alternate executions. Furthermore, sources of variation in the
execution, such as external events, scheduling or faults, are controlled to explore all alternatives.

The rationale behind simulation-based verification is to take the advanced state space exploration algorithms
and optimizations developed in the field of model checking and apply them to the testing of real code. By doing
so, we avoid the need for developing a separate model for verification purposes, and more importantly for
scrutinizing each reported violation to assess whether it relates to the real system or to a modeling inaccuracy.
Of course, simulation-based verification will in general be significantly less efficient and scalable than model
checking an abstract model of the same program. However, it should be seen as an evolutionary improvement
to traditional testing approaches, with important potential gains in scalability, automation and flexibility.

To enable their controlled execution, instrumentation is introduced in both the analyzed program and its
environment. To perform a true model-checking search, the tool should be capable of iterating over all alternate
events at each state, backtracking to previously visited states, and detecting states that produce the same
behavior. Some of these capabilities may be supported only partly or not at all, depending on the nature of the
different components in the testbed and the needs and trade-offs of the analysis being performed. For example,
a complex piece of software may provide checkpointing capabilities on top of which backtracking can easily be
built; however, state equivalence might require an analysis of internal data structures that is either too complex,
computationally expensive, or infeasible due to the proprietary nature of the software. In addition, this analysis
may not be worthwhile because equivalent states will seldom be reached anyway. Even if true backtracking
is not available, it can still be simulated by re-playing the sequence up to the desired state. This reduces the
exploration to a suite of sequential test cases, but the additional automation and flexibility in search strategies
can still be beneficial.

With these capabilities, the program and its testbed constitute a wvirtual machine that embodies a fully
controllable state machine, whose state space can be explored according to different strategies, such as depth-
first search, breadth-first search, heuristic-based guided search, randomized search, pattern-guided search or
interactive simulation. The environment portion of the testbed is typically restricted to a well-defined range of
possible scenarios in order to constrain the state space within tractable bounds.

Livingstone PathFinder can be considered on three different levels:

- As a wverification approach, LPF applies a combination of model checking and testing principles that we
refer to as simulation-based verification.

- As a program framework, LPF provides an infrastructure for applying simulation-based verification to
autonomous controllers.



- As a concrete program, LPF currently instantiates the framework to applications based on the Livingstone
diagnosis system.

The architecture of the LPF tool consists of the following three components:

- Diagnosis: the diagnosis system being analyzed, based on the Livingstone diagnosis engine, interpreting
a model of the physical system.

- Simulator: the simulator for the physical system on which diagnosis is performed. Currently this is a
second Livingstone engine interpreting a model of the physical system. The models used in the Diagnosis
and the Simulator are the same by default but can be different.

- Driver: the simulation driver that generates commands and faults according to a user-provided scenario
script. The scenario file is essentially a non-deterministic test case whose elementary steps are commands
and faults.

LPF accepts as input a Livingstone model of the physical system and a scenario script defining the class of
commands and faults to be analyzed. The model is used to perform model-based diagnosis and will be used
to simulate the system as well. The tool runs through all executions specified in the script, backtracking as
necessary to explore alternate routes. At each step, LPF checks for error conditions, such as discrepancies
between the actual simulated faults and those reported by diagnosis. If an error is detected, LPF reports the
sequence of events that led to the current state.

The PITEX experiment has demonstrated the application of Livingstone-based diagnosis to the main propul-
sion feed subsystem of the X-34 space vehicle [18, 19], and LPF has been successfully applied to the PITEX
model of X-34. This particular Livingstone model consists of 535 components and 823 attributes, 250 transitions,
compiling to 2022 propositional clauses.

4 Verification of Diagnosis Models

This section is based on [3] and is joiint work with Reid Simmons (CMU) and Peter Engrand (NASA KSC).

Livingstone involves the interaction between various components: the reasoning engine that performs the
diagnosis, the model that provides application-specific knowledge to it, the physical system being diagnosed,
the executive that drives it and acts upon diagnosis results. There are many ways that one could attempt to
provide better verification tools for all or parts of such a system, borrowing from various existing techniques,
from improved testing up to computer-supported mathematical proofs. The focus of the work presented here
is on the verification of the Livingstone model, by turning this model into a representation suitable for model
checking. Since the model is specific to the application that it is used for, it is indeed where the correctness
issues are most likely to occur during the development of a given application.

In many previous experiences in model checking of software, the system to be verified has been translated
by hand from its original design to the custom input syntax of the target verification tool. This translation is
by far the most complex and time-consuming part, typically taking weeks or months, whereas the running of
the verification is a matter of minutes or hours thanks to the processing power of today’s computers. The net
result is that software model checking has been so far mostly performed off-track by formal methods experts,
rather than by field engineers as part of the development process. This gap between verification and software
development formalisms and tools is recognized as one of the main obstacles to the widespread adoption of
formal verification by the software industry.

Our goal is to allow Livingstone application developers to use model checking to assist them in designing and
correcting their models, as part of their usual development environment. To achieve that, we have developed a
translator to automate the conversion between MPL and SMV. To completely isolate the Livingstone developer
from the syntax and technical details of the SMV version of his model, we need to address three kinds of
translation:

e The MPL model needs to be translated into an SMV model amenable to model checking.

e The specifications to be verified against this model need to be expressible in terms of the MPL model and
similarly translated.



e Finally, the diagnostic traces produced by SMV need to be converted back in terms of the MPL model.

We have developed a translator that covers these three aspects.

The translation of Livingstone models to SMV is facilitated by the strong similarities between the underlying
semantic frameworks of Livingstone and SMV. Both boil down to a synchronous transition system, defined
through propositional logic constraints on initial states, on all states and on transitions.

The CTL logic used for SMV specifications is very expressive but requires a lot of caution and expertise to
be used correctly. To alleviate this problem, the translator provides pre-defined specification templates for some
common classes of properties that are generally useful to check, independently of any given application. The
user can refer to them by their meaningful name, and the translator automatically produces the corresponding
CTL specifications. The translator also supports some additional features, such as auxiliary functions that
concisely capture Livingstone concepts such as occurrence of faults, activation of commands or probability of
faults.

When a violated specification is found, SMV reports a diagnostic trace, consisting of a sequence of states
leading to the violation. This trace is essential for diagnosing the nature of the violation. The states in the
trace, however, show variables by their SMV names. To make sense to the Livingstone developer, it has to be
translated back in terms of the variables of the original MPL model. This can done using the lexicon generated
for the model translation in the reverse direction. A more arduous difficulty is that the diagnostic trace merely
indicates the states that led to the violation but gives no indication of what, within those states, is really
responsible.

The translator has been used by Livingstone application engineers in the In-Situ Propellant Production
(ISPP) project at NASA Kennedy Space Center (KSC). The purpose of this experience was not only to experi-
ment with the translator and SMV, but also to study the potentials and challenges of putting such a tool in the
hands of application practitioners. The target was the In-Situ Propellant Production (ISPP) plant, a system
intended to produce spacecraft propellant using the atmosphere of Mars [10].

The size of the ISPP Model was 10'7 States. Although this is a relatively large state space, SMV needed
less than a minute to return a result. The size of the latest ISPP Model is on the order of 10°° states, and
can still be processed in a matter of minutes using an enhanced version of SMV [20]. The Livingstone model of
ISPP features a huge state space but little depth (all states can be reached within at most three transitions),
for which the symbolic processing of SMV is very appropriate. The experience has also been a steep learning
curve for the application developer in charge of the formal verification experiment at KSC.

5 Verification of Diagnosability

This section is based on [4] and is joint work with Alessandro Cimatti (IRST) and Roberto Cavada (IRST).

Diagnosability is the possibility for an ideal diagnosis system to infer accurate and sufficient run-time in-
formation on the behavior of the observed system. Diagnosability has been studied by several authors in the
domain of discrete systems [21, 22, 23, 24, 25] and timed systems [26].

The diagnosability problem can be formally characterized, using the idea of context, that explicitly takes
into account the run-time conditions under which it should be possible to acquire certain information. A
diagnosability condition for a given plant is violated if and only if a critical pair can be found. A critical pair
is a pair of executions that are indistinguishable (i.e. share the same inputs and outputs), but hide conditions
that should be distinguished (for instance, to prevent simple failures to stay undetected and degenerate into
catastrophic events). Given a plant being diagnosed, a coupled twin model of the plant can be defined and used
to search for critical pairs. The diagnosability problem can then be recast in terms of temporal logic formulae,
and reduced to a model checking problem over the coupled twin model.

We have developed a platform able to generate formal models for the twin plant, starting from Livingstone
models, absed on the Livingstone-to-SMV translator. Several diagnosability problems corresponding to inter-
esting scenarios from real-world applications were tackled by means of the NuSMV model checker [17]. An
experimental analysis shows that the verification of diagnosability can be practical: large Livingstone models
of space transportation systems are automatically analyzed within seconds by means of SAT-based symbolic
model checking techniques.



6 From Diagnosis to Knowledge

This section is based on [5] and is joint work with Franco Raimondi (UCL) and Alessio Lomuscio (KCL).

Recently, various extensions of model checking techniques and tools have been investigated for the verification
of richer modal logics that include modal operators to reason about time, knowledge, beliefs, and strategies. The
model checker MCK [27] is based on ordered binary decision diagrams (OBDDs), and supports the verification
of epistemic and temporal properties for systems defined on interpreted systems semantics. Similarly, the tool
MCMAS [28] uses OBDDs and allows to reason about time, knowledge, and correct behaviour of agents. The
development of these tools is motivated by the interest in the automatic verification of various scenarios in which
it seems more natural to reason about epistemic properties of multi-agent systems [29], as in communication
and security protocols.

In particular, we have investigated how diagnosability and recoverability can be expressed as temporal-
epistemic specification patterns. For instance, diagnosability can be naturally expressed by ascribing a form
of knowledge to a diagnoser: a diagnoser is able to diagnose a fault f iff the diagnoser always knows whether
f or =f. Diagnosability and recoverability properties of a system correspond, respectively, to the feasibility
of diagnosing and recovering from faults in that system, given available observable and controllable variables
(sensors and actuators). In this sense, they are particular forms of observability /controllability properties found
in classical control theory. As opposed to the approach discussed in the previous section, in this case we represent
diagnosability by using epistemic and temporal properties of agents. Following this, we have used a MCMAS
[28] to verify a Livingstone model. MCMAS is a model checker for the verification of temporal, epistemic,
and correctness properties of agents. MCMAS extends to more complex logics the traditional model checking
algorithms for CTL [12] and uses OBDDs [15] as an efficient encoding technique.
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