Simulation-Based Verification of Livingstone Applications

A.E. Lindsey*

Abstract

Al software is viewed as a means to give greater auton-
omy to automated systems, capable of coping with harsh
and unpredictable environments in deep space missions.
Autonomous systems pose a serious challenge to traditional
test-based verification approaches, because of the enor-
mous space of possible situations that they aim to address.
Before these systems are put in control of critical applica-
tions, appropriate new verification approaches need to be
developed. This article describes Livingstone PathFinder
(LPF), a verification tool for autonomous diagnosis appli-
cations based on NASA’s Livingstone model-based diagno-
sis system. LPF applies state space exploration algorithms
to an instrumented testbed, consisting of the Livingstone
diagnosis system embedded in a simulated operating envi-
ronment. The article describes different facets of LPF and
reports some experimental results from applying LPF to a
Livingstone model of the main propulsion feed subsystem of
the X-34 space vehicle.

1. Introduction

Al software is being considered more often as a means
to give greater autonomy to automated systems, substituting
for humans in places where they cannot or would not go
themselves, such as distant planets, deep waters or battle
fields. This trend is best exemplified by NASA’s need for
autonomous spacecraft, rovers, airplanes, and perhaps even
submarines, capable of coping with harsh and unpredictable
environments in deep space missions.

While autonomous systems offer promises of improved
capabilities at a reduced operational cost, they pose a se-
rious challenge to traditional test-based verification ap-
proaches, because of the enormous space of possible situ-
ations that they aim to address. Before these systems are
put in control of critical applications, appropriate new veri-
fication approaches need to be developed.

*QSS Group, NASA Ames Research Center, Moffett Field, CA 94035,
tlindsey@t ol eny. arc. nasa. gov

TRIACS, NASA Ames Research Center, Moffett Field, CA 94035,
pecheur @t ol eny. ar c. nasa. gov

Charles Pecheur

This paper describes Livingstone PathFinder (LPF), a
verification tool for autonomous diagnosis applications
based on NASA’s Livingstone model-based diagnosis sys-
tem. LPF applies state space exploration algorithms to an
instrumented testbed, consisting of the Livingstone diagno-
sis system embedded in a simulated operating environment.

Section 2 provides an overview of Livingstone; Section 3
describes the LPF architecture; Section 4 discusses its ap-
plicability; Section 5 reviews some experimental results;
Section 6 compares LPF to related verification approaches;
Section 7 draws conclusions and discusses some perspec-
tives.

2. Livingstone

Livingstone is a model-based diagnosis system that uses
a qualitative model of the different components of a phys-
ical plant and their interactions, both under nominal and
faulty conditions [7]. It tracks the commands issued to the
physical system, then compares the state predicted by the
model against observations received from physical sensors.

If a discrepancy is detected, Livingstone performs a di-
agnosis by searching for combinations of faults that are con-
sistent with the observations. Each combination is called a
candidate and has an associated rank estimating its prob-
ability, higher ranked candidates being less likely. Liv-
ingstone’s best-first search algorithm returns more likely,
lower ranked candidates first. In particular, when the nom-
inal case is consistent with Livingstone’s observations, the
empty candidate (of rank 0) is generated.

The Livingstone fault diagnosis and recovery kernel has
successfully been applied to the Remote Agent Experiment
(RAX) demonstration on Deep Sapce 1 (DS-1) in 1999. A
new generation of Livingstone, called L2, includes tempo-
ral trajectory tracking. Further extensions supporting more
general constraint types (hybrid discrete/continuous mod-
els) are under investigation.

3. Livingstone PathFinder

Livingstone PathFinder (LPF) is a simulation-based tool
for analyzing and verifying Livingstone-based diagnosis ap-

plications. LPF executes a Livingstone diagnosis engine,
embedded into a simulated environment, and runs that as-
sembly through all executions described by a user-provided
scenario file, while checking for various selectable error
conditions after each step.

The architecture of LPF is depicted in Figure 1. The tool
is built in a modular way with generic interfaces, to allow
easy substitution of alternative versions of its different parts.
Altogether, this provides a flexible, extensible framework
for simulation-based analysis of diagnosis applications.

The testbed under analysis consists of the following three
parts:

- Diagnosis: the diagnosis system being analyzed. LPF
currently supports the Livingstone engine; extension to
the Titan system [1] is under study.

- Simulator: the simulator for the device on which di-
agnosis is performed. Currently a second Livingstone
engine instance is used for the simulator module, but
the architecture is open to other alternatives.

- Driver: the simulation driver that generates commands
and faults according to a user-provided scenario file.

All three components are instrumented so that their exe-
cution can be single-stepped in both forward and backward
directions. The Search Engine controls the order in which
the resulting graph of possible executions is explored.

— Driver

4—[Scenario] :

Diagnosis
set state

T
E

S

T Hel Eng 4—[

Engine Model

B single step
E

D

Search
Engine

get state

A ensors tpacktrack

:‘;L Simulator 4—[Model] |

ar
& faults

—
—=s

Figure 1. Livingstone PathFinder Architecture

The scenario file is essentially a non-deterministic pro-
gram whose elementary instructions are commands and
faults. Scenarios are built from individual instructions using
sequential, concurrent (interleaved) and choice statements.
The sample scenario in Figure 2 defines a sequence of three
commands cnd1, cnd2 and cnd3, with one fault chosen
among f |1 t Aand f | t B occurring at some point in the se-
quence. LPF provides a way to automatically generate a
scenario combining all commands and faults of a model fol-
lowing the same sequence/choice pattern.

Each event produced by the Driver is passed to the Sim-
ulator, which updates its state accordingly. Commands (but
not faults) are also passed to Diagnosis. Updated observable

m x {
"conmand cnd1";
"command cnd2";
"command cnd3";

} and {
choose "fault fltA";
or "fault fltB";

Figure 2. Sample LPF scenario

variables are then extracted from the Simulator and passed
on to Diagnosis. This cycle is repeated along all sequences
covered by the scenario, saving and restoring intermediate
states to explore alternate routes. User-selectable proper-
ties, such as consistency between the diagnosis results and
the actual state of the Simulator, are checked at each step,
and a trace is reported if a violation is detected.

3.1. LPF Error Conditions

In each state along its exploration, LPF can check one or
several error conditions among a user-selectable set. Cur-
rently, LPF supports the following error conditions:

- Simulator consistency: Simulator reaches an inconsis-
tent state, typically occurring after executing a com-
mand or injecting a fault that results in conflicts among
the model constraints and assignments.

- Diagnosis consistency: Diagnosis reaches an inconsis-
tent state, after failing to find any candidate consistent
with previous commands and observations.

- Mode comparison: compares the modes of all compo-
nents in the Simulator to those assumed by Diagnosis,
and reports any discrepancy.

- Candidate matching: checks that at least one Diagno-
sis candidate matches (i.e. has the same faults as) the
Simulator state.

- Candidate subsumption: checks that at least one Diag-
nosis candidate subsumes (i.e. has its faults included
in) the Simulator state.

While the first two conditions can prove to be useful de-
bugging tools, the subsequent conditions address the core
of diagnosis correctness at three different levels of general-
ity, from the most restrictive to the least. They constitute
three successive refinement steps of the intuition that diag-
nosis should properly track the state of the (simulated) sys-
tem. Mode comparison only considers the most likely can-
didate and reports errors even if another reported candidate
matches the state, which is overly restrictive in practice. In-
stead, candidate matching considers all candidates. Even
then, a fault may often stay unnoticed without causing any

harm, as long as its component is not solicited. Experience
shows that this is a frequent situation, causing a large pro-
portion of spurious error reports. In contrast, candidate sub-
sumption only reports cases where none of the diagnosed
fault sets is included in the actual fault set. In particular,
the empty candidate subsumes any fault set and thus never
produces an error. While this will not detect cases where
Diagnosis misses harmful faults, it will catch cases where
the wrong faults are reported. This condition has proven to
be the most productive so far, as further discussed in Sec-
tion 5.

3.2. Simulatorsin LPF

The modular design of LPF allows the use of different
simulators through a generic application programming in-
terface (API). As a first step, we have been using a sec-
ond Livingstone engine instance for the Simulator (used in
a different way: simulation infers outputs from inputs and
injected faults, whereas diagnosis infers faults given inputs
and outputs).

Using the same model for simulation and diagnosis, as
this implies, may appear as circular reasoning but has its
own merits. It provides a methodological separation of con-
cerns: by doing so, we validate operation of the diagnos-
tic system under the assumption that the diagnosis model is
a perfect model of the physical system, thus concentrating
on proper operation of the diagnosis algorithm itself. Inci-
dentally, it also provides a cheap and easy way to set up a
verification testbed, even in the absence of an independent
simulator.

On the other hand, using the same model for the simula-
tion ignores the issues due to inaccuracies of the diagnosis
model w.r.t. the physical system, which is a main source of
problems in developing model-based applications. We are
currently considering integration of higher fidelity simula-
tors (e.g. Matlab or Simulink models). We have already
been studying integration of NASA Johnson Space Center’s
CONFIG simulator system [2]. Note that higher fidelity
simulators are likely to be less flexible and efficient; for ex-
ample, they may not have backtracking or checkpointing.

3.3. Search Strategies

LPF supports alternative state space exploration strate-
gies. The first implemented search strategy is a straightfor-
ward depth-first search; and an implementation of best-first
search using configurable fitness functions has just been
completed. Other strategies, such as interactive (i.e. user-
driven) or randomized search, are under consideration.

Best-first search uses a fitness function to rank different
states according to a given criterion and explores them in
that order. For example, one heuristic used favors situa-

tions where fewer diagnostics were found, as they are more
likely to lead to a case where no diagnostic can be found.
Further experiments are planned to define and compare dif-
ferent heuristics for this kind of application.

3.4. Implementation Notes

LPF is written in Java and makes heavy use of Java inter-
faces to support its modular architecture. The core source
base has 47 classes totaling 7.4K lines. The top-level soft-
ware architecture mimics the structure of Figure 1 above,
with generic interfaces M R (Mode Identification and Re-
covery, i.e. Diagnosis) and Si nul at or .

LPF as a whole implements the Generic Verification En-
vironment (GVE) API, which defines the interaction be-
tween a dynamic transition system and the search algo-
rithm that explores it. Concretely, the heart of GVE is
a Vi rtual Machi ne interface, defining generic meth-
ods for enumerating transitions and saving and restoring
states. This allows re-use of search engines across differ-
ent GVE-based applications. In LPF, the Diagnosis and its
testbed together implement a Vi r t ual Machi ne that can
be searched in various ways. As another example, Java
PathFinder (JPF) [4] uses a customized Java virtual ma-
chine to provide a GVE interface for analyzing Java pro-
grams. Indeed, the best-first search code used in LPF was
initially developed for JPF. Incidentally, the Driver is also
built as an assembly of simple Vi r t ual Machi ne objects.

The Livingstone engine is a C++ program; it is accessed
by LPF through a Java Native Interface (JNI). We have
worked in close cooperation with Livingstone developers to
ensure that all necessary functionality is accessible through
the JNI. In particular, a checkpointing mechanism has been
added to Livingstone to support backtracking search in LPF.
For performance reasons, checkpoints are kept inside the
Livingstone engine; only references are passed through the
JNI.

The latest version of LPF offers a number of useful aux-
iliary capabilities, such as generating an expanded scenario
tree, counting scenario states, exploring the simulator alone
(no diagnosis), generating a default scenario, and produc-
ing a wide array of diagnostic and debugging information,
including traces that can be replayed in Livingstone simula-
tion tools.

4. Verification Using LPF

Because it executes the actual Livingstone system, LPF
is a fairly general verification tool for Livingstone applica-
tions, in that it can reveal the following different types of
problems:

- Engine errors, i.e. inaccurate diagnosis due to errors
in the diagnosis program. These are not the main con-

cern, as the engine is re-used across many applications
and therefore presumably more mature and stable.

- Diagnosability errors, i.e. inaccurate diagnosis due to
lack of observability of the system’s internal state.

- Incompleteness errors, i.e. inaccurate diagnosis due
to intentionally incomplete search (e.g. due to limited
memory resources).

- Modeling errors, i.e. inaccurate diagnosis due to as-
pects of the system incorrectly or too coarsely repre-
sented in the Livingstone model. This a major issue,
as Livingstone operates on highly abstracted models
of the physical system.

- Integration errors, where the diagnosis system fails to
properly interact with its simulated environment, and
the simulator in particular.

The last two items become relevant only when a higher-
fidelity simulation of the diagnosed system is used. Alterna-
tively, using the same Livingstone model for the simulator
focuses exclusively on engine, diagnosability and incom-
pleteness errors.

5. Experimental Results

Livingstone is being considered for Integrated \Vehicle
Health Maintenance (IVHM) for NASA’s next-generation
space vehicles. In that context, the PITEX experiment has
demonstrated the application of Livingstone-based diagno-
sis to the main propulsion feed subsystem of the X-34 space
vehicle [8, 3], and LPF has been successfully applied to
the PITEX model of X-34. That Livingstone model con-
tains 535 components and 823 attributes, compiling down
to 2022 propositional clauses.

Two different scenarios have been used to analyze the
X-34 model:

- The random scenario covers a set of commands and
faults combined according to the sequence/choice pat-
tern of Figure 2. This scenario is a trimmed down
version of the one generated by LPF, and covers over
10,000 states.

- The PITEX scenario combines one nominal and 29
failure scenarios, derived from those used by the PI-
TEX team for testing Livingstone, as documented in
[3]. This scenario has 88 states.

LPF covers the random scenario at an average rate of 50
to 100 states per minute. Early experiments demonstrated
the technical viability of the approach and provided infor-
mative feedback to the developers. Experience revealed a
need for improved post-treatment of generated results, to
filter critical information from large amounts of generated
data. Using the candidate matching condition, both scenar-
ios report an excessive number of errors, most of which are
irrelevant.

However, verification over the random scenario using the
candidate subsumption condition reported five violations
(the PITEX scenario shows none). As an example, one of
the reported errors involves a solenoid valve, sv02, which
sends pressurization helium into a a rocket propellant tank:
acommand cl ose is issued to the valve, but the valve fails
and remains open—in LPF terms, a fault is injected in the
simulator. This scenario corresponds to the following se-
quence of LPF events:

command test.sv02. val veCndl n=cl ose
fault test.sv02. rplsv. node=stuckOpen

At this point, LPF reports a violation of the candidate
subsumption condition, indicating that none of the candi-
dates found by Diagnosis covers the injected fault. The fault
is detected (otherwise no faulty candidates would be gener-
ated), but incorrectly diagnosed. Indeed, the candidates and
ranks after the fault occurs are:

Candi dat e 0)

4#t est . sv02. openMs. nodeTransi ti on=faulty : 3
Candi date 1)

3#t est. sv02. openMs. nodeTransi tion=faulty :3
Candi date 2)

2#t est. svQ2. openMs. nodeTransi tion=faulty :3
Candi date 3)

-#test.svQ2. openMs. nodeTransi tion=faulty : 3

Candi date 4)
- #test.sv02. rplsv. nodeTransi ti on=unknown : 4

The first four candidates consist of a faulty open mi-
croswitch sensor at different time steps (microswitches re-
port the valve’s position). The last candidate consists of an
unknown solenoid valve fault mode.

As of this writing, this error is still under investigation.
There are a number of explanations that could account for
the improper diagnosis: fault ranks in the X-34 model may
need retuning; the number of candidates returned or the Liv-
ingstone search space (number of candidates Livingstone
searches over to find the diagnosis) may need to be in-
creased; or issues with the Livingstone program itself need
deliberation.

6. Related Work

Livingstone PathFinder is a hybrid between testing, in
the sense that it executes the real program code, and model
checking, because it can backtrack among alternative exe-
cutions to explore a non-deterministic state graph. As men-
tioned in Section 3.4, its top-level architecture is shared
with Java PathFinder [4].

The VeriSoft tool [5] is another example where a back-
tracking search is applied to real code. Under a different
perspective, the Livingstone-to-SMV translator [6] is an-
other complementary verification tool for Livingstone ap-
plications, focusing exclusively on the Livingstone model
but allowing true exhaustive analysis through the use of
symbolic model checking.

7. Conclusions and Perspectives

Livingstone PathFinder (LPF) is a software tool for au-
tomatically analyzing model-based diagnosis applications
across a wide range of scenarios. Livingstone is its current
target diagnosis system, however the architecture is mod-
ular and adaptable to other systems. LPF has been suc-
cessfully demonstrated on a real-size example taken from
a space vehicle application.

LPF is under active development, in close collaboration
with Livingstone application developers at NASA Ames.
After considerable efforts resolving technical issues in both
LPF and relevant parts of Livingstone, we are now return-
ing useful results to application specialists, who in turn re-
ciprocate much needed feedback and suggestions on fur-
ther improvements. The candidate subsumption error con-
dition is the latest fruit of this interaction. Directions for
further work include new search strategies and heuristics,
additional error conditions including capture of application-
specific criteria, improved post-treatment and display of the
large amount of data that is typically produced.

We are also investigating adapting LPF to use MIT’s Ti-
tan model-based executive [1], which offers a more compre-
hensive diagnosis capability as well as a reactive controller.
This extends the verification capabilities to involve the re-
mediation actions taken by the controller when faults are di-
agnosed. In this regard, LPF can be considered as evolving
towards a versatile system-level verification tool for model-
based controllers.

Acknowledgments

This research is funded by NASA under ECS Project
2.2.1.1, Validation of Model-Based IVHM Architectures.
The Authors would like to thank Livingstone application
developers at NASA Ames, especially Sandra Hayden and
Adam Sweet, for their active cooperation, and Livingstone
lead developer Lee Brownston for his responsive support.

References

[1] B. Williams, M. Ingham, S. Chung and P. Elliot, Model-based Pro-
gramming of Intelligent Embedded Systems and Robotic Space Ex-
plorers. To appear in IEEE Modelings and Design of Embedded
Software, (August 2002).

[2] L.Fleming, T. Hatfield and J. Malin. Simulation-Based Test of Gas
Transfer Control Software: CONFIG Model of Product Gas Trans-
fer System. Automation, Robotics and Simulation Division Report,
AR&SD-98-017, (Houston, TX:NASA Johnson Space Center Cen-
ter, 1998).

[3] H.Cannonand C. Meyer. PITEX Option 1 Expansion Path Test Plan
Version 1.1. Propulsion IVHM Technology Experiment Project,
(NASA Ames & Glenn Research Center, 2003).

[4]

[5]

[6]

[71

(8]

W. Visser, K. Havelund, G. Brat and S. Park. Model Checking Pro-
grams. International Conference on Automated Software Engineer-
ing. September 2000.

P. Godefroid. Model Checking for Programming Languages using
VeriSoft. Proceedings of the 24th ACM Symposium on Principles
of Programming Languages, pages 174-186, Paris, January 1997.

Charles Pecheur, Reid Simmons. From Livingstone to SMV: Formal
Verification for Autonomous Spacecrafts. In:Proceedings of First
Goddard Workshop on Formal Approaches to Agent-Based Sys-
tems, NASA Goddard, April 5-7, 2000. In: Lecture Notes in Com-
puter Science, vol. 1871, Springer Verlag.

B. Williams and P. Nayak, A Model-based Approach to Reactive
Self-Configuring Systems. Proceedings of the National Conference
on Artificial Intelligence, (August 1996).

A. Bajwa and A. Sweet. The Livingstone Model of a Main Propul-
sion System. In Proceedings of the IEEE Aerospace Conference.
IEEE, 2002.

