
© Charles Pecheur, RIACS / NASA Ames 1

Advanced Modeling and Verification Techniques
Applied to a Cluster File System

Charles Pecheur

RIACS / NASA Ames
pecheur@ptolemy.arc.nasa.gov

Work performed at INRIA Rhône-Alpes (F)

© Charles Pecheur, RIACS / NASA Ames 2

Introduction

Show two advanced formal verification techniques...
– Compositional model generation

– Extensible temporal logic verification

... on a real-size application.
– CFS distributed file system

© Charles Pecheur, RIACS / NASA Ames 3

User

ARIAS

Cluster File System (CFS)

• Distributed file system

• On top of ARIAS:
shared memory architecture

• From Bull, in AIX

• Dynamic master/slave

• CFS Protocol calls:
BeginWrite/EndWrite
BeginRead (no EndRead)

• CFS messages:
Read/Write Req/Ans, Invalidate

NB: causes memory updates

local copy local copy

shared virtual memory space

CFS
protocol

generic CFS

Application

file I/O

R/W

CFS messages

© Charles Pecheur, RIACS / NASA Ames 4

LOTOS

• Formal Specification Language (ISO 8807)
– Control: process algebra (CCS, CSP)

– Data: algebraic data types (ACT ONE)
+ syntax extensions (APERO)

"the spec(ification)"

• Semantics: labeled transition system (LTS)
= state graph with labels on edges

"the model"

© Charles Pecheur, RIACS / NASA Ames 5

CAESAR/ALDEBARAN Toolset

• From INRIA & VERIMAG (Grenoble)

CAESAR:
Generate models from specs

ALDEBARAN:
Minimize and compare models

+ GUI + simulator + temporal logic
+ on-the-fly + other formalisms + ...

ALDEBARAN

Spec
(LOTOS)

CAESAR

Model
(LTS)

Minimal Model
(LTS)

© Charles Pecheur, RIACS / NASA Ames 6

Specification of CFS

• Describes:
– CFS protocol

– ARIAS communications

– ARIAS memory mgt

– Users (= environment)

• For model checking
=> keep it small:
– One memory block

– 3 sites

– 3 x one-slot queue

User
User
OutputQMemory

User
User
CFSProt

User
User

User

readwrite

req ans

send recv

© Charles Pecheur, RIACS / NASA Ames 7

Specification of User

• Enforces correct use of CFS calls

• Otherwise very general – not a test scenario
repeat forever -- NB: this is NOT LOTOS!
 choose either {
 CFSCall(Read);
 read;
 } or {
 CFSCall(BeginWrite);
 write;
 CFSCall(EndWrite);
 } endchoose
endrepeat

© Charles Pecheur, RIACS / NASA Ames 8

Compositional Model Generation

S1||S2

CAESAR

M1×M2

Mmin

ALDEBARAN

TOO BIG!

LOTOS spec

models

CAESAR

ALDEBARAN

S1||E2 E1||S2

CAESAR

M1' M2'

ALDEBARAN

M1'min M2'min

M1min×M2min

EXP.GEN

ALDEBARAN

© Charles Pecheur, RIACS / NASA Ames 9

Environments for Composition

M1

S1

CAESAR

S1, S2 tightly coupled

S1 alone =>
many irrelevant situations

S1||E2

CAESAR

M1'

E2 =
conservative approximation

of S2 as seen from S1

(S1||E2)||S2 ≈ S1||S2

TOO BIG!

© Charles Pecheur, RIACS / NASA Ames 10

Generating a Model of CFS

Site||EnvSite
75/130

OutputQ||EnvOutputQ
13/30

Medium
2197/15210

CFSControl
11031/34728

User
6/14

Memory
8/504

UserMemory
1728/103680

CFSSystem
66324/350532

Abstract
14/90

Abstract2
196/2520

hide all but
{read, write}

#states/#trans (minimized)2.7M/9.2M

© Charles Pecheur, RIACS / NASA Ames 11

XTL

• Temporal Logic Checker for LTS

• Programmable => different logics as libraries

• I used ACTL (branching-time logic with actions)

• Example: EXA F = "F can be reached after A"
def EX_A (A : labelset , F : stateset) : stateset =
 { S : state where
 exists T : edge among out (S) in
 (label (T) among A) and
 (target (T) among F)
 end_exists
 }
end_def

types and functions
to walk through the model

© Charles Pecheur, RIACS / NASA Ames 12

Printing Explanations in XTL

• Default ACTL library: backward search
+ Checks if ϕ holds in M in O(|M|.|ϕ|)

– No explanation if ϕ does not hold

• New ACTL library: forward search
Uses macros to simulate 2nd order functions

+ Prints trace (when it makes sense)

+ Can bind data (e.g. send ?x => eventually receive !x)
– Checks if ϕ holds in M in O(|M||ϕ|)

Worst case is costly, but linear for simple
formulas and explanations are very useful.

© Charles Pecheur, RIACS / NASA Ames 13

Properties of CFS

• General Principle:
1. Verify on Abstract (very small)

2. If needed, generate diagnostic on CFSSystem (big)

• No given formal properties to check => explore!

• Simple Properties:
– No global deadlock (OK)

– No local deadlock (OK)

– Deterministic (FAIL because of abstraction)

– Values propagate (OK with fairness)

© Charles Pecheur, RIACS / NASA Ames 14

Consistency Properties

• Atomic coherency
All sites see the same history at the same time

= Distributed data is equivalent to local data

OK for write/write, FAIL for others

Expected considering loose sync. on read

• Sequential consistency
All sites see the same history, possibly with delays

OK for one block

FAIL for two blocks (using Abstract2)

© Charles Pecheur, RIACS / NASA Ames 15

Conclusions

• Approx. 4 man.month including:
– Writing the specification
– Doing compositional generation
– Developing the new XTL library
– Doing verification

• Results
– Verification for program understanding

– LOTOS specification & tools => basis for future experiments

• Tools
– Can address real-size problems (with tools, CPU & expertise)
– XTL: flexible, needs on-the-fly capabilities

© Charles Pecheur, RIACS / NASA Ames 16

Atomic vs. Sequential Consistency

1 1

2

2

write 2

read 1

