
© Charles Pecheur 1Dagstuhl 5-9 Nov 2001

Symbolic Model Checking
of Domain Models

for Autonomous Spacecrafts

Charles Pecheur (RIACS / NASA Ames)

© Charles Pecheur 2Dagstuhl 5-9 Nov 2001

Model-Based Autonomy

Goal: "intelligent" autonomous
spacecrafts
– cheaper (smaller ground control)

– more capable (delays, blackouts)

• General reasoning engine +
application-specific model

• Use model to respond to
unanticipated situations

• For planning, diagnosis

• Huge state space,
reliability is critical

Reasoning
Engine

Model

commands status

Spacecraft

Autonomous controller

model of

© Charles Pecheur 3Dagstuhl 5-9 Nov 2001

MRMI

C
o

m
m

a
n

d

Discretized
Observations

Mode
updates

Goals
Model

Reconfig
Command

current state

Plan Execution System

High level operational plan

Livingstone

Courtesy Autonomous Systems Group, NASA Ames

Livingstone

Remote Agent's model-based diagnosis sub-system

© Charles Pecheur 4Dagstuhl 5-9 Nov 2001

Livingstone Models

• concurrent transition
systems (components)

• synchronous product

• enumerated types
=> finite state

Essentially ≈ SMV model

+ nominal/fault modes,
commands/monitors (I/O),
probabilities on faults, ...

ClosedClosed

ValveValve

OpenOpen StuckStuck
openopen

StuckStuck
closedclosed

OpenOpen CloseClose

inflow = outflow = zero

Courtesy Autonomous Systems Group, NASA Ames

p=0.001p=0.001

p=0.01p=0.01

Diagnosis = find the most likely assumptions (modes)
that are consistent with the observations (commands/monitors)

inflow = outflow

inflow, outflow : {zero,low,high}

© Charles Pecheur 5Dagstuhl 5-9 Nov 2001

Large State Space?
• Example: model of ISPP = 7.16·1055 states
• This is only the Livingstone model – a complete

verification model could be
Exec driver (10-100 states)

x Spacecraft simulator (1055 states)
x Livingstone system (keeps history – 10n·55 states)

• Verify a system that analyzes a large state space!
• Approach: the model is the program

– Verify it (using symbolic model checking)
– Assume Livingstone correct (and complete)

© Charles Pecheur 6Dagstuhl 5-9 Nov 2001

MPL2SMV

Livingstone
Model

SMV
Model

Livingstone
Requirement

SMV
Requirement

Livingstone
Trace

SMV
Trace

Livingstone

SMV

M
P
L

2

S
M
V

Autonomy Verification

© Charles Pecheur 7Dagstuhl 5-9 Nov 2001

Translator from Livingstone
to SMV

• Co-developed with CMU (Reid Simmons)
• Similar semantics => translation is easy
• Properties in temporal logic + pre-defined patterns
• Initially for Livingstone 1 (Lisp),

upgraded to Livingstone 2 (C++/Java)

© Charles Pecheur 8Dagstuhl 5-9 Nov 2001

(load "mpl2smv.lisp")
;; load the translator
;; Livingstone not needed!

(translate "ispp.lisp" "ispp.smv")
;; do the translation

(smv "ispp.smv")
;; call SMV
;; (as a sub-process)

Principle of Operations

(defcomponent heater …)
(defmodule valve-mod …)
…
(defverify
 :structure (ispp)
 :specification (all (gl obally …)))

(defcomponent heater …)
(defmodule valve-mod …)
…
(defverify
 :structure (ispp)
 :specification (all (gl obally …)))

MODULE Mheater …
MODULE Mvalve-mod …
…
MODULE main
VAR Xispp :Mispp
SPEC AG …

MODULE Mheater …
MODULE Mvalve-mod …
…
MODULE main
VAR Xispp :Mispp
SPEC AG …

Specification AG … is fal se as shown …
State 1.1: …
State 1.2: …

Specification AG … is fal se as shown …
State 1.1: …
State 1.2: …

ispp.lisp

ispp.smv

SMV output

Lisp shell

© Charles Pecheur 9Dagstuhl 5-9 Nov 2001

Simple Properties

• Supported by the translator:
– syntax sugar

– iterate over model elements (e.g. all component modes)

• Examples
– Reachability (no dead code)

EF heater.mode = on

– Path Reachability (scenario)
AG (s1 –> EF (s2 & EF (s3 & EF s4)))

© Charles Pecheur 10Dagstuhl 5-9 Nov 2001

Probabilistic Properties

• Use probabilities associated to failure transitions

• Use order of magnitude: -log(p), rounded to a
small integer

• Combine additively, OK for BDD computations

• Approximate – but so are the proba. values

heater.mode = overheat -> heater.proba = 2; (p = 0.01)

proba = heater.proba + valve.proba + sensor.proba;

SPEC AG (broken & proba < 3 –> EF working)

© Charles Pecheur 11Dagstuhl 5-9 Nov 2001

Functional Dependency

• Check that y=f(x) for some unknown f
• Use universally quantified variables in CTL

= undetermined constants in SMV
VAR x0,y0 : {a,b,c};
TRANS next(x0) = x0
TRANS next(y0) = y0
SPEC (EF x=x0 & y=y0) –> (AG x=x0 –> y=y0)

• Limitation: counter-example needs two traces,
SMV gives only one
=> instantiate second half by hand, re-run SMV

≈ ∀ x0, y0

© Charles Pecheur 12Dagstuhl 5-9 Nov 2001

Temporal Queries

• Temporal Query = CTL formula with a hole:
AG (? –> EF working)

• Search (canonical) condition for ? that satisfies the
formula (computable for useful classes of queries)

• Recent research, interrupted (William Chan,
†1999)

• Problem: visualize solutions (CNF, projections, ...)

• Core algorithm implemented in NuSMV
(Wolfgang Heinle)

• Deceptive initial results, to probe further

© Charles Pecheur 13Dagstuhl 5-9 Nov 2001

SMV with Macro Expansion

• Custom version of SMV (Bwolen Yang, CAV 99)

• Eliminates variables by Macro Expansion:
– analyzes static constraints of the model (invariants),

– find dependent variables x=f(x1,...,xn),
– substitute f(x1,...,xn) for x everywhere,

– eliminate x from the set of BDD variables.

• For models with lots of invariants
=> useful for Livingstone models

• Full ISPP model in < 1 min, vs. SMV runs out of
memory.

© Charles Pecheur 14Dagstuhl 5-9 Nov 2001

ISPP Model Statistics

• In Situ Propellant Production (ISPP)
= turn Mars atmosphere into rocket fuel (NASA KSC)

• Original model state = 530 bits (trans. = 1060 bits)

• Total BDD vars 588 bits
Macro expanded -209 bits
Reduced BDD vars 379 bits

• Reachable state space7.16·1055 = 2185.5

Total state space 1.06·1081 = 2269.16

• Reachability of all modes (163):
29.14" CPU time in 63.6 Mb RAM

© Charles Pecheur 15Dagstuhl 5-9 Nov 2001

Diagnosis Properties

• Can fault F always be diagnosed?
(assuming perfect diagnosis and accurate model)
= is F unambiguously observable?
∀ obs0 . (EF F & obs=obs0) –> (AG F –> obs=obs0)

• Similar to functional dependency

• obs = observable variables (many of them)

• Static variant (ignore transitions):
SAT on two states S, S' such that
F & ! F' & obs=obs'

© Charles Pecheur 16Dagstuhl 5-9 Nov 2001

• Very recent (yesterday), with Alessandro Cimatti

• Can fault F be diagnosed knowing the last n steps?

• Apply SAT to:

• Variants are possible (e.g. fork at n-1 intead of 0)

Diagnosis Properties Revisited

...

x0

x1

x1'

x2

x2'

xn

xn'

T

T

T

T

T

T

T

T

cmd
obs

cmd
obs

cmd
obs

F

! F...

© Charles Pecheur 17Dagstuhl 5-9 Nov 2001

Diagnosis Properties (cont'd)

• Does it work?
– Computational cost of extra variables

• Has it been done?
– Similar work in hardware testability?

• Is it useful?
– It is unrealistic to expect all faults to be immediately

observable (e.g. valve closed vs. stuck-closed)

– What weaker properties? Are they verifiable?

• To be explored

© Charles Pecheur 18Dagstuhl 5-9 Nov 2001

Summary

• Verification of model-based diagnosis:
– Space flight => safety critical.
– Huge state space (w.r.t. fixed command sequence).

• Focus on models (the model is the program)
• Quite different from executable programs

– Loose coupling, no threads of control, passive.
– Huge but shallow state spaces.

• Symbolic model checking is very appropriate
• Verify well-formedness + validity w.r.t. hardware
• Verify suitability for diagnosis: to be explored

© Charles Pecheur 19Dagstuhl 5-9 Nov 2001

Thank You

