
FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 1

Charles Pecheur, UC Louvain
(formerly RIACS / NASA Ames)

Verification of Embedded Software
from Mars to Actions

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 2

From Mars ...

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 3

... to Actions

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 4

Outline

Model-Based Autonomy and Diagnosis
Verification of Model-Based Controllers

Verification of Diagnosability

Symbolic Verification with Knowledge

Symbolic Verification with Actions

Conclusions

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 5

Autonomy (at NASA)

Autonomous spacecraft = on-board intelligence (= AI)

• Goal: Unattended operation in an
unpredictable environment

• Approach: model-based reasoning
• Pros: smaller mission control crews,

no communication delays/blackouts
• Cons: Verification and Validation ???

Much more complex, huge state space
• Better verification is critical for adoption

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 6

Model-Based Autonomy

• Based on AI technology
• Generic reasoning engine

+ application-specific model
• Model describes (normal and

faulty) behaviour of the process
• Engine selects control actions "on-

the-fly" based on the model
– ... rather than pre-coded decision

rules
– better able to respond to

unanticipated situations

Reasoning
Engine

Domain
Model

commands observations

Process

Controller

model of

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 7

Livingstone

C
om

m
and

Observations

State
update

Model
Controller

Courtesy Autonomous Systems Group, NASA Ames
ClosedClosed

ValveValve
OpenOpen StuckStuck

openopen

StuckStuck
closedclosed

OpenOpen CloseClose

p=0.01p=0.01

inflow = outflow = 0

p=0.05p=0.05

Livingstone
• Model-based diagnosis system from NASA Ames

– i.e. an advanced state estimator
• Uses a discrete, qualitative model to reason about faults

=> naturally amenable to formal analysis

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 8

A Simple Livingstone Model

V

breaker

bulbmeter

r2=inf
light=off

r2=low
light=off

display=zero

display=v2

r2=normal
light=...

r1=inf r1=low
i = ...(v1,r1,r2)
v2 = ...(v1,r1,r2)

v1=normal

v=zero

cmdIn=off/on/noCommand

display=zero/normal light=off/on

mode=ok0/dead4

mode=ok0/blown1/short4

mode=off0/on0

v2=zero/normal/low
i=zero/normal/high

r1=inf/normal/low

r2=inf/normal/low

8short4dead4on0

1blown1ok0off0

0ok0ok0off0

rankmeterbulbbreaker

Goal: determine modes from observations
Generates and tracks candidates

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 9

Outline

Model-Based Autonomy and Diagnosis

Verification of Model-Based Controllers

Verification of Diagnosability

Symbolic Verification with Knowledge

Symbolic Verification with Actions

Conclusions

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 10

Verify Model-Based Control?

Of course, but what exactly?
• The model?
• The engine?
• The whole controller?
• All of the above!

Reasoning
Engine

Domain
Model

commands observations

Spacecraft

Controller

model of

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 11

Verification of the Engine

• A (technically complex) computer program
• Use traditional software verification approaches
• Maybe full-blown proof on core algorithms

• Generic, re-used across applications
• More likely to be stable and trustable
• Like compilers, interpreters, virtual machines, etc

Reasoning
Engine

Domain
Model

commands observations

Spacecraft

Controller

model of

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 12

The RAX Bug

Remote Agent Experiment (1999)
• cause : missing critical section

in concurrent program
• effect : race condition and

deadlock in flight
– in supervised experiment, no

mission damage

• solution : model checking
– a similar bug was found before

flight using SPIN on another part of
the code

– See [Havelund et al. 2000]

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 13

Verification of the Controller

• good model + good engine ≠> good controller
• Heuristics in engine, simplifications in model

• System-level verification
• Controller as black (or grey) box
• Need a model of the environment (test harness)
• Applicable to others than model-based

Reasoning
Engine

Domain
Model

commands observations

Spacecraft

Controller

model of

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 14

Livingstone PathFinder

• An advanced testing/simulation framework for Livingstone applications
– Executes the Real Livingstone Program in a simulated environment (testbed)
– Instrument the code to be able to backtrack between alternate paths

• Modular architecture with generic APIs (in Java)
– allows different diagnosers, simulators, search algorithms and strategies, error

conditions, ...
• See TACAS'04 paper

sensors

Simulator
commands

& faults

Engine Model

Livingstone

Driver Scenario
(w/ branches)

get state
set state

single step
backtrack

T
E
S
T
B
E
D

with Tony Lindsey (QSS / NASA Ames)

DFS

BFS

random

...

Guided
Search

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 15

event

obs

Simulator
event

Engine Model

Diagnosis

Driver Scenario
(w/ branches)

T
E
S
T
B
E
D

One Diagnosis Step

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 16

LPF Scenario Example
mix {
 "command test.sv02.valveCmdIn=close";
 "command test.sv02.valveCmdIn=open";
 ...
} and {
 choose
 "fault test.forwardLO2.mode=unknownFault"; or
 "fault test.mpre101p.mode=faulty"; or
 ...
}

• Sequence of commands || choice of faults
• "default" scenario, can be generated automatically

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 17

LPF Search

• The whole testbed is seen as a transition system
• API to enumerate transitions, backtrack, get/set state

– Shared with Java PathFinder (v.2)[Visser et al. 00]

– Principle inspired from OPEN/CAESAR[Garavel 98]

• Search engine fixes exploration strategy
– Depth-First
– Breadth-First
– Heuristic
– Others are possible (random, pattern-based,

interactive)

• + Halting conditions (for any strategy)
– Find first / all / shortest error trace(s)

sensors

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 18

Verification of the Model

• This is the "application code"
• where the development effort (and bugs) are

• Abstract, concise, amenable to formal analysis
• this is another benefit of model-based approaches
• ... or model-based design in general

• Use symbolic model checking

Reasoning
Engine

Domain
Model

commands observations

Spacecraft

Controller

model of

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 19

Livingstone-to-SMV Translator

Livingstone
Model

SMV
Model

Livingstone
Specification

(enriched)

SMV
Specification

(CTL logic)

Livingstone
Trace

SMV
Trace

Livingstone

SMV

T
R
A
N
S
L
A
T
O
R

Diagnosis Verification

• A translator that converts Livingstone models, specs, traces to/from SMV
(in Java)
– SMV: symbolic model checker (both BDD and SAT-based)

allows exhaustive analysis of very large state spaces (1050+)

• Hides away SMV, offers a model checker for Livingstone
• Enriched specification syntax (vs. SMV's core temporal logic)
• Graphical interface, integration in Livingstone development tools

Joint work with Reid Simmons (Carnegie Mellon)

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 20

Mainstream symbolic model checker
– Original SMV from Carnegie Mellon,

currently NuSMV from IRST
(and Cadence SMV)

• Rich modeling language
• Many features and options
• Uses symbolic computation

over boolean encoding
– using BDDs or SAT (bounded)
– finite models
– Can handle very large state spaces (1050+)

SMV / NuSMV
x

y

0 1 2 ...0

1
...

x=2 ∨ y=1

1 0

x=2

y=1

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 21

• Use atmosphere from Mars to make
fuel for return flight.

• Livingstone controller developed at
NASA KSC.

• Components are tanks, reactors,
valves, sensors...

• Exposed improper flow modeling.
• Latest model is 1050 states.

In-Situ Propellant Production

CO2 + 2H2 —> CH4 + O2

Mars
atmosphere

oxidizerfuel

on-board

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 22

Verification of Diagnosis Models

• Coding Errors
– e.g. Consistency, well-defined transitions, ...
– Generic
– Compare to Lint for C

• Model Correctness
– Expected properties of modeled system
– e.g. flow conservation, operational scenarios, ...
– Application-specific

• Diagnosability
– Are faults detectable/diagnosable?

• Given available sensors
• In all/specific operational situations (dynamic)

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 23

Outline

Model-Based Autonomy and Diagnosis

Verification of Model-Based Controllers

Verification of Diagnosability
Symbolic Verification with Knowledge

Symbolic Verification with Actions

Conclusions

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 24

Diagnosability

• Diagnosis: estimate the hidden state x (incl. failures)
given observable commands u and sensors y.

• Diagnosability: Can (a smart enough) Diagnoser
always tell when Process comes to a bad state?

• Property of the Process (not the Diagnoser)
– even for non-model-based diagnosers
– but analysis needs a (process) model

Controller

Process
x

Diagnoser

u

x̂

y

u1/y1 … un/yn good
badu1/y1 … un/yn

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 25

• Intuition: bad is diagnosable if and only if
there is no pair of trajectories, one reaching a bad state, the
other reaching a good state, with identical observations.
– or some generalization of that: (context, two different faults, ...)

• Principle:
– consider two concurrent copies x1, x2 of the process,

with coupled inputs u and outputs y
– check for reachability of (good(x1) && bad(x2))

• Back to a classical (symbolic) model checking problem !
• Supported by Livingstone-to-SMV translator

x1

x2

u y

Verification of Diagnosability
u1/y1 … un/yn good

badu1/y1 … un/yn

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 26

X-34 / PITEX

• Propulsion IVHM Technology Experiment (ARC, GRC)
• Livingstone applied to propulsion feed system of space vehicle
• Livingstone model is 4·1033 states

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 27

• "Diagnosis can decide whether the venting valve VR01 is closed or
stuck open (assuming no other failures)"

INVAR !test.multibroken() & twin(!test.broken())
VERIFY INVARIANT !(test.vr01.mode=stuckOpen &

twin(test.vr01.valvePosition=closed))
• Results show a pair of traces with same observations, one leading to VR01

stuck open, the other to VR01 closed. Application specialists fixed their
model.

PITEX Diagnosability Error
with Roberto Cavada (IRST, NuSMV developer)

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 28

Outline

Model-Based Autonomy and Diagnosis

Verification of Model-Based Controllers

Verification of Diagnosability

Symbolic Verification with Knowledge
Symbolic Verification with Actions

Conclusions

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 29

Epistemic Logic

• Reasoning about knowledge
Ka ϕ = agent a knows ϕ

• Interpreted over an Interpreted System (IS)
– Transition system T +
– Observation functions obsa(σ) over runs σ of T

– Ka φ holds after σ iff
φ holds after all σ' such that obsa(σ) = obsa(σ')

• CTLK = temporal + epistemic logic

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 30

Observation Function
• In general : agents reason about “everything

they have seen so far” (total recall)
– obsa(σ) over runs σ
– memory built into the logic
– model checking hard to undecidable

• Observational view : agents reason about
the current state only
– obsa(s) over states s
– memory explicit in the model
– symbolic model checking can be generalized from

CTL to CTLK

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 31

Diagnosability and CTLK

Considering the diagnoser as an agent D observing
the system,

Fault F is diagnosable
iff

AG (KD F \/ KD ~F)

• Diagnosability can be framed as
a temporal epistemic model-checking problem

• Caveat : general diagnosability requires total recall
– or explicit (bounded) memory of observations

joint work with Franco Raimondi (UC London)

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 32

From CMAS to SMV

• CMAS : symbolic model checker for CTLK
– developed by Franco Raimondi
– BDD-based
– Good performance but very crude modelling

language
• Could we do CTLK in NuSMV?

– Leverage SMV's rich modelling language
– Re-use models generated from Livingstone

• Need a reduction from CTLK
to (enhanced?) CTL

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 33

Outline

Model-Based Autonomy and Diagnosis

Verification of Model-Based Controllers

Verification of Diagnosability

Symbolic Verification with Knowledge

Symbolic Verification with Actions
Conclusions

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 34

From Knowledge to Actions

• The observation function obsa(s) induces
an accessibility (equivalence) relation ~a
over reachable states s

s ~ a s' iff obsa(s) = obsa(s')
• An interpreted system is a Kripke structure

with several transition relations →, ~a1, ..., ~ an
• Or equivalently, a labelled transition system

(LTS) over an action alphabet {t, a1, ..., an}
• Corresponding reduction of CTLK?

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 35

Action-Based Logics

• Large body of published work in action-
based temporal logics (applicable to LTS)
– ACTL [deNicola-Vaandrager], ACTL∗,Hennessy-

Milner, etc.
– Do not quite fit our purpose
– No (well-known?) symbolic model-checker

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 36

Action-Restricted CTL (ARCTL)

• Variant of ACTL
• Action conditions α on path quantifiers

e.g. AαF φ = on all α-paths, sooner or later φ
– vs. on temporal quantifiers in ACTL

e.g. AFα φ = on all paths, there is an α-prefix to φ

• α-restricted formula on full model =
unrestricted formula on α-restricted model

• (IS sat CTLK) can be reduced to (LTS sat
ARCTL)
– needs reachability = reverse temporal transitions

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 37

Symbolic Model-Checking
for Action-Based Logics
• Classical symbolic model-checking for CTL

generalizes naturally to ARCTL or ACTL
– some subtleties due to finite α-paths and fairness

• NuSMV already has “actions” in models
– called input variables (IVARs)
– but not allowed in CTL

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 38

Action-Based Logics in NuSMV

We added ARCTL support to NuSMV

• V1: reduction to KS + CTL,
projecting actions into post-states

e.g. AαX φ reduces to AX (α => φ) /\ EX α

• V2: native ARCTL support, using IVARs

• see [Pecheur-Raimondi 2006]

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 39

CTLK in NuSMV
• CTLK and agents (observed variables)

handled by a macro package (m4)
• Good performance wrt. dedicated model

checkers (CMAS, Verics), see next slide
• see [Raimondi-Pecheur-Lomuscio 2005]

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 40

CTLK on Dining Cryptographers

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 41

Outline

Model-Based Autonomy and Diagnosis

Verification of Model-Based Controllers

Verification of Diagnosability

Symbolic Verification with Knowledge

Symbolic Verification with Actions

Conclusions

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 42

Summary: From Mars to Actions

Deep-space missions (incl. Mars)

=> Model-based autonomy (incl. diagnosis)

=> Model-based verification

=> Diagnosability

=> Epistemic Logics

=> Logics with Actions

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 43

Lessons Learned

• Verification of model-based controllers
– Needs advanced verification (because of large state space)
– Facilitates advanced verification (thanks to model)

• Verification of control software
– Control loop, observability/commandability

• In particular, failure diagnosability and recoverability
– Leads to epistemic, action logics

• Model checking
– Applicable to these problems
– symbolic model checking saves the day

• Verification of software
– All other principles still apply: process, testing, ...

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 44

Perspectives

• Key ideas:
– model-based analysis (model checking)
– partial observability

• Extensions
– from discrete to continuous, real-time, hybrid models
– from fault diagnosis to planning

• e.g. test-case generation for planners
see [Raimondi-Pecheur-Brat 2007]

• Connections
– with classical risk analysis (fault trees, FMEA)
– with man-machine interface issues (observability!)
– with game theory (the Controller vs. the Environment)

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 45

Thank you!

Publications vailable at
http://www.info.ucl.ac.be/~pecheur/publi/

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 46

Backup Slides

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 47

Process Control
• Partially observable process (hidden state x, estimated by x)

• observability :
infer x from y (and u)

• commandability :
impose x through u

• control theory :
x = physical quantities, differentiable
 linear models, PDI controllers

• logic processes :
x = states, modes, failures, discrete
 state machines, programmable automata

controller

process
x

estimator

u

x

y

ˆ

ˆ

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 48

Verification of Control Systems

• Monitors and commands a process
– in particular, failure diagnosis and recovery

• Complex
– multiple controllers, asynchronism, coupling
– race conditions, feature interaction

• Software
– powerful and flexible but not linear, not continuous

• How to Validate ?
– including "diagnosability" and "recoverability" from failures ?

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 49

Temporal Epistemic Logic

• Reasoning about time and knowledge: CTLK logic
ϕ ::= p | ¬ϕ | ϕ∧ϕ atomic propositions, boolean ops

| EX ϕ | E[ϕ U ϕ] | EG ϕ temporal ops
| Ka ϕ | EG ϕ | DG ϕ | CG ϕ knowledge ops

with ϕ∨ϕ' := ¬(¬ϕ∧¬ϕ'), EF ϕ := E[true U ϕ], AG ϕ := ¬EF ¬ϕ, ...
• Interpreted over an Interpreted System =

– Transition system (Kripke structure) T +
– Observation functions obsa(σ) over runs σ of T, for each agent a

σ~aσ' iff obsa(σ)=obsa(σ')
σ |= Ka ϕ iff for all reachable σ' . σ~aσ' => σ' |= ϕ

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 50

CTLK + correctness

K^
a

G ϕ = a knows ϕ, assuming everyone in G "works correctly"

• "works correctly" is a state condition
• Useful for diagnosis: one agent per component, works correctly iff non-

fault mode
• Verification supported by Raimondi's tool (BDD based)
• Expressivity issue: correctness in present state vs. in future
• Work in progress!

FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 51

TO DO

• Full content
• Add references

– Diagnosability
– MC of CTLK
– MC of Actions

