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From Mars ...



FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 3

... to Actions
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Autonomy (at NASA)

Autonomous spacecraft = on-board intelligence (= AI)

• Goal: Unattended operation in an
unpredictable environment

• Approach: model-based reasoning
• Pros: smaller mission control crews,

no communication delays/blackouts
• Cons: Verification and Validation ???

Much more complex, huge state space
• Better verification is critical for adoption
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Model-Based Autonomy

• Based on AI technology
• Generic reasoning engine

+ application-specific model
• Model describes (normal and

faulty) behaviour of the process
• Engine selects control actions "on-

the-fly" based on the model
– ... rather than pre-coded decision

rules
– better able to respond to

unanticipated situations
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Livingstone
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Livingstone
• Model-based diagnosis system from NASA Ames

– i.e. an advanced state estimator
• Uses a discrete, qualitative model to reason about faults

=> naturally amenable to formal analysis
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A Simple Livingstone Model
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Goal: determine modes from observations
Generates and tracks candidates
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Verify Model-Based Control?

Of course, but what exactly?
• The model?
• The engine?
• The whole controller?
• All of the above!
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Verification of the Engine

• A (technically complex) computer program
• Use traditional software verification approaches
• Maybe full-blown proof on core algorithms

• Generic, re-used across applications
• More likely to be stable and trustable
• Like compilers, interpreters, virtual machines, etc
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The RAX Bug

Remote Agent Experiment (1999)
• cause : missing critical section

in concurrent program
• effect : race condition and

deadlock in flight
– in supervised experiment, no

mission damage

• solution : model checking
– a similar bug was found before

flight using SPIN on another part of
the code

– See [Havelund et al. 2000]
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Verification of the Controller

• good model + good engine ≠> good controller
• Heuristics in engine, simplifications in model

• System-level verification
• Controller as black (or grey) box
• Need a model of the environment (test harness)
• Applicable to others than model-based
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Livingstone PathFinder

• An advanced testing/simulation framework for Livingstone applications
– Executes the Real Livingstone Program in a simulated environment (testbed)
– Instrument the code to be able to backtrack between alternate paths

• Modular architecture with generic APIs (in Java)
– allows different diagnosers, simulators, search algorithms and strategies, error

conditions, ...
• See TACAS'04 paper

sensors
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commands

& faults

Engine Model

Livingstone

Driver Scenario
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single step
backtrack
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with Tony Lindsey (QSS / NASA Ames)
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Search
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One Diagnosis Step
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LPF Scenario Example
mix {
  "command test.sv02.valveCmdIn=close";
  "command test.sv02.valveCmdIn=open";
  ...
} and {
  choose  
    "fault test.forwardLO2.mode=unknownFault"; or
    "fault test.mpre101p.mode=faulty"; or
    ...
}

• Sequence of commands || choice of faults
• "default" scenario, can be generated automatically
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LPF Search

• The whole testbed is seen as a transition system
• API to enumerate transitions, backtrack, get/set state

– Shared with Java PathFinder (v.2)[Visser et al. 00]

– Principle inspired from OPEN/CAESAR[Garavel 98]

• Search engine fixes exploration strategy
– Depth-First
– Breadth-First
– Heuristic
– Others are possible (random, pattern-based,

interactive)

• + Halting conditions (for any strategy)
– Find first / all / shortest error trace(s)

sensors
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Verification of the Model

• This is the "application code"
• where the development effort (and bugs) are

• Abstract, concise, amenable to formal analysis
• this is another benefit of model-based approaches
• ... or model-based design in general

• Use symbolic model checking
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Livingstone-to-SMV Translator
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Diagnosis Verification

• A translator that converts Livingstone models, specs, traces to/from SMV
(in Java)
– SMV: symbolic model checker (both BDD and SAT-based)

allows exhaustive analysis of very large state spaces (1050+)

• Hides away SMV, offers a model checker for Livingstone
• Enriched specification syntax (vs. SMV's core temporal logic)
• Graphical interface, integration in Livingstone development tools

Joint work with Reid Simmons (Carnegie Mellon)
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Mainstream symbolic model checker
– Original SMV from Carnegie Mellon,

currently NuSMV from IRST
(and Cadence SMV)

• Rich modeling language
• Many features and options
• Uses symbolic computation

over boolean encoding
– using BDDs or SAT (bounded)
– finite models
– Can handle very large state spaces (1050+)

SMV / NuSMV
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1 0
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• Use atmosphere from Mars to make
fuel for return flight.

• Livingstone controller developed at
NASA KSC.

• Components are tanks, reactors,
valves, sensors...

• Exposed improper flow modeling.
• Latest model is 1050 states.

In-Situ Propellant Production

CO2 + 2H2 —> CH4 + O2

Mars
atmosphere

oxidizerfuel

on-board
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Verification of Diagnosis Models

• Coding Errors
– e.g. Consistency, well-defined transitions, ...
– Generic
– Compare to Lint for C

• Model Correctness
– Expected properties of modeled system
– e.g. flow conservation, operational scenarios, ...
– Application-specific

• Diagnosability
– Are faults detectable/diagnosable?

• Given available sensors
• In all/specific operational situations (dynamic)
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Diagnosability

• Diagnosis: estimate the hidden state x (incl. failures)
given observable commands u and sensors y.

• Diagnosability: Can (a smart enough) Diagnoser
always tell when Process comes to a bad state?

• Property of the Process (not the Diagnoser)
– even for non-model-based diagnosers
– but analysis needs a (process) model

Controller

Process
x

Diagnoser

u

x̂

y

u1/y1 … un/yn good
badu1/y1 … un/yn 
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• Intuition: bad is diagnosable   if and only if
there is no pair of trajectories, one reaching a bad state, the
other reaching a good state, with identical observations.
– or some generalization of that: (context, two different faults, ...)

• Principle:
– consider two concurrent copies x1, x2 of the process,

with coupled inputs u and outputs y
– check for reachability of (good(x1) && bad(x2))

• Back to a classical (symbolic) model checking problem !
• Supported by Livingstone-to-SMV translator

x1

x2

u y

Verification of Diagnosability
u1/y1 … un/yn good

badu1/y1 … un/yn 
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X-34 / PITEX

• Propulsion IVHM Technology Experiment (ARC, GRC)
• Livingstone applied to propulsion feed system of space vehicle
• Livingstone model is 4·1033 states
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• "Diagnosis can decide whether the venting valve VR01 is closed or
stuck open (assuming no other failures)"

INVAR !test.multibroken() & twin(!test.broken())
VERIFY INVARIANT !(test.vr01.mode=stuckOpen &

twin(test.vr01.valvePosition=closed))
• Results show a pair of traces with same observations, one leading to VR01

stuck open, the other to VR01 closed. Application specialists fixed their
model.

PITEX Diagnosability Error
with Roberto Cavada (IRST, NuSMV developer)
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Epistemic Logic

• Reasoning about knowledge
Ka ϕ = agent a knows ϕ

• Interpreted over an  Interpreted System (IS)
– Transition system T +
– Observation functions obsa(σ) over runs σ of T

– Ka φ holds after σ  iff
φ holds after all σ' such that  obsa(σ) = obsa(σ')

• CTLK = temporal + epistemic logic



FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 30

Observation Function
• In general : agents reason about “everything

they have seen so far” (total recall)
– obsa(σ) over runs σ
– memory built into the logic
– model checking hard to undecidable

• Observational view : agents reason about
the current state only
– obsa(s) over states s
– memory explicit in the model
– symbolic model checking can be generalized from

CTL to CTLK
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Diagnosability and CTLK

Considering the diagnoser as an agent D observing
the system,

Fault F is diagnosable
iff

AG (KD F \/ KD ~F)

• Diagnosability can be framed as
a temporal epistemic model-checking problem

• Caveat : general diagnosability requires total recall
– or explicit (bounded) memory of observations

joint work with Franco Raimondi (UC London)
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From CMAS to SMV

• CMAS : symbolic model checker for CTLK
– developed by Franco Raimondi
– BDD-based
– Good performance but very crude modelling

language
• Could we do CTLK in NuSMV?

– Leverage SMV's rich modelling language
– Re-use models generated from Livingstone

• Need a reduction from CTLK
to (enhanced?) CTL
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From Knowledge to Actions

• The observation function obsa(s) induces
an accessibility (equivalence) relation ~a
over reachable states s

s ~ a s'  iff  obsa(s) = obsa(s')
• An interpreted system is a Kripke structure

with several transition relations →, ~a1, ..., ~ an
• Or equivalently, a labelled transition system

(LTS) over an action alphabet {t, a1, ..., an}
• Corresponding reduction of CTLK?
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Action-Based Logics

• Large body of published work in action-
based temporal logics (applicable to LTS)
– ACTL [deNicola-Vaandrager], ACTL∗,Hennessy-

Milner, etc.
– Do not quite fit our purpose
– No (well-known?) symbolic model-checker
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Action-Restricted CTL (ARCTL)

• Variant of ACTL
• Action conditions α on path quantifiers

e.g.  AαF φ  =  on all α-paths, sooner or later φ
– vs. on temporal quantifiers in ACTL

e.g.  AFα φ  =  on all paths, there is an α-prefix to φ

• α-restricted formula on full model =
unrestricted formula on α-restricted model

• (IS sat CTLK) can be reduced to (LTS sat
ARCTL)
– needs reachability = reverse temporal transitions
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Symbolic Model-Checking
for Action-Based Logics
• Classical symbolic model-checking for CTL

generalizes naturally to ARCTL or ACTL
– some subtleties due to finite α-paths and fairness

• NuSMV already has “actions” in models
– called input variables (IVARs)
– but not allowed in CTL
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Action-Based Logics in NuSMV

We added ARCTL support to NuSMV

• V1: reduction to KS + CTL,
projecting actions into post-states

e.g.  AαX φ reduces to AX (α => φ) /\ EX α

• V2: native ARCTL support, using IVARs

• see [Pecheur-Raimondi 2006]



FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 39

CTLK in NuSMV
• CTLK and agents (observed variables)

handled by a macro package (m4)
• Good performance wrt. dedicated model

checkers (CMAS, Verics), see next slide
• see [Raimondi-Pecheur-Lomuscio 2005]



FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 40

CTLK on Dining Cryptographers
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Summary: From Mars to Actions

Deep-space missions (incl. Mars)

=> Model-based autonomy (incl. diagnosis)

=> Model-based verification

=> Diagnosability

=> Epistemic Logics

=> Logics with Actions
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Lessons Learned

• Verification of model-based controllers
– Needs advanced verification (because of large state space)
– Facilitates advanced verification (thanks to model)

• Verification of control software
– Control loop, observability/commandability

• In particular, failure diagnosability and recoverability
– Leads to epistemic, action logics

• Model checking
– Applicable to these problems
– symbolic model checking saves the day

• Verification of software
– All other principles still apply: process, testing, ...
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Perspectives

• Key ideas:
– model-based analysis (model checking)
– partial observability

• Extensions
– from discrete to continuous, real-time, hybrid models
– from fault diagnosis to planning

• e.g. test-case generation for planners
see [Raimondi-Pecheur-Brat 2007]

• Connections
– with classical risk analysis (fault trees, FMEA)
– with man-machine interface issues (observability!)
– with game theory (the Controller vs. the Environment)
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Thank you!

Publications vailable at
http://www.info.ucl.ac.be/~pecheur/publi/



FMICS 07, 1 June 2007 © Charles Pecheur, UC Louvain 46
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Process Control
• Partially observable process (hidden state x, estimated by x)

• observability :
infer x from y (and u)

• commandability :
impose x through u

• control theory :
x = physical quantities, differentiable
 linear models, PDI controllers

• logic processes :
x = states, modes, failures, discrete
 state machines, programmable automata

controller

process
x

estimator

u

x

y

ˆ

ˆ
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Verification  of Control Systems

• Monitors and commands a process
– in particular, failure diagnosis and recovery

• Complex
– multiple controllers, asynchronism, coupling
– race conditions, feature interaction

• Software
– powerful and flexible but not linear, not continuous

• How to Validate ?
– including "diagnosability" and "recoverability" from failures ?
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Temporal Epistemic Logic

• Reasoning about time and knowledge: CTLK logic
ϕ ::= p | ¬ϕ | ϕ∧ϕ atomic propositions, boolean ops

| EX ϕ | E[ϕ U ϕ] | EG ϕ temporal ops
| Ka ϕ | EG ϕ | DG ϕ | CG ϕ knowledge ops

with ϕ∨ϕ' := ¬(¬ϕ∧¬ϕ'), EF ϕ := E[true U ϕ], AG ϕ := ¬EF ¬ϕ, ...
• Interpreted over an  Interpreted System =

– Transition system (Kripke structure) T +
– Observation functions obsa(σ) over runs σ of T, for each agent a

σ~aσ'   iff   obsa(σ)=obsa(σ')
σ |= Ka ϕ   iff   for all reachable σ' . σ~aσ' => σ' |= ϕ
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CTLK + correctness

K^
a

G ϕ  = a knows ϕ, assuming everyone in G "works correctly"

• "works correctly" is a state condition
• Useful for diagnosis: one agent per component, works correctly iff non-

fault mode
• Verification supported by Raimondi's tool (BDD based)
• Expressivity issue: correctness in present state vs. in future
• Work in progress!
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TO DO

• Full content
• Add references

– Diagnosability
– MC of CTLK
– MC of Actions


