
Kestrel Institute, July 2004 © Charles Pecheur 2004 1

Verification of Diagnosability
using Model Checking

(and why NASA cares)

Charles Pecheur, RIACS at NASA Ames

© Charles Pecheur 2004 2Kestrel Institute, July 2004

Panic! The heart just stopped!

At the Doctor's

throb throb throb throb

The guy seems fine, though...

throb throb *

Stupid me! My stethoscope
has come loose!

© Charles Pecheur 2004 3Kestrel Institute, July 2004

Diagnosability

state
sensors
(output)

commands
(input)

diagnosis
(estimated state)

Can a (smart enough) doctor always make a proper diagnosis?
(... even if she cannot give commands?)

Kestrel Institute, July 2004 © Charles Pecheur 2004 4

Autonomy at NASA

Autonomous spacecraft = on-board intelligence (AI)

• Goal: Unattended operation in an
unpredictable environment

• Approach: model-based reasoning
• Pros: smaller mission control crews,

no communication delays/blackouts
• Cons: Verification and Validation ???

Much more complex, huge state space
• Better verification is critical for adoption

Reasoning
Engine

Domain
Model

commands observations

Spacecraft

Controller

model of

Kestrel Institute, July 2004 © Charles Pecheur 2004 5

LivingstoneLivingstone

C
om

m
and

Observations

State
update

Model
Controller

Courtesy Autonomous Systems Group, NASA Ames
ClosedClosed

ValveValve
OpenOpen StuckStuck

openopen

StuckStuck
closedclosed

OpenOpen CloseClose

p=0.01p=0.01

inflow = outflow = 0

p=0.05p=0.05

Model-Based Diagnosis
• Focus on Livingstone system from NASA Ames.
• Uses a discrete, qualitative model to reason about faults

=> naturally amenable to formal analysis

Kestrel Institute, July 2004 © Charles Pecheur 2004 6

A Simple Diagnosis Model

V

breaker

bulbmeter

r2=inf
light=off

r2=low
light=off

display=zero

display=v2

r2=normal
light=...

r1=inf r1=low
i = ...(v1,r1,r2)
v2 = ...(v1,r1,r2)

v1=normal

v=zero

cmdIn=off/on/noCommand

display=zero/normal light=off/on

mode=ok0/dead4

mode=ok0/blown1/short4

mode=off0/on0

v2=zero/normal/low
i=zero/normal/high

r1=inf/normal/low

r2=inf/normal/low

8short4dead4on0

1blown1ok0off0

0ok0ok0off0

rankmeterbulbbreaker

Goal: determine modes from observations
Generates and tracks candidates

Kestrel Institute, July 2004 © Charles Pecheur 2004 7

Livingstone PathFinder

• An advanced testing/simulation framework for Livingstone applications
– Executes the Real Livingstone Program in a simulated environment (testbed)
– Instrument the code to be able to backtrack between alternate paths

• Scenarios = non-deterministic test cases (defined in custom language)
• Modular architecture with generic APIs (in Java)

– allows different diagnosers, simulators (can use Livingstone), search algorithms (depth-first, breadth-
first, heuristic, random, ...)

• Graphical interface, trace display, integration in Livingstone development tools
• See TACAS'04 paper

sensors

Simulator
commands

& faults

Engine Model

Livingstone

Driver Scenario
(w/ branches)

Search
Engine

get state
set state

single step
backtrack

T
E
S
T
B
E
D

with Tony Lindsey (QSS @ ARC)

Kestrel Institute, July 2004 © Charles Pecheur 2004 8

Livingstone-to-SMV Translator

Livingstone
Model

SMV
Model

Livingstone
Specification

(enriched)

SMV
Specification

(CTL logic)

Livingstone
Trace

SMV
Trace

Livingstone

SMV

T
R
A
N
S
L
A
T
O
R

Diagnosis Verification

• A translator that converts Livingstone models, specs, traces to/from SMV (in Java)
– SMV: symbolic model checker (both BDD and SAT-based)

allows exhaustive analysis of very large state spaces (1050+)
– Translator hides away SMV, offers a model checker for Livingstone

• Enriched specification syntax (vs. SMV's core temporal logic)
• Graphical interface, trace display, integration in Livingstone development tools

Joint work with Reid Simmons (Carnegie Mellon)

Livingstone Model Verifier GUI

Kestrel Institute, July 2004 © Charles Pecheur 2004 10

Verification of Diagnosis Models
• Coding Errors

– e.g. Consistency, well-defined transitions, ...
– Generic
– Compare to Lint for C

• Model Correctness
– Expected properties of modeled system
– e.g. flow conservation, operational scenarios, ...
– Application-specific

• Diagnosability
– Are faults detectable/diagnosable?

• Given available sensors
• In all/specific operational situations (dynamic)

– Innovative use of model checking using twin models

Kestrel Institute, July 2004 © Charles Pecheur 2004 11

Diagnosability

• Diagnosis estimates the hidden state of Plant,
given observable input and output of Plant.

• Diagnosability: Can (a smart enough) Diagnosis always tell
when Plant comes to a bad state?

• Intuition: YES, if and only if there is no pair of executions,
one reaching a bad state, the other reaching a good state,
with identical observations.

• ... within a given context

in/out

in/out

good

badPlant

state

Diagnosis
inout

state estim. Joint work with Alessandro Cimatti (IRST)

Kestrel Institute, July 2004 © Charles Pecheur 2004 12

€

ˆ x 0

€

ˆ x = ˆ Δ (ˆ x 0,w)

Formalization of Diagnosis

w

€

x0

€

x

€

Transition system x u / y → ′ x , executions σ : x0
w → x

inputs u, outputs y are visible, states x, x' are hidden
trace w = (u1, y1, ..., un, yn)

€

Diagnosis function ˆ x = ˆ Δ (ˆ x 0,w) such that

x0 ∈ ˆ x 0, x0
w → x ⇒ x ∈ ˆ Δ (ˆ x 0,w)

updates belief state (set of possible states) according to observed trace

Kestrel Institute, July 2004 © Charles Pecheur 2004 13

• Typical cases: fault⊥¬fault (detection), fault1⊥fault2 (identification)

• ... in given context: conditions on execution σ and initial belief state x��0

c2

c1

€

ˆ x 0

€

ˆ x = ˆ Δ (ˆ x 0,w)

w

€

x0

€

x

Formalization of Diagnosability

€

Diagnosis condition ˆ x |= c1⊥c2 iff ˆ x ∩ c1 =∅∨ ˆ x ∩ c2 =∅

belief state never allows both c1 and c2

ˆ

€

c1⊥c2 is diagnosable iff ∃ ˆ Δ |= c1⊥c2

€

ˆ Δ |= c1⊥c2 iff ∀x0 ∈ ˆ x 0, x0
w → x ⋅ ˆ Δ (ˆ x 0, w) |= c1⊥c2

Kestrel Institute, July 2004 © Charles Pecheur 2004 14

c2

c1

Diagnosability as Reachability

• Critical Pair σ1, σ2 for c1⊥c2 (in context C) such that
w1=w2=w and x1∈c1 and x2∈c2 (and (σ1,σ2) satisfy C)

• Coupled Twin Plant P2 = two copies of the plant P
with merged inputs and outputs

• Model checking: verify ¬F c1(x1)∧c2(x2) in P2 (+ context)

w
w

x1

x2

x01
x02

C

c1⊥c2 diagnosable (in C)
iff no critical pairs for c1⊥c2 (in C)
iff c1×c2 not reachable in P2 (and C)

x1:plant

x2:plant

in out

Kestrel Institute, July 2004 © Charles Pecheur 2004 15

Model Translation for Diagnosability

Diagnosis
Model

Verification
Model

Diagnosis
Specification

(enriched)

Verification
Specification

(core logic)

Diagnosis
Trace

Verification
Trace

Model-Based
Diagnosis

Model
Checker

T
R
A
N
S
L
A
T
O
R

Diagnosis Verification

twin

pairpair

diagnosable

Diagnosability

• Generate twin coupled model
• Support specific syntax for twin models and diagnosability properties
• Translate/correlate pairs of error traces

Kestrel Institute, July 2004 © Charles Pecheur 2004 16

Diagnosability in SMV Translator
• Added generation of twin models
• Added syntax for properties of twin models
• Example: starting form known initial non-faulty state, with

single faults, can we detect whether there is high current in the
bulb?

• Coming soon: syntax for diagnosability property

invar same(visibles()) // observations are the same on both sides

verify (same(modes()) & both(!broken()) ->
 !E[both(!multibroken()) U both(!multibroken()) & !same(test.bulb.i)]

verify detection test.bulb.i=high
from same(modes()) & both(!broken())
keeping !multibroken()

Kestrel Institute, July 2004 © Charles Pecheur 2004 17

X-34 / PITEX

• Propulsion IVHM Technology Experiment (ARC, GRC)
• Livingstone applied to propulsion feed system of space vehicle
• Livingstone model is 4·1033 states

Kestrel Institute, July 2004 © Charles Pecheur 2004 18

Kestrel Institute, July 2004 © Charles Pecheur 2004 19

Diagnosability Verification on PITEX

• Applied translator to PITEX model
• Goals:

– Demonstrate scalability to real-size models
– Demonstrate relevance wrt. application needs

• Compared BDD-based vs. SAT-based
– BDD: single model done (with tuning), twin model too big
– SAT: twin model done in a few seconds!

• Found application-relevant anomaly in PITEX model
(unnoticed oxygen leak)

• See report: RIACS TR 03.03

with Roberto Cavada (IRST, NuSMV developer)

Kestrel Institute, July 2004 © Charles Pecheur 2004 20

• "Diagnosis can decide whether the venting valve VR01 is closed or stuck
open (assuming no other failures)"

INVAR !test.multibroken() & twin(!test.broken())
VERIFY INVARIANT !(test.vr01.mode=stuckOpen &

twin(test.vr01.valvePosition=closed))

• Results show a pair of traces with same observations, one leading to VR01 stuck
open, the other to VR01 closed. Application specialists fixed their model.

PITEX Diagnosability Error

Kestrel Institute, July 2004 © Charles Pecheur 2004 21

Publications

• Charles Pecheur, Alessandro Cimatti. Formal Verification of Diagnosability via
Symbolic Model Checking .Workshop on Model Checking and Artificial
Intelligence (MoChArt-2002), Lyon, France, July 22/23, 2002.

• Cavada, Roberto and Pecheur, Charles. Practical Formal Verification of
Diagnosability of Large Models via Symbolic Model Checking. Technical
Report TR03.03, RIACS, USRA, January 2003.

• Roberto Cavada, Alessandro Cimatti, Charles Pecheur. Formal Verification of
Diagnosability via Symbolic Model Checking. IJCAI'03, Acapulco, Mexico,
August 2003.

Kestrel Institute, July 2004 © Charles Pecheur 2004 22

Perspectives
The Big Picture:

A Model-Based Failure Analysis Tool
Applicable to Dynamic Models

• Key concept: partial observability

• Demonstrated on concrete, real-size applications
– Demonstrate scalability and relevance to practical needs

• Tools aimed at non-specialist users, integrated with development
– Vision: build integrated "advanced debuggers"
– GUI, visualization, documentation, integration, ...
– Takes a lot of engineering work

Kestrel Institute, July 2004 © Charles Pecheur 2004 23

Perspectives (cont'd)
Extensions:

• Extend from discrete to real-time and hybrid models
– Build on new generalized solvers (MathSAT at IRST, ICS at SRI)

• Apply to human-computer interaction
– Features partial observability issues

• Study relations with classical risk analysis models
– Fault trees, FMEA, ...

• Generalize to verification of epistemic logics
– applications to multi-agent systems, security protocols

Kestrel Institute, July 2004 © Charles Pecheur 2004 24

CTLK Logic

• Reasoning about time and knowledge:
= CTL + temporal operators
– Ka ϕ = a knows ϕ
– EG ϕ = each one in G knows ϕ
– DG ϕ = together, all in G know ϕ
– CG ϕ = it is common knowledge in G that ϕ

• Interpreted over an Interpreted System =
– Transition system (Kripke structure) T +
– Observation functions obsa(σ) over runs σ of T, for each agent a

σ~aσ' iff obsa(σ)=obsa(σ')
σ |= Ka ϕ iff for all reachable σ' . σ~aσ' => σ' |= ϕ

Kestrel Institute, July 2004 © Charles Pecheur 2004 25

Knowledge views

• Total recall:
– obsa(σ) = all that a saw since start of σ
– Full CTLK non-elementary
– Nice solution for AXk ϕ, ϕ with only one actor

• Observational:
– obsa(σ) = all that a sees in last state of σ
– obsa(s0 ... sn) = obsa(sn), s~as' becomes a state relation
– s |= Ka ϕ iff (s ~a s' ←* s'0 ∈ Q0) => s' |= ϕ
– Can be expressed as generalized CTL over multiple transition

relations →, ~a, ←
– SMV-style symbolic model checking applies

• Variants: last + clock, all – clock

Kestrel Institute, July 2004 © Charles Pecheur 2004 26

Diagnosability and CTLK

c1 ⊥ c2 iff AG (Kd ~c1 \/ Kd ~c2)
where agent d (diagnoser) sees all observable variables,
with perfect recall.

• Bounded approximation corresponds to AXk ϕ case above
• Conversely, all ϕ with positive K over a single agent are equivalent to

K ϕ1 \/ ... \/ K ϕn

and can be analyzed using the twin model approach

Kestrel Institute, July 2004 © Charles Pecheur 2004 27

Diagnosability with Observational

• Franco Raimondi (King's College London)
– At Ames for the summer
– developed a BDD model checker for CTLK

(using observational view)
– studying connections between diagnosability and CTLK

• Using observational view for diagnosability
– requires mapping memory of previous obs explicitly into diagnoser

variables
– inelegant, cumbersome and inefficient
– flexible model for diagnoser's memory
– work in progress!

Kestrel Institute, July 2004 © Charles Pecheur 2004 28

CTLK + correctness

K^
a
G ϕ = a knows ϕ, assuming everyone in G "works correctly"

• "works correctly" is a state condition
• Useful for diagnosis: one agent per component, works correctly iff

non-fault mode
• Verification supported by Raimondi's tool (BDD based)
• Expressivity issue: correctness in present state vs. in future
• Work in progress!

Kestrel Institute, July 2004 © Charles Pecheur 2004 29

Backup Slides

Kestrel Institute, July 2004 © Charles Pecheur 2004 30

Symbolic Model Checking (BDD)

• Manipulates sets of states,
Represented as boolean formulas,
Encoded as binary decision diagrams.

• Can handle large state spaces (1050 and up).
• BDD computations:

– Efficient algorithms for needed operations.
– BDD size is still exponential in worst case.
– Highly sensitive (e.g. to variable ordering) and

hard to optimize.
• Example: SMV/NuSMV (Carnegie

Mellon/IRST)

x

y

0 1 2 ...0
1

...

x=2 ∨ y=1

1 0

x=2

y=1

Kestrel Institute, July 2004 © Charles Pecheur 2004 31

Bounded Model Checking (SAT)
• Symbolic model checking variant.
• Uses SAT (propositional satisfiability)

rather than BDDs.
– Idea: unroll transition relation a finite number

of times into a (big) constraint network.
• Bounded-depth only, not complete.
• Very efficient

– Polynomial space!
– Exponential time in the worst-case but

modern SAT solvers are very efficient in most
practical cases.

• Example: NuSMV (using the Chaff solver
from Princeton)

FF FT

TTTF

x'=y /\ y'=~x

x0

y0

x1

y1

x2

y2

© Charles Pecheur 2004 32Kestrel Institute, July 2004

Formalization

€

Transition system x u / y → ′ x , execution σ : x0
w → x

Diagnosis function ˆ x = ˆ Δ (ˆ x 0,w)

Correct iff x0 ∈ ˆ x 0, x0
w → x ⇒ x ∈ ˆ x

Perfect diagnosis ΔP (ˆ x 0,w) ={x | ∃x0 ∈ ˆ x 0.x0
w → x}

updates belief state according to observed trace

does not lose the actual state

trace w is visible, states x, x' are hidden

the best possible knowing the transition system

€

ˆ x 0 ˆ x = ˆ Δ (ˆ x 0,w)

x0 x1 w x

© Charles Pecheur 2004 33Kestrel Institute, July 2004

Formalization (cont'd)

€

ˆ x |= c1⊥c2 iff ˆ x ∩ c1 =∅∨ ˆ x ∩ c2 =∅

ˆ x 0 |= θC iff ˆ x 0 × ˆ x 0 ⊆ θC

(ˆ x 0, w) |= (ΣC ,θC) iff ˆ x 0 |= θC ∧∃σ : x0
w → x .x0 ∈ ˆ x 0 ∧σ ∈ Σ

ˆ Δ ,(ΣC ,θC) |= c1⊥c2 iff (ˆ x 0,w) |= (ΣC ,θC)⇒ ˆ Δ (ˆ x 0,w) |= c1⊥c2

c1

c2

θC
ΣC

€

ˆ x 0

€

ˆ x = ˆ Δ (ˆ x 0,w)

no ambiguity between c1 and c2

initial belief compatible with equivalence θC

idem. and trace compatible with some execution in ΣC

 for all initial beliefs and executions within context, no ambiguity

w

© Charles Pecheur 2004 34Kestrel Institute, July 2004

Critical Pairs

Counter-example of a condition c1⊥c2 in context (ΣC, θC):
a pair of executions σ1|σ2 : x01|x02 –w–> x1|x2 with the
same observable trace w, such that

 c1(x1) and c2(x2), and
 ... σ1, σ2 ∈ ΣC, and

 ... x01 θC x02 w
c1

c2
w

x1

x2

x01
x02

θC

ΣC

c1⊥c2 diagnosable in (ΣC, θC) iff no critical pairs

© Charles Pecheur 2004 35Kestrel Institute, July 2004

Coupled Twin Model

 Coupled twin plant P2 = two copies of the plant P
with merged inputs and outputs

w
c1

c2
w

x1

x2

x01

x02

θC ΣC

c1⊥c2 diagnosable in (ΣC, θC)
iff

c1×c2 not reachable from θC through ΣC×ΣC in P2

=

ΣC

Kestrel Institute, July 2004 © Charles Pecheur 2004 36

Temporal Epistemic Logic

• Reasoning about time and knowledge: CTLK logic
ϕ ::= p | ¬ϕ | ϕ∧ϕ atomic propositions, boolean ops

| EX ϕ | E[ϕ U ϕ] | EG ϕ temporal ops
| Ka ϕ | EG ϕ | DG ϕ | CG ϕ knowledge ops

with ϕ∨ϕ' := ¬(¬ϕ∧¬ϕ'), EF ϕ := E[true U ϕ], AG ϕ := ¬EF ¬ϕ, ...
• Interpreted over an Interpreted System =

– Transition system (Kripke structure) T +
– Observation functions obsa(σ) over runs σ of T, for each agent a

σ~aσ' iff obsa(σ)=obsa(σ')
σ |= Ka ϕ iff for all reachable σ' . σ~aσ' => σ' |= ϕ

