eCSs
Engineering for Complex Syste

e~

Verification of Diagnosability

using Model Checking
(and why NASA cares)

Charles Pecheur, RIACS at NASA Ames

Kestrel Institute, July 2004 © Charles Pecheur 2004 1

/

/ /lmés Research Center At t h e D o) Ct o) r' S

The guy seems fine, though.:

Stupid mel My stethoscope
has come loose!

Kestrel Institute, July 2004 © Charles Pecheur 2004 2

/ﬁmﬂmﬂﬂeﬂfﬂ Diagnosability

commands j

diagnosis
(estimated state)

Sensors
(output)

state

Can a (smart enough) doctor always make a proper diagnosis?
(... even if she cannot give commands?)

Kestrel Institute, July 2004 © Charles Pecheur 2004 3

Autonomy at NASA

Autonomous spacecraft = on-board intelligence (AI)

* Goal: Unattended operation in an
unpredictable environment

* Approach: model-based reasoning

* Pros: smaller mission control crews,

no communication delays/blackouts

o . . . Controller
e (Cons: Verification and Validation ??? : .
Reasoning Domain
Much more complex, huge state space Engine Modell

¢ commands T observatio
v model of
Spacecraft

Kestrel Institute, July 2004 © Charles Pecheur 2004 4

Focus on Livingstone system from NASA Ames.

Uses a discrete, qualitative model to reason about faults
=> naturally amenable to formal analysis

Controller —
Model State
_Holeg-e update o
84— | S
FEIFETEF
—> Livingstone i §
Valve =
Open $X|——|X¢} Stuck
[
Open| | Clos
Observations
Closed P9 >pg, Stuck

Courtesy Autonomous Systems Group, NASA Ames

k —0oclosed
inflow = outflow =0

rl=inf

rl=low

dIn=off, d
cmdIn=off/on/noComman imo de=oFf/on0

r
vIl=normal /_\

1=1inf/normal/low
v2=zero/normal/low

display=v2

display=zero

mode=o0k?/dead*

4

display=zero/normal

1=..(vlrlr2)
v2=..vlrlr2)

i=zero/normal/high

r2=normal
light=...

light=off/on

r2=inf
light=off

r2=low
light=off

\mode=0k0/blown1/sh0rt4

r2=inf/normal/low

V=ZE10
breaker | bulb meter rank
Goal: determine modes from observations off® | ok? ok? 0
Generates and tracks candidates off? ok? | blown! | 1
on’ dead? | short?4 8

Kestrel Institute, July 2004

© Charles Pecheur 2004

- Scenario
Drlver <—EW/ branches)}
T
E —
S Livingstone get state
T set state Search
g [T Engine 4—[Model} single step Engine
backtrack
E fsensors
D
| Simulator
commands
& faults

An advanced testing/simulation framework for Livingstone applications
Executes the Real Livingstone Program in a simulated environment (testbed)
Instrument the code to be able to backtrack between alternate paths

Scenarios = non-deterministic test cases (defined in custom language)
Modular architecture with generic APIs (in Java)

allows different diagnosers, simulators (can use Livingstone), search algorithms (depth-first, breadth-
first, heuristic, random, ...)

Graphical interface, trace display, integration in Livingstone development tools
See TACAS'04 paper

Diagnosis Verification

0 Livingstone T SMV

Livingstone Model . Model
A

Livingstone N - SMV

Specification S Specification SMV
(enriched) L (CTL logic)

A
T

Livingstone o [smv

Trace R . Trace

A translator that converts Livingstone models, specs, traces to/from SMV (in Java)

SMV: symbolic model checker (both BDD and SAT-based)
allows exhaustive analysis of very large state spaces (10°0+) =

Translator hides away SMV, offers a model checker for Livingstone
Enriched specification syntax (vs. SMV's core temporal logic)

Graphical interface, trace display, integration in Livingstone development tools

Livingstone Model Verifier - demo Project
File Edit View Run Help

0| & & p n B €

Project demo

Root Directory [Users/pecheur/+Demos/JPL-aprid/elecZ

Model Files elec2.smpl v Add Remove
Root Class Elec Root Name test
Initializatior File compiledstest.ini Browse
Harness File compileditest.hrn Browse
Specification File demo.spec Browse
| Show Auxiliary Vars
Livingstons Shafi® . R Shaf Living=stane Ko
hiodel & Spec Al L2 Shit! fwlodel 8 Spec Trace AP L3 Skt Trace B
ﬁ Show False Only
7 impi_iilc:fc:fcyéwinfﬁomcfpccﬂeurfdbmb—wobd3fclc&2fﬁiec.impl ¥ v v[RHﬂfoN:TnjH;eiqum_ﬂr:jf;r3:95Uﬁgue
INVAR test.bulb.cmdIn=replace -> test.light=cff & test.display=: X
INVAR !multicommand() (EF {|(test.meter.mode = _some_test_meter_mode & test.bulb.mode = _some_test bulb_mode) & test.b
VERIFY reachability test.breaker - > Stale 21 <
VERIFY reachability test.bulb.mode=hazard o
VERIFY INVARIANT ltest.bulb.mode=hazard [2
VERIFY progress
FUNCTION test.light OF modes() »
FY FUNCTION test.bulb.i OF modes() » st bl
VERIFY FUNCTION test.bulb.vIn OF modes() i ey
- P test.breaker
v =Slate 2.2 <
v test. meter
a vMeas = low
-~
Current dir = /Users/pecheur/+Demos/JFL-aprid/elecd
smv Starting
Terminated successfully
smv Done
[«TracerLMv> '-m' 'demo' '=t' 'J/Users/pecheur/+Demos/JIPL-apri4/elec2/’ '-h' 'JUsers/pecheur/+Demos,/JPL-apri4/elec2/' '-s'
' fusers/pecheur/+Demos,/JPL=aprid/elec/' '=r' '/Users/pecheur/+Demos,/JPL=aprid/eleci/']

Current dir = JUsers/pecheur/+Demos/JPL-aprid/eleci
<TracerLMV> Starting
<TracerLMV> Done ===

Coding Errors
e.g. Consistency, well-defined transitions, ...
Generic

Compare to Lint for C
Model Correctness

Expected properties of modeled system
e.g. flow conservation, operational scenarios, ...
Application-specific

Diagnosability

Are faults detectable/diagnosable?
Given available sensors

In all/specific operational situations (dynamic)

Innovative use of model checking using twin models

state estim.

| ood
o Diagnosis /\/. g
in/out
out in ./\.
Plant in/out bad

sState

Diagnosis estimates the hidden state of Plant,
given observable input and output of Plant.

Diagnosability: Can (a smart enough) Diagnosis always tell
when Plant comes to a bad state?

Intuition: YES, if and only if there is no pair of executions,
one reaching a bad state, the other reaching a state,
with 1dentical observations.

... within a given context

uly

Transition system x >x', executions O : Xy ——>X

inputs u, outputs y are visible, states x, x' are hidden
tracew = (u;, y, ..., U, y,)
Diagnosis function x = A(x,,w) such that
X0 c)/(\fo,xO—W%x = x & A(J’(\fo,W)

updates belief state (set of possible states) according to observed trace

=)

Diagnosis condition X |=c;Llc, iff XN =GviNe =
belief state never allows both c, and c,

Typical cases: fault L —fault (detection), fault, Lfault, (identification)

A |= CIJ_Cz 1ff VXO < io,xO —W%.X' A(ﬁo,W) |= CIJ‘CZ

c|Lc, is diagnosable iff JA |=c;Lc,

... In given context: conditions on execution O and initial belief state x,

Critical Pair 0, 0, for ¢, Lc, (in context C) such that
w;=w,=w and x,;&c; and x,&c, (and (0; 0,) satisty C)

Coupled Twin Plant P? = two copies of the plant P
with merged inputs and outputs

c,;Llc, diagnosable (in C) . x1:plant - o4
iff no critical pairs for ¢, Lc, (in C)
iff c,;%c, not reachable in P? (and C) x2:plant

Model checking: verify =F c,;(x;)Ac,(x,) in P? (+ context)

(Diagnosability - Verification

(Verification

Model-Based Diagnosis T
Diagnosis Model R | Model
A
: Diagnosis N Verification
\dlagnosable:& Specification S l Specification Sl
(enriched) L (core logic) Checker
A
T
Diagnosis o (Verification
Trace R . Trace

Generate twin coupled model
Support specific syntax for twin models and diagnosability properties

Translate/correlate pairs of error traces

Diagnosability in SMV Translator

Added generation of twin models
Added syntax for properties of twin models

Example: starting form known initial non-faulty state, with

single faults, can we detect whether there 1s high current in the
bulb?

invar same(visibles()) // observations are the same on both sides

verify (same(modes()) & both(!broken()) >
IE[both(!multibroken()) U both(!multibroken()) & !same(test.bulb.i)]

Coming soon: syntax for diagnosability property

verify detection iest.bulb.i=high
from same(modes()) & both(!broken())
keeping 'multibroken()

Kestrel Institute, July 2004 © Charles Pecheur 2004 16

Propulsion IVHM Technology Experiment (ARC, GRC)

Livingstone applied to propulsion feed system of space vehicle

Livingstone model is 4-10% states

LR A

ol — &
— v

- - v

—_ —

) @

L .o
() — ¥
thag 1
rrrrrrr i

tttttttt

-
v
(F) e P
| 7
Farwar oLz nmprezoip

T v
e [0
S W/ rrw
i
=
=
K

tttttttt

nereaeie

PuOZ -

ca @

&

- o]
vva O

v
w 5 k208

=

(T} wrtd3odt.

2o =i
v o - o
-
|
a
(F) nereledn @ nipred0 e
=
|
|
L}
nrtdtoat (5

-

mpreddle

.
mpred Olp @]
- o
Y
kol
=
(——
I
&
thae
=
e 5
=
i
B0
[
v
0
7

-
® nfreldde

Y
mrEd203t {-D
Y

I yproy
v a L

[

v v
(:) npreZize
Fal

vw
@ mpre? 12

oW

v w

(:) mpreRZ2p
AW

frarwardl o=

m-tadl 04t {'D
&8
-

el g {:_I_’} —
o

mErezZilR

e
L @ ~ o
L &
=
= LR @ o)
v

metd201E

=w 36 s
= v = =
v v w .
LA
@ npre3ode
-
. - v o
=
Ty mrtazoit ":? npresllp
v
v v
{:} mpere22le
-
1
L -
riedl Tank
0 R
.
= =
— [o] ™
=
v v
[~ 1
v
® mpre3iZp
— -
X —
m- b LOE L -
@ (T} mredZozt
— *
=
{:} mpreldbe
-
=

P

e [0
L4
= K
= %]
P 4
i

= 1
W

b T
=

<|-|—1 (o)

mi-bol 2ot

'(ir:‘;_
v{@&_

mpere td e

aFtL02

nEreatae
[-
T o {:)
o
- [o] 4
i) {'I'}

v
* L mrbd205:

b

sdd
=2

ripre 30ds

) wrtd@ods
-

@ mapt e O 7

-

fal
|
1
=3
nrtaleat (1)
v

Applied translator to PITEX model
Goals:

Demonstrate scalability to real-size models

Demonstrate relevance wrt. application needs

Compared BDD-based vs. SAT-based

BDD: single model done (with tuning), twin model too big
SAT: twin model done in a few seconds!

Found application-relevant anomaly in PITEX model
(unnoticed oxygen leak)

See report: RIACS TR 03.03

PITEX Diagnosability Error

* "Diagnosis can decide whether the venting valve VROI is closed or stuck
open (assuming no other failures)"

INVAR !test.multibroken() & twin(!test.broken())
VERIFY INVARIANT !(test.vr01.mode=stuckOpen &
twin(test.vr01.valvePosition=closed))
* Results show a pair of traces with same observations, one leading to VR01 stuck
open, the other to VRO1 closed. Application specialists fixed their model.

Kestrel Institute, July 2004 20

Charles Pecheur, Alessandro Cimatti. Formal Verification of Diagnosability via
Symbolic Model Checking .Workshop on Model Checking and Artificial
Intelligence (MoChArt-2002), Lyon, France, July 22/23, 2002.

Cavada, Roberto and Pecheur, Charles. Practical Formal Verification of
Diagnosability of Large Models via Symbolic Model Checking. Technical
Report TR03.03, RIACS, USRA, January 2003.

Roberto Cavada, Alessandro Cimatti, Charles Pecheur. Formal Verification of
Diagnosability via Symbolic Model Checking. IJCAI'03, Acapulco, Mexico,
August 2003.

The Big Picture:

Key concept: partial observability

Demonstrated on concrete, real-size applications
Demonstrate scalability and relevance to practical needs

Tools aimed at non-specialist users, integrated with development
Vision: build integrated "advanced debuggers"
GUI, visualization, documentation, integration, ...
Takes a lot of engineering work

Extensions:

Extend from discrete to real-time and hybrid models
Build on new generalized solvers (MathSAT at IRST, ICS at SRI)

Apply to human-computer interaction
Features partial observability issues

Study relations with classical risk analysis models
Fault trees, FMEA, ...

Generalize to verification of epistemic logics
applications to multi-agent systems, security protocols

Reasoning about time and knowledge:
= CTL + temporal operators

K, ¢ =a knows @

E; ¢ = each one in G knows ¢

D, ¢ = together, all in G know ¢

C; @ =1t 1s common knowledge in G that ¢

Interpreted over an Interpreted System =

Transition system (Kripke structure) 7 +
Observation functions obs (o) over runs o of T, for each agent a

o~,0' 1iff obs (0)=obs (0')
o|=K, ¢ iff forall reachable 0'. 0~,0'=> 0'|= @

Total recall:
obs (o) = all that a saw since start of o

Full CTLK non-elementary
Nice solution for AX* ¢, @ with only one actor

Observational.
obs (o) = all that a sees in last state of o
obs (s, ... s,) = obs(s,), s~ s' becomes a state relation
s|=K, @ iff (s~,s8'<"s,€EQ)=>s"|=0¢
Can be expressed as generalized CTL over multiple transition
relations —, ~ , <

SMV-style symbolic model checking applies
Variants: last + clock, all — clock

where agent d (diagnoser) sees all observable variables,

with perfect recall.

Bounded approximation corresponds to AX¥ ¢ case above

Conversely, all @ with positive K over a single agent are equivalent to
Ke,V..VKao,

and can be analyzed using the twin model approach

Franco Raimondi (King's College London)

At Ames for the summer

developed a BDD model checker for CTLK
(using observational view)

studying connections between diagnosability and CTLK

Using observational view for diagnosability

requires mapping memory of previous obs explicitly into diagnoser
variables

inelegant, cumbersome and inefficient
flexible model for diagnoser's memory

work in progress!

K" ¢ @ =aknows @, assuming everyone in G "works correctly"
n n z MY
works correctly" is a state condition

Useful for diagnosis: one agent per component, works correctly iff
non-fault mode

Verification supported by Raimondi's tool (BDD based)
Expressivity issue: correctness in present state vs. in future

Work in progress!

Backup Slides

Kestrel Institute, July 2004 © Charles Pecheur 2004

29

Manipulates sets of states,
Represented as boolean formulas,
Encoded as binary decision diagrams.

Can handle large state spaces (10°° and up).

BDD computations:
Efficient algorithms for needed operations.
BDD size is still exponential in worst case.

Highly sensitive (e.g. to variable ordering) and
hard to optimize.

Example: SMV/NuSMV (Carnegie
Mellon/IRST)

Symbolic model checking variant.

Uses SAT (propositional satisfiability)
rather than BDDs.

Idea: unroll transition relation a finite number
of times into a (big) constraint network.

Bounded-depth only, not complete.
Very efficient

Polynomial space!

Exponential time in the worst-case but
modern SAT solvers are very efficient in most
practical cases.

Example: NuSMV (using the Chaff solver
from Princeton)

Yo

¥Yi

Y2

/mmzsgam[mgﬂfgr Formal ization

.« . u/y ' . . w
Transition system x >X', execution O : xy—>X
trace w is visible, states x, x' are hidden

Diagnosis function £ = A(%,, w)
updates belief state according to observed trace
Correct iff xy € £9,xg——>x = xE %
does not lose the actual state

Perfect diagnosis Ap(£y, w) = {x | Ixy € £5.xg —>x)}
the best possible knowing the transition system

Kestrel Institute, July 2004 © Charles Pecheur 2004 32

/ﬁmﬂ,ﬂ,ﬂ,w,”,,,, Formalization (cont'd)

.7’(\:|=C1J_C2 1ff),(\fmcl =®V),emC2 =@
no ambiguity between c; and c,
),6\'0 |= GC iff 5(\,'0 X)’C\'O g HC
initial belief compatible with equivalence O
(XO,W) |— (Zc,ec) 1ff xo |— HC Ado: xOéX X0 = XO AOE 2
idem. and trace compatible with some execution in 2
A(Zc,00) l=cidley iff (%9, w)|=(Zc,00) = A(%, W) |= C1J—Cz
for all initial beliefs and executions within context, no ambiguity

Kestrel Institute, Ju##2004 © Charles Pecheur 2004 33

/mmzsgam[mgﬂfgr Critical Pai rs

Counter-example of a condition ¢, Lc,1n context (X, 6,):
a pair of executions 0,|0, : x,;|x,, —Ww—> x,|x, with the
same observable trace w, such that

= ¢,(x;) and c,(x,), and

= ...0,,0,€E 2, and

" .. Xy O0x,

c,;lc, diagnosable in (2., 6,) iff no critical pairs

Kestrel Institute, July 2004 © Charles Pecheur 2004 34

/ﬁmzsgam[mgﬂfgr Coupled TWin MOdeI

= Coupled twin plant P° = two copies of the plant P
with merged inputs and outputs

c,;1lc, diagnosable in (2, 0,)
iff
c,xc, not reachable from 6 through X x2 in P~

Kestrel Institute, July 2004

35

Reasoning about time and knowledge: CTLK logic

@ u=pl-9|earp atomic propositions, boolean ops
| EX ¢ |E[pUg]|EG g temporal ops
| K.9|Eqo|[Dso|Coo knowledge ops

with v@' := = (=@pAa-q@'), EF ¢ := E[true U ¢], AG ¢ := =EF -0, ...
Interpreted over an Interpreted System =

Transition system (Kripke structure) T +
Observation functions obs (o) over runs o of T, for each agent a

o~,0' 1iff obs (0)=obs (0')
o|=K, ¢ iff forall reachable 0'. o~,0'=> 0'|= @

