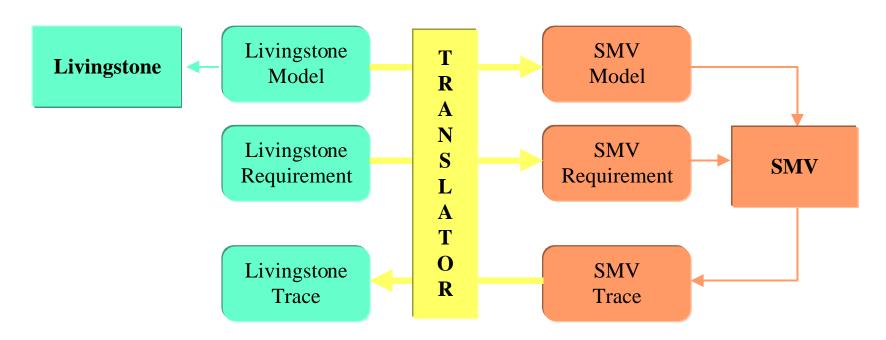
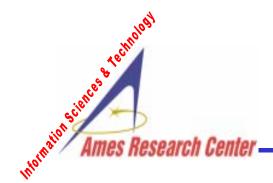




From Livingstone to SMV Formal Verification for Autonomous Spacecrafts

Charles Pecheur (RIACS / NASA Ames)
Reid Simmons (Carnegie Mellon University)




Overview

Autonomy

Verification

Autonomy

Past:

Time- stamped control sequences

Future:

On-board intelligence

- + Can respond to unanticipated scenarios!
- How do we verify all those scenarios?

Concurrency => testing is not enough.

Model-Based Autonomy

- Based on AI technology
- General reasoning engine + application-specific model
- Use model to respond to unanticipated situations

Autonomous controller

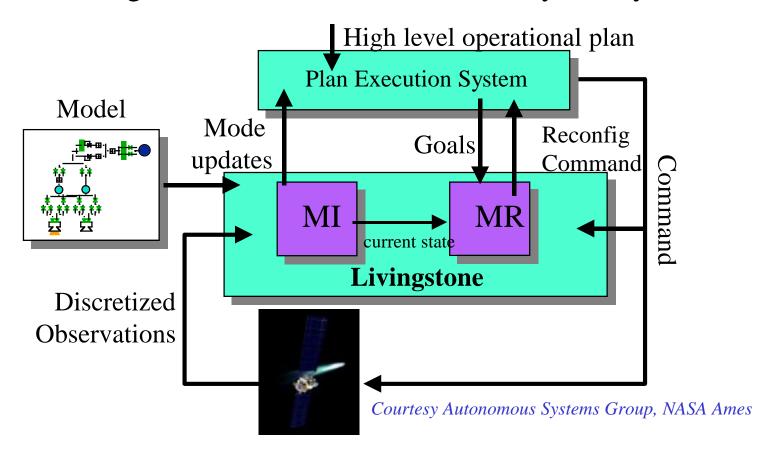
Reasoning
Engine

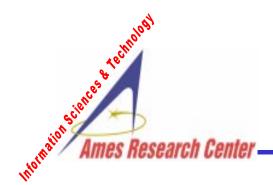
Model

commands

status

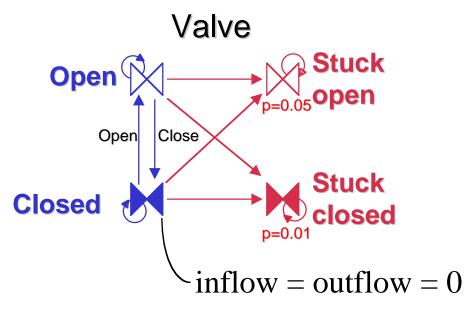
model of


=> Verify the model!



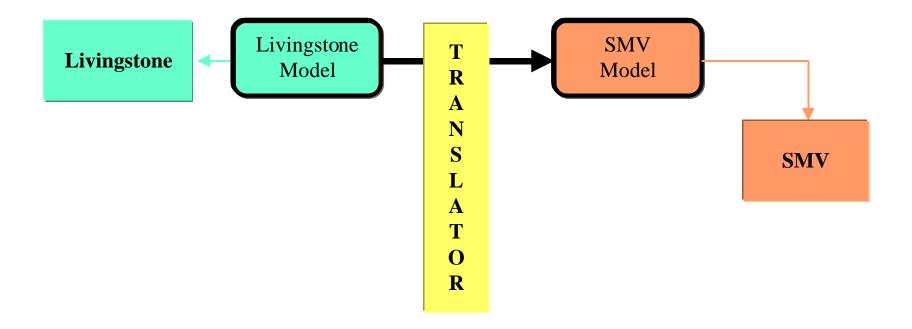
The Livingstone MIR

Remote Agent's model-based fault recovery sub-system



Livingstone Models

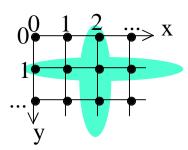
- Models = concurrent transition systems
- Qualitative values=> finite state
- Nominal/fault modes
- Probabilities on faults

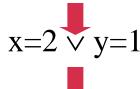


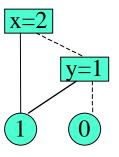
Courtesy Autonomous Systems Group, NASA Ames

Livingstone to SMV: Models

onation sciences technology and the science of the


SMV




From Carnegie Mellon U. (Clarke, McMillan)
Does Symbolic Model Checking

- Explore all states, BUT...
- Manipulates sets of states,
 Represented as boolean formulas,
 Encoded as <u>Binary Decision Diagrams</u>.
- BDD computations:
 - Good in average but exponential in worst case.
 - Computation time depends on BDD size
 number of variables, complexity of formulas,
 but not directly state space size.



Ames Research Center

Translating Models

Livingstone Model

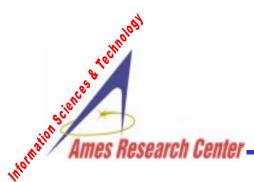
```
(defcomponent valve ()
  (:inputs (cmd :type valve-cmd))
...
  (Closed :type ok-mode
  :transitions
        ((do-open :when (open cmd)
            :next Open) ...))
  (StuckC :type :fault-mode ...)
...)
```

SMV Model

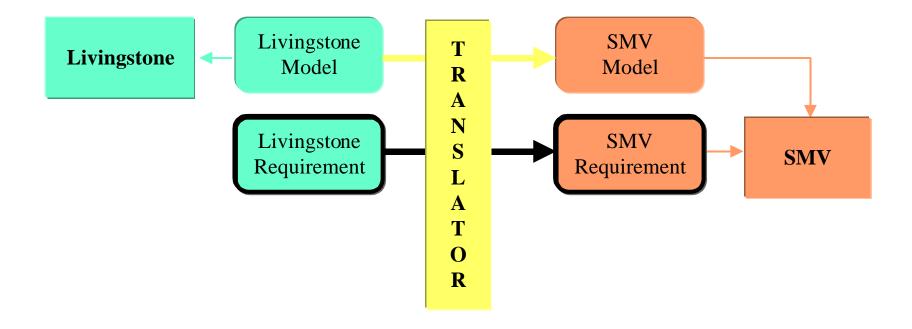
> SMV Symbolic Model Checker

Livingstone

Autonomous Controller


ornalion Sciences & Technolic Ames Research Center

Implementation Notes


- 4K lines of Lisp
- Similar semantics (synchronous transition systems)
 - => translation is fairly straightforward and one-to-one.
- Different naming and scoping rules
 - => complex part is translation of variable names.

 Build and use lexicon of Livingstone vs. SMV variables.

Livingstone to SMV: Requirements

Translating Requirements

Ames Research Center

Livingstone Requirement

```
(defverify ...
 (:specification
  (always (globally (implies
    (not (broken))
    (exists (eventually
     (high flow-in))))))
```

SMV Requirement

```
SPEC AG (
 (!broken) ->
 EF (ISPP.valve.flow-in = high))
```

- Declaration (defverify ...) added to the Livingstone model.
- Temporal logic formulas (CTL) in Livingstone syntax + auxiliary predicates and patterns.

Auxiliary Predicates

(broken heater) = heater is in a failed state

(failed heater) = on last transition, heater failed

NB: failed more precise but requires extra SMV variable

=> SMV runs more slowly => optional

(multibroken 2) = at least two components are failed

(multicommand 2) = at least two commands are activated

(brokenproba 3) = combined probability of currently failed components is at least "of order" 3

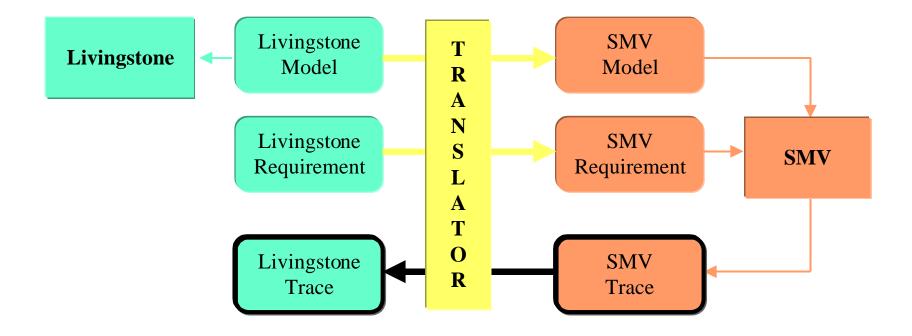
NB: based on summation of approximate orders of magnitude e.g. n stands for $p=10^{-n}$

Pre-Defined Patterns

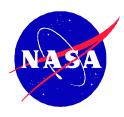
(:specification :completeness ispp)

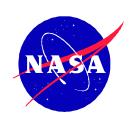
(:specification :disjointness ispp)

For each mode of each component of ispp, the conditions of all transitions are resp. complete and disjoint.

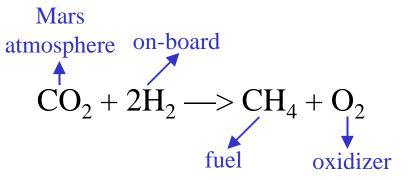

(:specification :reachability ispp)

All modes of all components of ispp are reachable from all initial states (variant :path-reachability from one state to another).


SMV to Livingstone: Diagnostic Traces



Closing the Loop

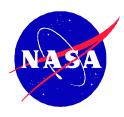

- Diagnostic traces = sequences of states.
- Translation uses lexicon backwards.
- Completes the Livingstone
 → SMV bridge
 => isolates Livingstone users from SMV syntax.
- In progress (CMU): generate causal explanations of traces.


Application In-Situ Propellant Production

- Use atmosphere from Mars to make fuel for return flight.
- Livingstone controller developed at NASA KSC.
- Components are tanks, reactors, valves, sensors...
- Exposed improper flow modeling.
- Latest model is 10⁵⁰ states.


See poster!
(Peter Engrand)

Conclusions



Symbolic model checking for models used in autonomous fault recovery system.

- Works well because:
 - Models are already abstract,
 - Similar semantics.
- Full forward and backward translation
 - => shields Livingstone users from SMV details.

To Probe Further

- Improved accuracy for V&V (w.r.t. testing)?
 - Complements (rather than replaces) testing.
- Methodology, what to look for:
 - Not deadlocks.
 - Consistency/completeness.
 - Responsiveness: can a failure be observed?

Tools are available, needs more user experience.