/

/ Ames \wmu.mm\g GCenter

Formal Verification of Diagnosability
via Symbolic Model Checking

Charles Pecheur (RIACS / NASA Ames)
Alessandro Cimatti (IRST)

/ m%%ﬁs Center U mm@ NOS mm

* Diagnosis estimates the
state of Plant

. eqe Controller
= Partial observability: state VA
. . . output . input
1S WHQ‘Q‘QSu Ob_v\ NSNQSN and measurements + state estim. s mmands
output are visible VA Diagnosis g

= Goal: prevent faults
(deflated tire) from e [
becoming failures (car <«
crash) by detecting and Hent
1dentifying them timely
and appropriately

Al actuators A__

state

= How can we verify that?

Mochart 2002 2

/

\\ossmhmszmﬁﬁan55§§ —“vﬂmm-_m——)—‘”vmmwmmmw —’\—.hv.n&.mw—

We assume that we have a model of the diagnosed system
= models nominal and faulty behavior

= 1dentifies hidden and observable parts

= we focus on discrete and finite models

= Same model can be compiled/interpreted in model-based
diagnosis system

Case 1n point: Livingstone
* model-based diagnosis system (NASA Ames)

= generic engine interprets application-specific model
= qualitative (discrete, finite) model

Mochart 2002

/

/ Ames m«%&g Genter

Mochart 2002

Elec: A Sample Model

m

ode=off/on

v=zero/normal

breaker

v=normal)

display=zero

dead

V=Z€10

THNQo\soﬁEm_

blown

1=

short ——

- i=high
v=low

\A Verification of
/ Ames Research Center U mm@ nos m S m<m.ﬂ¢ ms

Verify what?

1. Model Correctness: the model 1s OK
1.e. the model is a valid abstraction of the plant

2. Engine Correctness: the software 1s OK
1.e. all that can be diagnosed is correctly diagnosed

3. Diagnosability: the design is OK
i.e. all that needs to be diagnosed can be diagnosed

In principle, 1+2+3 => diagnosis will be correct
Here we look at 3 only!

Mochart 2002 5

/

e D1AGNOSabIlity as Reachability

/

Diagnosis can always tell when plant comes to a bad state
iff Observations always allow to tell when plant 1s in bad state

iff Whenever bad state 1s reached, no good state could have
been reached with the same observations

iff There 1s no pair of executions, one reaching a bad state, the
other reaching a good state, with identical observations

= ... within a specific context

= variant: tell between two kinds of bad
Mochart 2002 6

\i%%m\g%i% mo—-sm— mNm.ﬂmos

.v\m.o .»,HHD u\wOuS\v

Transition system x >x', execution 0 : xg——=>X

trace w is visible, states x, x' are hidden
Diagnosis function £ = A(%,, w)

updates belief state according to observed trace
Correct iff xy € £, xg——>x = xE %

does not lose the actual state

Perfect diagnosis Ap(£,, w) = {x | Ixy € £5.xg —>x)}
the best possible knowing the transition system

uly

Mochart 2002

\K%%m\g@im\ Ummusommm Oosgm.ﬂmos

Diagnosis condition ¢, Lc, in context C=(2, 0,):

= Distinguish between two state conditions c,(x), ¢,(x)
= ... assuming executions in 2,

= ... and mitially indistinguishable states x 6, x' (equiv.)
Fault detection: faultl-fault

Fault diagnosis: fault,1fault,

Example:

* Distinguish between current and no current N\

= ... assuming single faults —_ @U @
= . and known initial breaker state

Mochart 2002 8

Y — Formalization (cont'd)

%_"QHFQN Hﬁﬁu\wgﬁ._"® %DQM"@
no ambiguity between c; and c,
.vm.o _" mﬁ 1ff .v\wo X .vm.o m Qmu

initial belief compatible with equivalence 0
w

A.v\m.oux\v _| AMOJ%QV 1ff u\m.O _| mﬁ. Ado: Xo— >X.Xp = .v\mo AOE 2
idem. and trace compatible with some execution in 2
A(Zc,00) l=cidley iff (%9, w)|=(Zc,00) = A(X,w) |= n_._.S
for all initial beliefs and executions within context, no ambiguity

Mochart 2002 0

\K%%m\g&ﬁm\ O—-m.ﬂmnm— vmm —-m

Counter-example of a condition ¢, Lc,1n context (X, 0,):
a pair of executions 0,|0, : x,,|x,, —w—> x,|x, with the
same observable trace w, such that

" ¢,(x;)and c,(x,), and

" ...0,,0,E 2, and

" .. Xy O0x),

c,;Lc, diagnosable in (X, 6,) iff no critical pairs
Mochart 2002 10

\m%%m\g&ém\ Ooc ﬁ—mg l—lsms gogm—

= Coupled twin plant P° = two copies of the plant P
with merged inputs and outputs

c,;1lc, diagnosable in (2., 0,)
iff
c,xc, not reachable from 6 through ¥ x2. in P~

Mochart 2002

11

A Model Checking of
\hSmh\wmth\h\N Genter U mmu :ommcm — m”<

= Coupled Twin Plant P? as Kripke Structure K,
— turn inputs/outputs into state variables
— state vector (v,,v,,,V,,V,)
— ¢, ¢, as propositional formulae c,(v,), ¢,(v,,)
— 0, as propositional formula/constraint 6.(v,,,v,,)

— 2 as temporal formulae/constraints 2(v,,,v,,v,), 2V, V,,V,)

c,;lc, diagnosable in (X, 6,)
iff
KpD2ZA(V, 1,V JV@MQC\% Vi évu Oc(v,1,v:0) |= ~EF ¢;(v.)Aacy(v,,)
iff (it 2 expressible in LTL)
Kp |= 0V, 1,V) A2 (Vi Vi VINELV,0 v, v,) = =F ¢(v Jacy(v,,)

Mochart 2002 12

A Model Checking Example
/ Ames Research Center Amm :Q —m Bogm—v

In SMYV (Carnegie Mellon), verified using NuSMYV (IRST)

MODULE bulb

VAR light : {on,off}; VAR i : {zero,normal,high}; ...
VAR mode : {ok,blown,short};

DEFINE _broken := mode in {blown, short};

)
TRANS ... N
INVAR ... —
MODULE breaker ...

MODULE meter ...

MODULE elec ... -- single model
VAR meter : meter; VAR bulb : bulb; VAR breaker : breaker;
DEFINE _brokenCount := meter._broken + bulb. broken + breaker. broken;

Mochart 2002 13

Model Checking Example
(twin model and spec)

MODULE main -- twin model

VAR L : elec; -- "left" copy

VAR R : elec; -- "right" copy

-- coupled inputs and outputs

DEFINE same_commands := L.cmdin = R.cmdin;

DEFINE same_obs := L.light = R.light & L.display = R.display;

DEFINE same_diagnosis := same_commands & same_obs;

-- initial context: known modes

DEFINE same_modes := L.breaker.mode = R.breaker.mode &
L.bulb.mode = R.bulb.mode & L.meter.mode = R.meter.mode;

-- trace context: no initial fault, single faults

DEFINE unbroken := IL. brokenCount & |R._brokenCount;

DEFINE single_faults := IL._brokenCount > 1 & !R._brokenCount > 1;

-- diagnosis condition: is there high current in the bulb?

DEFINE dontknow_high_i := L.bulb.i=high & IR.bulb.i=high;

/ Ames mm%msg Genter

Mochart 2002 14

A Model Checking Example
/ Ames Research Center Amtmnm.ﬂmnm.ﬂmcsmv

= Starting form known initial non-faulty state, T © &
tell whether there 1s high current in the bulb

SPEC (same_modes & unbroken) ->
|IE[same_diagnosis U
same_diagnosis & dontknow_high_i]

— false: 1f meter and bulb both fail...

* Idem with single faults

SPEC (same_modes & unbroken) ->
|IE[same_diagnosis & single_failures U
same_diagnosis & single_failures & dontknow_high_i]

— frue

Mochart 2002 15

A Model Checking Example
e (specifications cont'd)

* Jdem remembering only the last two observations

SPEC (same_modes & unbroken) ->
IE[single_failures U
same_diagnosis & single_failures & EX (
same_diagnosis & single_failures & EX (
same_diagnosis & single_failures & dontknow_high_i))]

— false: "forgets" the state of the circuit breaker

= Note: initial and trace contexts could be hardwired into the
model
— reduces the number of variables => improved performance

— loses some flexibility w.r.t. properties that can be checked

Mochart 2002 16

\A Tools

/ Ames \wmu.mm\g GCenter

= NuSMYV (IRST): symbolic model checker
— re-engineering of SMV (Carnegie Mellon)
— supports both BDD and SAT

— modular, documented, extensible, open-source

= JMPL2SMV (NASA Ames): translates Livingstone to SMV

— enables diagnosability verification on Livingstone models
— portable (Java)

* Variable Elimination (Bwolen Yang [CAV99]):

— eliminates model variables by turning them into macros
— implemented as customized (Carnegie Mellon) SMV

— port to NuSMV under consideration

Mochart 2002 17

\Ks%:% Experimental Results

= (Still) only early, small experiments 1n verification of
diagnosability
— Toy examples above processed in negligible time
= Verification of other properties on larger livingstone
models:

— check internal consistency, correctness w.r.t. real system

— weakly coupled models — huge but shallow state spaces
(e.g. 10°° states but only 3 steps deep)

— SMYV (and NuSMV) chokes
— Yang's variable elimination saves the day!

= Lessons learned: symbolic model checking (with variable
elimination) 1s a must, SAT-based has great potential
(because of shallow depth)

Mochart 2002 18

/ &%&2 Center vm IS ﬁmﬂ.ﬁ<mm

= Larger experiments
— See limits of scalability
— Compare BDD vs. SAT
— See how useful the results are in practice

— Large-scale Livingstone models readily available
Ex: X-34 spacecraft fuel feeding subsystem (800+ variables)

= Extend/refine/adjust model and specification patterns

— according to feedback from real applications

= Integrated support in Livingstone toolset

— first step: generate twin models 1n translator

Closely related to K-CTL (cf A. Cimatti's talk yesterday)

Mochart 2002 19

