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Part I
Explicit State Model Checking

• What is model checking?
• Kripke structures

– Describing the systems we want to check
• Temporal logic

– Describing the properties we want to check
• Automata-theoretic model checking
• State-explosion problem

– What can we do?
• Model Checking Programs

– A brief history of the field
– Java PathFinder
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• Model checking = (ideally) exhaustive exploration
of the (finite) state space of a system
– ≈ exhaustive testing with loop / join detection

Model Checking

“Valve is closed when
Tank is empty”

AG (tank=empty
=> valve=closed)

Modeling
Abstraction

Verification

Controller

Planner DiagnosisExec
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Model Checking
The Intuition

• Calculate whether a system satisfies a certain
behavioral property:
– Is the system deadlock free?
– Whenever a packet is sent will it eventually be received?

• Testing?
– Look at all possible behaviors of a system

• Automatic, if the system is finite-state
– Potential for being a push-button technology
– Almost no expert knowledge required

• How do we describe the system?
• How do we express the properties?
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Kripke Structures

• K = (props,S,R,S0,L)
–  props : (finite) set of atomic propositions
–  S : (finite) set of states
–  R : binary transitive relation (total)
–  S0 : set of initial states
–  L : maps each state to the set of propositions

      true in the state
• Often M = (S,R,L) with props and S0 implicit
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Example Kripke Structure

K = ({p,~p},{x,y,z,k,h},R,{x},L)

x

y

z

k

~p

~p

~p

p

hh ~p
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Property Specifications

• Linear Time
– Every moment has a unique successor
– Infinite sequences (words)
– Linear Time Temporal Logic (LTL)

• Branching Time
– Every moment has several successors
– Infinite tree
– Computation Tree Logic (CTL)

• Temporal Logic
– Express properties of event orderings in time
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CTL*

• State formulae:
S ::= true | false | q | ~q | S ∨ S | S ∧ S | AP | EP

– A (for all) and E (there exists) are path quantifiers
• Path formulae:

P ::= S | P ∨ P | P ∧ P | ~P | XP | P U P
– X (next), U (until) are path operators
– also: ◇p = Fp = true U p (finally, future)

□p = Gp = ~F ~p (globally, always)
○p = Xp

– Example: A [F done ∨ F (failed ∧ EF done)]
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CTL and LTL

• CTL: Every path operator is preceded
by a path quantifier (AX, EX, A(. U .), …)
– For example: AG(stuck => EF ~stuck)

• LTL: pure path formula P
– No path quantifier, implicitly AP
– For example: (A) (GF run => F done)
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CTL

Computation Tree Logic (branching):
Consider the tree of possible executions

Always ...

Sometimes ...

... Next p ... Globally p ... Finally p ... p Until q

AX p A[p U q]AG p AF p

EX p E[p U q]EG p EF p

duals

In all states

In some state
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Mutual Exclusion Example

N1  →  T1
T1 ∧ S0 →  C1 ∧ S1
C1 →  N1 ∧ S0

N2  →  T2
T2 ∧ S0 →  C2 ∧ S1
C2 →  N2 ∧ S0

||

• Two-process mutual exclusion with shared semaphore
• Each process has three states

• Non-critical (N)
• Trying (T)
• Critical (C)

• Semaphore can be available (S0) or taken (S1) 
• Initially both processes are in the Non-critical state and
   the semaphore is available --- N1 N2 S0
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Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

• Mutual Exclusion: K ╞  AG ~(C1 ∧ C2)
• Response : K ╞ AG (T1→ AF (C1))
• Reactive : K ╞ AG EF (N1 ∧ N2 ∧ S0)



MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 16

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG EF (N1 ∧ N2 ∧ S0)
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Mutual Exclusion Example
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Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG EF (N1 ∧ N2 ∧ S0)
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Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG EF (N1 ∧ N2 ∧ S0)
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Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG EF (N1 ∧ N2 ∧ S0)
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Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG EF (N1 ∧ N2 ∧ S0)
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Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG (T1→ AF (C1))
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Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG ( ~T1 ∨ AF (C1))
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Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K╞ AG ( ~T1 ∨ AF (C1))
K╞ EF (T1 /\ EG (~C1))
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Model Checking

• Given
– a Kripke structure M = (props,S,R,S0,L) that represents a

finite-state concurrent system
– a temporal logic formula f expressing some desired

specification,
find the set of states in S that satisfy f:

[[f]] = { s ∈ S | M, s ╞ f }

• M satisfies f  when all the initial states are in the set:
M╞ f   iff    S0 ⊆ [[f]]
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Model Checking Complexity
 M╞ f

• CTL
– O(|M| * |f|)

• LTL
– O(|M| * 2|f|)

• But, for CTL the whole transition relation must be
kept in memory!
– Binary Decision Diagrams (BDDs) often allows the

transition relation to be encoded efficiently
• The formulas are seldom very complex, hence |f| is

not too troublesome.
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Automata-Theoretic
Model Checking

• Linear time temporal logic
– Nondeterministic automata over infinite words

• Branching time temporal logic
– Alternating automata over infinite trees

• Automata-theoretic LTL model checking
• Basic idea:

– Translate both Kripke structure and LTL property into
automata and show language containment

• See papers by Vardi and Wolper
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Büchi Automata

• Accepts infinite words
• B = (∑, S, ρ, s0, F)

– ∑ is a finite alphabet
– S is a finite set of states
– ρ : S × ∑ → 2S  is the transition function
–  s0 ∈ S is the initial state (or states)
– F ⊆ S is the set of accepting states

• Given an infinite word ω=a0,a1,… over ∑ then a run of
B is the sequence s0,s1,…where si+1 ∈ ρ(si, ai)

• Let inf(π) be the set of states that occur infinitely often
on the run π, then π is accepting iff inf (π) ∩ F ≠ ∅
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1 2

~p p
p

~p

B = ({{p},{~p}},{1,2}, ρ, 1, {2})

Example Büchi Automaton

Example accepting words:
•  (12)ω
•  1112ω

•   Example rejecting word: 121212111ω
• LTL property: GFp – “infinitely often p”
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Kripke to Büchi Automaton

• K = (props, S, R, S0, L) can be viewed as
• AK = (2props, S, ρ, S0, S) where

–  si+1 ∈ ρ(si,a) iff  (si,si+1) ∈ R and a = L(s)

• Every state is in the accepting set,
hence all runs are accepting

• The language of the automaton, L(AK),
is the set of all behaviors of K
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Kripke to Büchi Example

x

y

z

k

~p

~p

~p

p

~ph
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Kripke to Büchi Example

x

y

z

k

~p

~p

~p p

hh
~p

~p
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Translating LTL Formulas
to Büchi Automata

• Exponential in the length of the formula
– Many heuristic optimizations are used
– Multitude of papers: CAV, LICS, etc.

T T

p

   Fp

p

Gp

p T

q

 p U q

~p ∨ q T

 G(p → Fq)
q

T
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Model Checking with
 Büchi Automata

• K ╞ f
• Translate K and f to Büchi Automata
• Language containment

– L(AK) ⊆ L(Af)
– L(AK) ∩ L(Af) = ∅
– L(Af) = L(A~f) and L(AK × A~f) = L(AK) ∩ L(A~f)

• Algorithm
– Negate formula f and create A~f
– Construct the product AK,~f = AK × A~f
– If L(AK,~f ) = ∅ report YES else report NO
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Model Checking Example

• K ╞ AFG~p
– For all paths from some moment onwards p is

always false

• Where K is given by

x

y

z

k

~p

~p

~p

p

~ph
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Step 1

• Negate FG~p
– GFp

• Construct  Büchi Automaton for GFp

1 2

~p p
p

~p
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Step 2

• Construct the product automaton

1 2

~p p
p

~p

× =
x

y

z

k

~p

~p

~p p

hh
~p

~p

x,1

y,1

z,1

k,1

h,2~p

~p

~p

~p

~p

p
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Step 3

• Check if the language is empty
• It is nonempty since there is a cycle through an

accepting state, hence K ╞ AFG~p
– (xkhz)ω is an accepting run

• The accepting run is also a counter-example to the
property being true

x,1

y,1

z,1

k,1

h,2~p

~p

~p

~p

~p

p
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Checking Nonemptiness

• A Büchi automaton accepts some word iff
there exists an accepting state reachable
from the initial state and from itself

• Can be checked in linear time
• Model Checking complexity for LTL

– O(|K| * 2|f|)



MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 40

Efficient
Nonemptiness Checking

Dfs (state s)
     Add (s,0) to VisitedStates;
     FOR each successor t of s DO
          IF (t,0) ∉VisitedStates THEN Dfs(t) END
     END
     IF s ∈ F THEN seed := s; 2Dfs(s) END
END

2Dfs (state s)
     Add (s,1) to VisitedStates;
     FOR each successor t of s DO
          IF (t,1) ∉VisitedStates THEN 2Dfs(t) END
          ELSEIF t = seed THEN report nonempty END
     END
END

• VisitedStates as
   HashTable
• Change Recursion
   to Iteration
• Generate successor
  states on-the-fly

Efficiency
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SPIN Model Checker

• Automata based model checker
– Efficient nonemptiness algorithm

• Translates LTL formula to Büchi automaton
• Kripke structures are described as

“programs” in the PROMELA language
– Kripke structure is generated on-the-fly during nonemptiness

checking

• http://spinroot.com
– Relevant theoretical papers can be found here
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State-space Explosion?

•  n concurrent processes with m states each
– Has mn states
– Worst-case, an on-the-fly model checker has to

enumerate all of them
• What can we do to reduce mn ?

– Reduce m
• Abstraction

– Reduce the effect of n
• Partial-order reductions

– Reduce n
• Symmetry reductions

We’ll consider these 2 here
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Partial-Order Reductions

• Reduce the number of interleavings of
independent concurrent transitions

•  x := 1 || y := 1  where initially x = y = 0

11

00

0110

x := 1

x := 1y := 1

y := 1

11

00

0110

x := 1

y := 1

y := 1

11

00

10

x := 1

y := 1

No Reductions Transitions Reduced States Reduced
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Basic Ideas

• Independent transitions
– cannot disable nor enable each other
– are commutative

• Partial-order reductions only apply during the
on-the-fly construction of the Kripke structure

• Based on a selective search principle
– Execute a subset of enabled transitions in a state

• Sleep sets (reduce transitions)
• Persistent sets, ample sets (reduce states)
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Persistent Set

Given a set of transitions ∑ and a state s,
• T ⊆ enabled(s) ⊆ ∑ is persistent in s iff

on any execution in (∑–T) from s,
all transitions are independent from all
transitions in T

s

T

s s s
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Persistent Set Reductions

• Use the static structure of the system to determine
sufficient conditions for persistent sets
– Note, the set of all enabled transitions is trivially persistent

• Only execute transitions in the persistent set
• Persistent set algorithm is used within SPIN
• See papers by Godefroid and Peled
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Abstraction

• Type-based abstractions
– Abstract Interpretation
– Replace concrete variables with abstract variables

• E.g. integer with {odd, even}
real with {neg, zero, pos}

– ... and concrete operations with abstract operations
• e.g. add(pos,pos) = pos

subtract(pos,pos) = neg | zero | pos
eq(pos,pos) = true | false

• Predicate Abstraction  (Graf, Saïdi see also Uribe)
– Create abstract state-space w.r.t. set of predicates

defined in concrete system
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Predicate Abstraction

x ≠ y

Abstract

Concrete x = y

F T

α : int × int     bool

EQ = T EQ = F

x = 0
y = 0

x = 0
y = 1

y++

EQ := F

EQ ≡ (x = y) EQ ≡ (x = y)

• Mapping of a concrete system to an abstract system, whose states
  correspond to truth values of a set of predicate
• Create abstract state-graph during model checking, or,
• Create an abstract transition system before model checking
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Model Checking Programs

• Model checking usually applied to designs
+ More abstract, smaller, earlier
– Some errors get introduced after designs
– Design errors are missed due to lack of detail
– Sometimes there is no design

• Can model checking find errors in real programs?
– Yes, many examples in the literature

• Can model checkers be used by programmers?
– Only if it takes real programs as input
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Main Issues

• Memory
– Explicit-state model checking’s Achilles heel
– State of a software system can be complex
– Require efficient encoding of state, or,
– State-less model checking

• Input notation not supported
– Translate to existing notation
– Custom-made model checker

• State-space Explosion
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State-less Model Checking

• Must limit search-depth to ensure termination
• Based on partial-order reduction techniques
• Annotate code to allow verifier to detect

“important” transitions
• Example: VeriSoft

http://cm.bell-labs.com/who/god/verisoft/
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Traditional Model Checking

• Translation-based using existing model checker
– Hand-translation
– Semi-automatic translation
– Fully automatic translation

• Custom-made model checker
– Fully automatic translation
– More flexible
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Hand-Translation

abstraction

translation

Verification model

Program

• Hand translation of program to model checker’s input notation

• “Meat-axe” approach to abstraction

• Labor intensive and error-prone



MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 54

Hand-Translation
 Examples

• Remote Agent – Havelund,Penix,Lowry 1997
– http://ase.arc.nasa.gov/havelund
– Translation from Lisp to Promela (most effort)
– Heavy abstraction
– 3 man months

• DEOS – Penix et al. 1998/1999
– http://ase.arc.nasa.gov/visser
– C++ to Promela (most effort in environment)
– Limited abstraction - programmers produced sliced system
– 3 man months
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Semi-Automatic Translation

• Table-driven translation and abstraction
– Feaver system by Gerard Holzmann
– User specifies code fragments in C and how to translate

them to Promela (SPIN)
– Translation is then automatic
– Found 75 errors in Lucent’s PathStar system
–  http://cm.bell-labs.com/cm/cs/who/gerard/

• Advantages
– Can be reused when program changes
– Works well for programs with long development and

only local changes
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Fully Automatic Translation

• Advantage
– No human intervention required

• Disadvantage
– Limited by capabilities of target system

• Examples
– Java PathFinder 1- http://ase.arc.nasa.gov/havelund/jpf.html

• Translates from Java to Promela (Spin)
– JCAT - http://www.dai-arc.polito.it/dai-arc/auto/tools/tool6.shtml

• Translates from Java to Promela (or dSpin)
– Bandera - http://www.cis.ksu.edu/santos/bandera/

• Translates from Java bytecode to Promela, SMV or dSpin
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Custom-made Model Checkers

• Allows efficient model checking
– Often no translation is required
– Algorithms can be tailored

• Translation-based approaches
– dSpin

• Spin extended with dynamic constructs
• Essentially a C model checker
• http://www.dai-arc.polito.it/dai-arc/auto/tools/tool7.shtml

– Java Model Checker (from Stanford)
• Translates Java bytecode to SAL language
• Custom-made SAL model checker
• http://sprout.stanford.edu/uli/
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Java PathFinder

• Explicit-state model checking
• Build own Java Virtual Machine

– Emphasis on memory management not speed
– Bytecode level assures language coverage

• Written in Java
– 1 month to develop version with only integers

• Efficient encoding of states
– Canonical heap representation

• Modular design to allow flexible system
– Different search algorithms, listeners, heuristics, …
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JPF Current Status

• "Today, JPF is a swiss army knife for all sort of
runtime based verification purposes"

• http://javapathfinder.sourceforge.net/



Part II
Symbolic Model Checking
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Part II
Symbolic Model Checking

• Principles
– BDDs
– Symbolic MC algorithm

• Tools: SMV
– Principles, Language, Variants

• Application:
– Livingstone model-based diagnosis

Some material from Edmund Clarke and Marius Minea



Symbolic Model Checking
Principles
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What is it?

Instead of considering each individual state,
Symbolic model checking... x

y

0 1 2 ...0
1

...
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What is it?

Instead of considering each individual state,
Symbolic model checking...
• Manipulates sets of states,

x

y

0 1 2 ...0
1

...
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What is it?

Instead of considering each individual state,
Symbolic model checking...
• Manipulates sets of states,

• Represented as boolean formulas,

x

y

0 1 2 ...0
1

...

x=2 ∨ y=1



MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 66

What is it?

Instead of considering each individual state,
Symbolic model checking...
• Manipulates sets of states,

• Represented as boolean formulas,

• Encoded as binary decision diagrams.

x

y

0 1 2 ...0
1

...

x=2 ∨ y=1

1 0

x=2

y=1
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What is it?

Instead of considering each individual state,
Symbolic model checking...
• Manipulates sets of states,

– Can handle very large state spaces (1050 +)
• Represented as boolean formulas,

– Suited for boolean/abstract models

• Encoded as binary decision diagrams.
– The limit is BDD size (hard to control)

x

y

0 1 2 ...0
1

...

x=2 ∨ y=1

1 0

x=2

y=1
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Boolean Functions

• Represent a state as boolean variables
s = b1, ..., bn

Non-boolean variables => use boolean encoding
• A set of states as a boolean function

s in S  iff  f(b1, ..., bn) = 1
• A transition relation as a boolean function

over two states
s → s'  iff  f(b1, ..., bn, b'1, ..., b'n) = 1
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Binary Decision Trees

• Encoding for boolean functions

• Notational convention:
= if c then e else e'
= (c ? e : e')

• Always exists
but not unique

a

b

c

01

1

c

01
c

e e'

(a | b) => c
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From Trees to Diagrams

• Fixed variable ordering
"layered" tree a

b

c

0 1 0 1 1101

c c c

b

(a | b) => c



MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 71

From Trees to Diagrams

• Fixed variable ordering
"layered" tree

• Merge equal subtrees
a

b

c

0 1 0 1 1101

c c c

b

(a | b) => c
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From Trees to Diagrams

• Fixed variable ordering
"layered" tree

• Merge equal subtrees

• Remove nodes with
equal subtrees

=> Ordered Binary Decision Diagram

a

b

01

c c

b

(a | b) => c
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[Ordered] Binary
Decision Diagrams

• [O]BDDS for short
• Unique normal form

– for a given ordering and
– up to isomorphism
=> compare in constant time

(using hash table)

a

b

01

c

(a | b) => c
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Computations with BDDs

• Negation !f:
swap leaves 0 and 1.

• Boolean combinator f#g:
(b ? f' : f'') # (b ? g' : g'') = (b ? f'#g' : f''#g'')
cache results –> O(|f|.|g|) time

• Instantiation f[b=1], f[b=0]:
 (b ? f' : f'')[b=1] = f'

• Quantifiers exists b . f, forall b . f :
exists b . f =  f[b=1] | f[b=0]
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Variable Ordering

• Must be the same for all BDDs
• Size of BDDs depends critically on ordering
• Worst case: exponential w.r.t. #variables

– sometimes exponential for any ordering
e.g. middle output bit of n-bit multiplier

• Finding optimum is hard (NP-complete)
=> optimization uses heuristics
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Transition Systems with BDDs

Given boolean state variables v = b1, ..., bn

a set of states as a BDD p(v)
a transition relation as a BDD T(v, v')

we can compute the predecessors and successors of p
as BDDs:
(pred p)(v) = exists v' . T(v, v') & p(v')
(succ p)(v) = exists v' . p(v') & T(v', v)

ppred p succ p
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Checking Formulas
with BDDs

Functional evaluation as set of states:
• for every formula p, build the BDD p(v)

of the set of states that satisfy p
• Top level: for a set of initial states I,

I satisfy p  iff  !p & I = 0
• p = op(q,r) => build p(v) based on q(v), r(v)
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CTL temporal logic

Computation Tree Logic (branching):
Consider the tree of possible executions

Always ...

Sometimes ...

... Next p ... Globally p ... Finally p ... p Until q

AX p A[p U q]AG p AF p

EX p E[p U q]EG p EF p

duals

In all states

In some state
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CTL operators
as BDDs

(EX p)(v) = (pred p)(v) = exists v' . T(v, v') & p(v')
(EG p)(v) = (gfp U . p & EX U)(v)
(E[p U q])(v) = (lfp U . q | (p & EX U))(v)
All others can be expressed as EX/EG/EU

EF p = E[1 U p]
AX p = !EX !p
AG p = !EF !p
AF p = !EG !p
A[p U q] = !E[!q U !p & !q] & !EG !q
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Compute lfp U . F[U] as a BDD:
U0(v) = 0
U1(v) = F[U0](v) = F[0](v)
...
Un+1(v) = F[Un](v) = Fn[0](v)
until Un(v) = Un+1(v) = (lfp U . F[U])(v)
– Convergence assured because finite domain
– Dual construction for gfp

Evaluating Fixpoints
with BDDS

F[0]
F[F[0]]

lfp U . F[U]

...

0
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CTL with BDDS: Example

process P(id) {
  repeat {
    x=getFlag();
  } until x=false;
  setFlag();
  CS(id);
  resetFlag();
}

start P(1);
start P(2);

EF p = lfp U . p | EX UI

p

U0 = 0
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CTL with BDDS: Example

process P(id) {
  repeat {
    x=getFlag();
  } until x=false;
  setFlag();
  CS(id);
  resetFlag();
}

start P(1);
start P(2);

EF p = lfp U . p | EX UI

p = U1

U0 = 0
U1 = p | EX U0 = p
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CTL with BDDS: Example

process P(id) {
  repeat {
    x=getFlag();
  } until x=false;
  setFlag();
  CS(id);
  resetFlag();
}

start P(1);
start P(2);

EF p = lfp U . p | EX UI

p

U0 = 0
U1 = p | EX U0 = p
U2 = p | EX U1
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CTL with BDDS: Example

process P(id) {
  repeat {
    x=getFlag();
  } until x=false;
  setFlag();
  CS(id);
  resetFlag();
}

start P(1);
start P(2);

EF p = lfp U . p | EX UI

p

U0 = 0
U1 = p | EX U0 = p
U2 = p | EX U1
...
U5 = p | EX U4
U6 = p | EX U5 = U5

=> EF p = U5
=> EF p & I ≠  0
=> AG !p does not hold
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Fairness, LTL

• CTL+fairness:
– Only check executions where fairness

conditions c1, ..., cn hold infinitely often
– Symbolic evaluation: express c1, ..., cn as

BDDs,  modified algorithms for EX, EG, EU.
• Symbolic model checking of LTL

– Convert LTL formula to Büchi automaton
– Encode automaton in transition relation
– Express acceptance condition in CTL+fairness
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Bounded Model Checking

• Principle:
– n+1 copies of state variables v0, .., vn

– Unroll transition relation n times T(vk-1, vk)
– Embed property to be satisfied
– Verify satisfiability with SAT procedure

• Verifies traces up to length n
– Iterate over values of n => breadth-first search

• No state space explosion (polynomial space)
• Usually fast (though worst case is exponential time)
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Symbolic Model Checking
Summary

• Principle: compute over sets of states
encoded as BDDs.

• Can handle huge state spaces.
• CTL + fairness, LTL.
• Some tweaking may be needed.

– variable ordering
• Some models blow up nevertheless.
• New alternative: SAT-based (bounded).
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Symbolic Model Checking
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Symbolic Model Checking
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Symbolic Model Checking Tools:
SMV
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Overview

• SMV = Symbolic Model Verifier.
• Developed by Ken McMillan

at Carnegie Mellon University.
• Modeling language for transition systems

based on parallel assignments.
• Specifications in temporal logic CTL.
• BDD-based symbolic model checking:

can handle very large state spaces.
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What SMV Does

MODULE user(...) ...

MODULE main
VAR turn: {1, 2};
    user1: user(...);
...

SPEC AG !(
    (user1.state = c) &
    (user2.state = c))

-- specification AG ...
   is false
-- as demonstrated by ...
state 1.1:
turn = 1
user1.state = n
user2.state = n

state 1.2:
...

resources used: ...

smv mutex.smv

Model

Counter-example
Specification

mutex.smv <stdout>
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SMV Program
Example (1/2)

MODULE user(turn,id,other)
VAR state: {n, t, c};
DEFINE my_turn :=
   (other=n) | ((other=t) & (turn=id));
ASSIGN
init(state) := n;
next(state) := case
   (state = n) : {n, t};
   (state = t) & my_turn: c;
   (state = c) : n;
   1 : state;
esac;

SPEC AG((state = t) -> AF (state = c))

n

t

c
my_turn

!my_turn
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SMV Program
Example (2/2)

MODULE main
VAR turn: {1, 2};
    user1: user(turn, 1, user2.state);
    user2: user(turn, 2, user1.state);
ASSIGN
init(turn) := 1;
next(turn) := case
   (user1.state=n) & (user2.state=t): 2;
   (user2.state=n) & (user1.state=t): 1;
   1: turn;
esac;

SPEC AG !((user1.state=c) &
(user2.state=c))

SPEC AG !(user1.state=c)
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Diagnostic Trace
Example

-- specification AG (state = t -> AF state = c) (in
module user1) is true

-- specification AG (state = t -> AF state = c) (in
module user2) is true

-- specification AG (!(user1.state = c & user2.state =
c)... is true

-- specification AG (!user1.state = c) is false
-- as demonstrated by the following execution sequence
state 1.1:
turn = 1
user1.state = n
user2.state = n

state 1.2:
user1.state = t

state 1.3:
user1.state = c
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• The SMV program defines:
– a finite transition model M (Kripke structure),
– a set of possible initial states I (may be several),
– specifications P1 .. Pm (CTL formulas).

• For each specification P, SMV checks that
∀ so ∈ I  .  M, so |= P

Note: SPEC !P is not the negation of SPEC P:
both can be false (in some initial states),
both can be true (vacuously when I=∅).

The Essence of SMV
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Variables and Transitions
(Assignment Style)

VAR state: {n, t, c};
ASSIGN
init(state) := n;
next(state) := case
   (state = n) : {n, t}; ...
esac;

• Finite data types (incl. numbers and arrays).
• Usual operations x&y, x+y, etc., case statement.
• All assignments are evaluated in parallel.
• No control flow (must be simulated with vars).
• SMV detects circular and duplicate assignments.
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Modules

MODULE user(turn,id,other)
VAR ...
ASSIGN ...
MODULE main
VAR user1: user(turn,1,user2.state);
    ...

• Parameters passed by reference.
• Top-level module main.
• Composition is synchronous by default:

all modules move at each step.
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Processes

VAR node1: process node(1);
    node2: process node(2);

• Composition of processes is asynchronous:
one process moves at each step.

• Boolean variable running in each process
– running=1 when that process is selected to run.
– Used for fairness constraints (see later).
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Fairness

MODULE user(turn,id,other)
VAR ...
ASSIGN ...
SPEC AG AF (state = c)
FAIRNESS (state = t)

• Check specifications, assuming fairness
conditions hold repeatedly (infinitely often).

• Useful for liveness properties.
• Fair scheduling: FAIRNESS running

n

t

c
my_turn

!my_turn
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Variables and Transitions
(Constraint Style)

VAR pos: {0,1,2,3,4,5};
INIT pos < 2
TRANS (next(pos)-pos) in {+2,-1}
INVAR !(pos=3)

• Any propositional formula is allowed
=> flexible for translation from other languages.

•  INVAR p    is equivalent to INIT p
TRANS next(p)

but implemented more efficiently.
• Risk of inconsistent models (TRANS p & !p).
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Well-Formed Programs?

• In assignment style, by construction:
– always at least one initial state,
– all states have at least one next state,
– non-determinism is apparent (unassigned

variables,set assignments, interleaving).
• In constraint style:

– INIT and TRANS constraints can be inconsistent,
– the level of non-determinism is emergent from

the conjunction of all constraints.
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Variable Ordering

• BDDs require a fixed variable ordering .
– Critical for performance (BDD size).
– Best one is hard to find (NP-complete).

• SMV does not optimize by default but
– can read, write ordering in a file,
– can search for better ordering on demand.
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NuSMV

• From ITC-IRST (Trento, Italy) and CMU.
• New version of SMV, completely rewritten:

– Same language as SMV.
– Modular, documented APIs, easily customized.
– Specifications in CTL or LTL.
– Graphical User Interface.

• See http://nusmv.irst.itc.it/
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Related Tools

• Cadence SMV (Cadence Berkeley Labs)
– From Ken McMillan, original author of SMV.
– Supports refinement, compositional verification.
– New language but accepts CMU SMV.
– see http://www-cad.eecs.berkeley.edu/~kenmcmil/smv/

• Bounded Model-Checking
– Based on SAT solvers
– Bounded verification
– Checks LTL formulae (=> Büchi automata)
– Part of NuSMV
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SMV
Summary

• BDD-based symbolic model checker.
• Modeling language based on synchronous

transition systems.
• Constraint style: more versatile, less strict

=> good for use as back-end tool.
• 1st generation: CMU
• 2nd generation: Cadence, NuSMV
• Variant: BMC (SAT based)
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Symbolic Model Checking
Applications in Software
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Applications of
Symbolic Model Checking

• Used in industry for hardware design
– Commercial tools (Cadence)
– Fits well with boolean modeling

• Some success stories in protocol design
– Cache coherence of IEEE Futurebus+
– HDLC

• Not so good for software design
– Gap between programming/design language

and verification modeling language.
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Model-Based Autonomy

• Unattended control of a complex device
(e.g. a spacecraft)

• Based on AI technology
• General reasoning engine +

application-specific model
• Use model to respond to

unanticipated situations

=> Verify the model  !

Reasoning
Engine Model

commands status

Spacecraft

Autonomous controller

model of
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 The Livingstone
Diagnostic System

Mode
Ident.

Mode
Recov.

Executive

Livingstone

commands sensors

state goal path

• Mode identification &
recovery:
– identify current state

(including faults)
– find path to goal state

• Model-based
• From NASA Ames
• Run in space

(DS- 1, May 1999)
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Verification
of Autonomy Models

Domain
Model

SMV
Model

Domain
Requirements

SMV
Specifications

Domain
Trace

SMV
Trace

Model-Based
Autonomous
Controller

SMV

T
R
A
N
S
L
A
T
O
R

Model-Based Autonomy Verification
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Livingstone Models

• Models = concurrent
transition systems

• Qualitative values
=> finite state

• Nominal/fault modes
• Probabilities on

faults

ClosedClosed

ValveValve
OpenOpen StuckStuck

openopen

StuckStuck
closedclosed

OpenOpen CloseClose

p=0p=0.01.01

inflow = outflow = 0
Courtesy Autonomous Systems Group, NASA Ames

p=0.05p=0.05
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• Use atmosphere from Mars to
make fuel for return flight.

• Livingstone controller developed
at NASA Kennedy.

• Components are tanks, reactors,
valves, sensors...

• Exposed improper flow modeling.
• Very "loose" state space:

– 1050 states
– all states reachable in 3 steps

Application
 In-Situ Propellant Production

CO2 + 2H2 —> CH4 + O2

Mars
atmosphere

oxidizerfuel

on-board
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• Intuition: bad is diagnosable   if and only if
there is no pair of trajectories, one reaching a bad state, the
other reaching a good state, with identical observations.
– or some generalization of that: (context, two different faults, ...)

• Principle:
– consider two concurrent copies x1, x2 of the process,

with coupled inputs u and outputs y
– check for reachability of (good(x1) && bad(x2))

• Back to a classical (symbolic) model checking problem !
• Supported by Livingstone-to-SMV translator

x1

x2

u y

Verification of Diagnosability
u1/y1 … un/yn good

badu1/y1 … un/yn 
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Application: X-34 / PITEX

• Propulsion IVHM Technology Experiment (ARC, GRC)
• Livingstone applied to propulsion feed system of space vehicle
• Livingstone model is 4·1033 states
• Found impossible diagnosis of stuck venting valve
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Applications of SMV
Summary

• Symbolic model checking:
OK for hardware, quid for software?

• Needs translation from programming
language to verification language and back!

• 2 examples for autonomy software using
SMV.
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