
Model Checking for Software

Charles Pecheur
UC Louvain

Charles.Pecheur@uclouvain.be

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 2

Credits

• Based on:

Model Checking for Software

Willem Visser
Charles Pecheur

RIACS / NASA Ames
{wvisser,pecheur}@ptolemy.arc.nasa.gov

2000

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 3

Menu
• Part I - Explicit State Model Checking
– What is model checking?
– Kripke structures, temporal logic
– Automata-theoretic model checking
– Partial-order reduction, abstraction
– Model Checking Programs: Java PathFinder

• Part II - Symbolic Model Checking
– Principles: BDDs
– Tools: SMV
– Application: model-based diagnosis

Part I
Explicit State Model Checking

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 5

Part I
Explicit State Model Checking

• What is model checking?
• Kripke structures

– Describing the systems we want to check
• Temporal logic

– Describing the properties we want to check
• Automata-theoretic model checking
• State-explosion problem

– What can we do?
• Model Checking Programs

– A brief history of the field
– Java PathFinder

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 6

• Model checking = (ideally) exhaustive exploration
of the (finite) state space of a system
– ≈ exhaustive testing with loop / join detection

Model Checking

“Valve is closed when
Tank is empty”

AG (tank=empty
=> valve=closed)

Modeling
Abstraction

Verification

Controller

Planner DiagnosisExec

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 7

Model Checking
The Intuition

• Calculate whether a system satisfies a certain
behavioral property:
– Is the system deadlock free?
– Whenever a packet is sent will it eventually be received?

• Testing?
– Look at all possible behaviors of a system

• Automatic, if the system is finite-state
– Potential for being a push-button technology
– Almost no expert knowledge required

• How do we describe the system?
• How do we express the properties?

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 8

Kripke Structures

• K = (props,S,R,S0,L)
– props : (finite) set of atomic propositions
– S : (finite) set of states
– R : binary transitive relation (total)
– S0 : set of initial states
– L : maps each state to the set of propositions

 true in the state
• Often M = (S,R,L) with props and S0 implicit

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 9

Example Kripke Structure

K = ({p,~p},{x,y,z,k,h},R,{x},L)

x

y

z

k

~p

~p

~p

p

hh ~p

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 10

Property Specifications

• Linear Time
– Every moment has a unique successor
– Infinite sequences (words)
– Linear Time Temporal Logic (LTL)

• Branching Time
– Every moment has several successors
– Infinite tree
– Computation Tree Logic (CTL)

• Temporal Logic
– Express properties of event orderings in time

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 11

CTL*

• State formulae:
S ::= true | false | q | ~q | S ∨ S | S ∧ S | AP | EP

– A (for all) and E (there exists) are path quantifiers
• Path formulae:

P ::= S | P ∨ P | P ∧ P | ~P | XP | P U P
– X (next), U (until) are path operators
– also: ◇p = Fp = true U p (finally, future)

□p = Gp = ~F ~p (globally, always)
○p = Xp

– Example: A [F done ∨ F (failed ∧ EF done)]

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 12

CTL and LTL

• CTL: Every path operator is preceded
by a path quantifier (AX, EX, A(. U .), …)
– For example: AG(stuck => EF ~stuck)

• LTL: pure path formula P
– No path quantifier, implicitly AP
– For example: (A) (GF run => F done)

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 13

CTL

Computation Tree Logic (branching):
Consider the tree of possible executions

Always ...

Sometimes ...

... Next p ... Globally p ... Finally p ... p Until q

AX p A[p U q]AG p AF p

EX p E[p U q]EG p EF p

duals

In all states

In some state

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 14

Mutual Exclusion Example

N1 → T1
T1 ∧ S0 → C1 ∧ S1
C1 → N1 ∧ S0

N2 → T2
T2 ∧ S0 → C2 ∧ S1
C2 → N2 ∧ S0

||

• Two-process mutual exclusion with shared semaphore
• Each process has three states

• Non-critical (N)
• Trying (T)
• Critical (C)

• Semaphore can be available (S0) or taken (S1)
• Initially both processes are in the Non-critical state and
 the semaphore is available --- N1 N2 S0

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 15

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

• Mutual Exclusion: K ╞ AG ~(C1 ∧ C2)
• Response : K ╞ AG (T1→ AF (C1))
• Reactive : K ╞ AG EF (N1 ∧ N2 ∧ S0)

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 16

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG EF (N1 ∧ N2 ∧ S0)

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 17

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG EF (N1 ∧ N2 ∧ S0)

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 18

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG EF (N1 ∧ N2 ∧ S0)

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 19

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG EF (N1 ∧ N2 ∧ S0)

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 20

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG EF (N1 ∧ N2 ∧ S0)

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 21

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG EF (N1 ∧ N2 ∧ S0)

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 22

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG (T1→ AF (C1))

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 23

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG (~T1 ∨ AF (C1))

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 24

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K╞ AG (~T1 ∨ AF (C1))
K╞ EF (T1 /\ EG (~C1))

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 25

Model Checking

• Given
– a Kripke structure M = (props,S,R,S0,L) that represents a

finite-state concurrent system
– a temporal logic formula f expressing some desired

specification,
find the set of states in S that satisfy f:

[[f]] = { s ∈ S | M, s ╞ f }

• M satisfies f when all the initial states are in the set:
M╞ f iff S0 ⊆ [[f]]

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 26

Model Checking Complexity
 M╞ f

• CTL
– O(|M| * |f|)

• LTL
– O(|M| * 2|f|)

• But, for CTL the whole transition relation must be
kept in memory!
– Binary Decision Diagrams (BDDs) often allows the

transition relation to be encoded efficiently
• The formulas are seldom very complex, hence |f| is

not too troublesome.

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 27

Automata-Theoretic
Model Checking

• Linear time temporal logic
– Nondeterministic automata over infinite words

• Branching time temporal logic
– Alternating automata over infinite trees

• Automata-theoretic LTL model checking
• Basic idea:

– Translate both Kripke structure and LTL property into
automata and show language containment

• See papers by Vardi and Wolper

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 28

Büchi Automata

• Accepts infinite words
• B = (∑, S, ρ, s0, F)

– ∑ is a finite alphabet
– S is a finite set of states
– ρ : S × ∑ → 2S is the transition function
– s0 ∈ S is the initial state (or states)
– F ⊆ S is the set of accepting states

• Given an infinite word ω=a0,a1,… over ∑ then a run of
B is the sequence s0,s1,…where si+1 ∈ ρ(si, ai)

• Let inf(π) be the set of states that occur infinitely often
on the run π, then π is accepting iff inf (π) ∩ F ≠ ∅

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 29

1 2

~p p
p

~p

B = ({{p},{~p}},{1,2}, ρ, 1, {2})

Example Büchi Automaton

Example accepting words:
• (12)ω
• 1112ω

• Example rejecting word: 121212111ω
• LTL property: GFp – “infinitely often p”

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 30

Kripke to Büchi Automaton

• K = (props, S, R, S0, L) can be viewed as
• AK = (2props, S, ρ, S0, S) where

– si+1 ∈ ρ(si,a) iff (si,si+1) ∈ R and a = L(s)

• Every state is in the accepting set,
hence all runs are accepting

• The language of the automaton, L(AK),
is the set of all behaviors of K

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 31

Kripke to Büchi Example

x

y

z

k

~p

~p

~p

p

~ph

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 32

Kripke to Büchi Example

x

y

z

k

~p

~p

~p p

hh
~p

~p

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 33

Translating LTL Formulas
to Büchi Automata

• Exponential in the length of the formula
– Many heuristic optimizations are used
– Multitude of papers: CAV, LICS, etc.

T T

p

 Fp

p

Gp

p T

q

 p U q

~p ∨ q T

 G(p → Fq)
q

T

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 34

Model Checking with
 Büchi Automata

• K ╞ f
• Translate K and f to Büchi Automata
• Language containment

– L(AK) ⊆ L(Af)
– L(AK) ∩ L(Af) = ∅
– L(Af) = L(A~f) and L(AK × A~f) = L(AK) ∩ L(A~f)

• Algorithm
– Negate formula f and create A~f
– Construct the product AK,~f = AK × A~f
– If L(AK,~f) = ∅ report YES else report NO

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 35

Model Checking Example

• K ╞ AFG~p
– For all paths from some moment onwards p is

always false

• Where K is given by

x

y

z

k

~p

~p

~p

p

~ph

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 36

Step 1

• Negate FG~p
– GFp

• Construct Büchi Automaton for GFp

1 2

~p p
p

~p

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 37

Step 2

• Construct the product automaton

1 2

~p p
p

~p

× =
x

y

z

k

~p

~p

~p p

hh
~p

~p

x,1

y,1

z,1

k,1

h,2~p

~p

~p

~p

~p

p

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 38

Step 3

• Check if the language is empty
• It is nonempty since there is a cycle through an

accepting state, hence K ╞ AFG~p
– (xkhz)ω is an accepting run

• The accepting run is also a counter-example to the
property being true

x,1

y,1

z,1

k,1

h,2~p

~p

~p

~p

~p

p

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 39

Checking Nonemptiness

• A Büchi automaton accepts some word iff
there exists an accepting state reachable
from the initial state and from itself

• Can be checked in linear time
• Model Checking complexity for LTL

– O(|K| * 2|f|)

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 40

Efficient
Nonemptiness Checking

Dfs (state s)
 Add (s,0) to VisitedStates;
 FOR each successor t of s DO
 IF (t,0) ∉VisitedStates THEN Dfs(t) END
 END
 IF s ∈ F THEN seed := s; 2Dfs(s) END
END

2Dfs (state s)
 Add (s,1) to VisitedStates;
 FOR each successor t of s DO
 IF (t,1) ∉VisitedStates THEN 2Dfs(t) END
 ELSEIF t = seed THEN report nonempty END
 END
END

• VisitedStates as
 HashTable
• Change Recursion
 to Iteration
• Generate successor
 states on-the-fly

Efficiency

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 41

SPIN Model Checker

• Automata based model checker
– Efficient nonemptiness algorithm

• Translates LTL formula to Büchi automaton
• Kripke structures are described as

“programs” in the PROMELA language
– Kripke structure is generated on-the-fly during nonemptiness

checking

• http://spinroot.com
– Relevant theoretical papers can be found here

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 42

State-space Explosion?

• n concurrent processes with m states each
– Has mn states
– Worst-case, an on-the-fly model checker has to

enumerate all of them
• What can we do to reduce mn ?

– Reduce m
• Abstraction

– Reduce the effect of n
• Partial-order reductions

– Reduce n
• Symmetry reductions

We’ll consider these 2 here

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 43

Partial-Order Reductions

• Reduce the number of interleavings of
independent concurrent transitions

• x := 1 || y := 1 where initially x = y = 0

11

00

0110

x := 1

x := 1y := 1

y := 1

11

00

0110

x := 1

y := 1

y := 1

11

00

10

x := 1

y := 1

No Reductions Transitions Reduced States Reduced

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 44

Basic Ideas

• Independent transitions
– cannot disable nor enable each other
– are commutative

• Partial-order reductions only apply during the
on-the-fly construction of the Kripke structure

• Based on a selective search principle
– Execute a subset of enabled transitions in a state

• Sleep sets (reduce transitions)
• Persistent sets, ample sets (reduce states)

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 45

Persistent Set

Given a set of transitions ∑ and a state s,
• T ⊆ enabled(s) ⊆ ∑ is persistent in s iff

on any execution in (∑–T) from s,
all transitions are independent from all
transitions in T

s

T

s s s

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 46

Persistent Set Reductions

• Use the static structure of the system to determine
sufficient conditions for persistent sets
– Note, the set of all enabled transitions is trivially persistent

• Only execute transitions in the persistent set
• Persistent set algorithm is used within SPIN
• See papers by Godefroid and Peled

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 47

Abstraction

• Type-based abstractions
– Abstract Interpretation
– Replace concrete variables with abstract variables

• E.g. integer with {odd, even}
real with {neg, zero, pos}

– ... and concrete operations with abstract operations
• e.g. add(pos,pos) = pos

subtract(pos,pos) = neg | zero | pos
eq(pos,pos) = true | false

• Predicate Abstraction (Graf, Saïdi see also Uribe)
– Create abstract state-space w.r.t. set of predicates

defined in concrete system

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 48

Predicate Abstraction

x ≠ y

Abstract

Concrete x = y

F T

α : int × int bool

EQ = T EQ = F

x = 0
y = 0

x = 0
y = 1

y++

EQ := F

EQ ≡ (x = y) EQ ≡ (x = y)

• Mapping of a concrete system to an abstract system, whose states
 correspond to truth values of a set of predicate
• Create abstract state-graph during model checking, or,
• Create an abstract transition system before model checking

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 49

Model Checking Programs

• Model checking usually applied to designs
+ More abstract, smaller, earlier
– Some errors get introduced after designs
– Design errors are missed due to lack of detail
– Sometimes there is no design

• Can model checking find errors in real programs?
– Yes, many examples in the literature

• Can model checkers be used by programmers?
– Only if it takes real programs as input

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 50

Main Issues

• Memory
– Explicit-state model checking’s Achilles heel
– State of a software system can be complex
– Require efficient encoding of state, or,
– State-less model checking

• Input notation not supported
– Translate to existing notation
– Custom-made model checker

• State-space Explosion

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 51

State-less Model Checking

• Must limit search-depth to ensure termination
• Based on partial-order reduction techniques
• Annotate code to allow verifier to detect

“important” transitions
• Example: VeriSoft

http://cm.bell-labs.com/who/god/verisoft/

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 52

Traditional Model Checking

• Translation-based using existing model checker
– Hand-translation
– Semi-automatic translation
– Fully automatic translation

• Custom-made model checker
– Fully automatic translation
– More flexible

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 53

Hand-Translation

abstraction

translation

Verification model

Program

• Hand translation of program to model checker’s input notation

• “Meat-axe” approach to abstraction

• Labor intensive and error-prone

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 54

Hand-Translation
 Examples

• Remote Agent – Havelund,Penix,Lowry 1997
– http://ase.arc.nasa.gov/havelund
– Translation from Lisp to Promela (most effort)
– Heavy abstraction
– 3 man months

• DEOS – Penix et al. 1998/1999
– http://ase.arc.nasa.gov/visser
– C++ to Promela (most effort in environment)
– Limited abstraction - programmers produced sliced system
– 3 man months

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 55

Semi-Automatic Translation

• Table-driven translation and abstraction
– Feaver system by Gerard Holzmann
– User specifies code fragments in C and how to translate

them to Promela (SPIN)
– Translation is then automatic
– Found 75 errors in Lucent’s PathStar system
– http://cm.bell-labs.com/cm/cs/who/gerard/

• Advantages
– Can be reused when program changes
– Works well for programs with long development and

only local changes

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 56

Fully Automatic Translation

• Advantage
– No human intervention required

• Disadvantage
– Limited by capabilities of target system

• Examples
– Java PathFinder 1- http://ase.arc.nasa.gov/havelund/jpf.html

• Translates from Java to Promela (Spin)
– JCAT - http://www.dai-arc.polito.it/dai-arc/auto/tools/tool6.shtml

• Translates from Java to Promela (or dSpin)
– Bandera - http://www.cis.ksu.edu/santos/bandera/

• Translates from Java bytecode to Promela, SMV or dSpin

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 57

Custom-made Model Checkers

• Allows efficient model checking
– Often no translation is required
– Algorithms can be tailored

• Translation-based approaches
– dSpin

• Spin extended with dynamic constructs
• Essentially a C model checker
• http://www.dai-arc.polito.it/dai-arc/auto/tools/tool7.shtml

– Java Model Checker (from Stanford)
• Translates Java bytecode to SAL language
• Custom-made SAL model checker
• http://sprout.stanford.edu/uli/

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 58

Java PathFinder

• Explicit-state model checking
• Build own Java Virtual Machine

– Emphasis on memory management not speed
– Bytecode level assures language coverage

• Written in Java
– 1 month to develop version with only integers

• Efficient encoding of states
– Canonical heap representation

• Modular design to allow flexible system
– Different search algorithms, listeners, heuristics, …

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 59

JPF Current Status

• "Today, JPF is a swiss army knife for all sort of
runtime based verification purposes"

• http://javapathfinder.sourceforge.net/

Part II
Symbolic Model Checking

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 61

Part II
Symbolic Model Checking

• Principles
– BDDs
– Symbolic MC algorithm

• Tools: SMV
– Principles, Language, Variants

• Application:
– Livingstone model-based diagnosis

Some material from Edmund Clarke and Marius Minea

Symbolic Model Checking
Principles

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 63

What is it?

Instead of considering each individual state,
Symbolic model checking... x

y

0 1 2 ...0
1

...

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 64

What is it?

Instead of considering each individual state,
Symbolic model checking...
• Manipulates sets of states,

x

y

0 1 2 ...0
1

...

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 65

What is it?

Instead of considering each individual state,
Symbolic model checking...
• Manipulates sets of states,

• Represented as boolean formulas,

x

y

0 1 2 ...0
1

...

x=2 ∨ y=1

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 66

What is it?

Instead of considering each individual state,
Symbolic model checking...
• Manipulates sets of states,

• Represented as boolean formulas,

• Encoded as binary decision diagrams.

x

y

0 1 2 ...0
1

...

x=2 ∨ y=1

1 0

x=2

y=1

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 67

What is it?

Instead of considering each individual state,
Symbolic model checking...
• Manipulates sets of states,

– Can handle very large state spaces (1050 +)
• Represented as boolean formulas,

– Suited for boolean/abstract models

• Encoded as binary decision diagrams.
– The limit is BDD size (hard to control)

x

y

0 1 2 ...0
1

...

x=2 ∨ y=1

1 0

x=2

y=1

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 68

Boolean Functions

• Represent a state as boolean variables
s = b1, ..., bn

Non-boolean variables => use boolean encoding
• A set of states as a boolean function

s in S iff f(b1, ..., bn) = 1
• A transition relation as a boolean function

over two states
s → s' iff f(b1, ..., bn, b'1, ..., b'n) = 1

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 69

Binary Decision Trees

• Encoding for boolean functions

• Notational convention:
= if c then e else e'
= (c ? e : e')

• Always exists
but not unique

a

b

c

01

1

c

01
c

e e'

(a | b) => c

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 70

From Trees to Diagrams

• Fixed variable ordering
"layered" tree a

b

c

0 1 0 1 1101

c c c

b

(a | b) => c

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 71

From Trees to Diagrams

• Fixed variable ordering
"layered" tree

• Merge equal subtrees
a

b

c

0 1 0 1 1101

c c c

b

(a | b) => c

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 72

From Trees to Diagrams

• Fixed variable ordering
"layered" tree

• Merge equal subtrees

• Remove nodes with
equal subtrees

=> Ordered Binary Decision Diagram

a

b

01

c c

b

(a | b) => c

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 73

[Ordered] Binary
Decision Diagrams

• [O]BDDS for short
• Unique normal form

– for a given ordering and
– up to isomorphism
=> compare in constant time

(using hash table)

a

b

01

c

(a | b) => c

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 74

Computations with BDDs

• Negation !f:
swap leaves 0 and 1.

• Boolean combinator f#g:
(b ? f' : f'') # (b ? g' : g'') = (b ? f'#g' : f''#g'')
cache results –> O(|f|.|g|) time

• Instantiation f[b=1], f[b=0]:
 (b ? f' : f'')[b=1] = f'

• Quantifiers exists b . f, forall b . f :
exists b . f = f[b=1] | f[b=0]

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 75

Variable Ordering

• Must be the same for all BDDs
• Size of BDDs depends critically on ordering
• Worst case: exponential w.r.t. #variables

– sometimes exponential for any ordering
e.g. middle output bit of n-bit multiplier

• Finding optimum is hard (NP-complete)
=> optimization uses heuristics

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 76

Transition Systems with BDDs

Given boolean state variables v = b1, ..., bn

a set of states as a BDD p(v)
a transition relation as a BDD T(v, v')

we can compute the predecessors and successors of p
as BDDs:
(pred p)(v) = exists v' . T(v, v') & p(v')
(succ p)(v) = exists v' . p(v') & T(v', v)

ppred p succ p

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 77

Checking Formulas
with BDDs

Functional evaluation as set of states:
• for every formula p, build the BDD p(v)

of the set of states that satisfy p
• Top level: for a set of initial states I,

I satisfy p iff !p & I = 0
• p = op(q,r) => build p(v) based on q(v), r(v)

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 78

CTL temporal logic

Computation Tree Logic (branching):
Consider the tree of possible executions

Always ...

Sometimes ...

... Next p ... Globally p ... Finally p ... p Until q

AX p A[p U q]AG p AF p

EX p E[p U q]EG p EF p

duals

In all states

In some state

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 79

CTL operators
as BDDs

(EX p)(v) = (pred p)(v) = exists v' . T(v, v') & p(v')
(EG p)(v) = (gfp U . p & EX U)(v)
(E[p U q])(v) = (lfp U . q | (p & EX U))(v)
All others can be expressed as EX/EG/EU

EF p = E[1 U p]
AX p = !EX !p
AG p = !EF !p
AF p = !EG !p
A[p U q] = !E[!q U !p & !q] & !EG !q

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 80

Compute lfp U . F[U] as a BDD:
U0(v) = 0
U1(v) = F[U0](v) = F[0](v)
...
Un+1(v) = F[Un](v) = Fn[0](v)
until Un(v) = Un+1(v) = (lfp U . F[U])(v)
– Convergence assured because finite domain
– Dual construction for gfp

Evaluating Fixpoints
with BDDS

F[0]
F[F[0]]

lfp U . F[U]

...

0

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 81

CTL with BDDS: Example

process P(id) {
 repeat {
 x=getFlag();
 } until x=false;
 setFlag();
 CS(id);
 resetFlag();
}

start P(1);
start P(2);

EF p = lfp U . p | EX UI

p

U0 = 0

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 82

CTL with BDDS: Example

process P(id) {
 repeat {
 x=getFlag();
 } until x=false;
 setFlag();
 CS(id);
 resetFlag();
}

start P(1);
start P(2);

EF p = lfp U . p | EX UI

p = U1

U0 = 0
U1 = p | EX U0 = p

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 83

CTL with BDDS: Example

process P(id) {
 repeat {
 x=getFlag();
 } until x=false;
 setFlag();
 CS(id);
 resetFlag();
}

start P(1);
start P(2);

EF p = lfp U . p | EX UI

p

U0 = 0
U1 = p | EX U0 = p
U2 = p | EX U1

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 84

CTL with BDDS: Example

process P(id) {
 repeat {
 x=getFlag();
 } until x=false;
 setFlag();
 CS(id);
 resetFlag();
}

start P(1);
start P(2);

EF p = lfp U . p | EX UI

p

U0 = 0
U1 = p | EX U0 = p
U2 = p | EX U1
...
U5 = p | EX U4
U6 = p | EX U5 = U5

=> EF p = U5
=> EF p & I ≠ 0
=> AG !p does not hold

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 85

Fairness, LTL

• CTL+fairness:
– Only check executions where fairness

conditions c1, ..., cn hold infinitely often
– Symbolic evaluation: express c1, ..., cn as

BDDs, modified algorithms for EX, EG, EU.
• Symbolic model checking of LTL

– Convert LTL formula to Büchi automaton
– Encode automaton in transition relation
– Express acceptance condition in CTL+fairness

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 86

Bounded Model Checking

• Principle:
– n+1 copies of state variables v0, .., vn

– Unroll transition relation n times T(vk-1, vk)
– Embed property to be satisfied
– Verify satisfiability with SAT procedure

• Verifies traces up to length n
– Iterate over values of n => breadth-first search

• No state space explosion (polynomial space)
• Usually fast (though worst case is exponential time)

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 87

Symbolic Model Checking
Summary

• Principle: compute over sets of states
encoded as BDDs.

• Can handle huge state spaces.
• CTL + fairness, LTL.
• Some tweaking may be needed.

– variable ordering
• Some models blow up nevertheless.
• New alternative: SAT-based (bounded).

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 88

Symbolic Model Checking
References

R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677-691, 1986.
The seminal paper on Binary Decision Diagrams.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang.
Symbolic model checking: 10^20 states and beyond. Information and
Computation, vol. 98, no. 2, 1992.
Survey paper on the principles of symbolic model checking.

Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. In W. R. Cleaveland, ed.,
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), Amsterdam, March 1999.
Paper on SAT-based bounded model checking.

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 89

Symbolic Model Checking
References (cont'd)

J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential
circuit verification using symbolic model checking. In 27th ACM/IEEE
Design Automation Conference, 1990.
Symbolic model checking of CTL with fairness.

E. Clarke, O. Grumberg, H. Hamaguchi. Another Look at LTL Model
Checking. Formal Methods in System Design, Volume 10, Number 1,
February 1997.
Verifying LTL using symbolic model checking.

Symbolic Model Checking Tools:
SMV

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 91

Overview

• SMV = Symbolic Model Verifier.
• Developed by Ken McMillan

at Carnegie Mellon University.
• Modeling language for transition systems

based on parallel assignments.
• Specifications in temporal logic CTL.
• BDD-based symbolic model checking:

can handle very large state spaces.

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 92

What SMV Does

MODULE user(...) ...

MODULE main
VAR turn: {1, 2};
 user1: user(...);
...

SPEC AG !(
 (user1.state = c) &
 (user2.state = c))

-- specification AG ...
 is false
-- as demonstrated by ...
state 1.1:
turn = 1
user1.state = n
user2.state = n

state 1.2:
...

resources used: ...

smv mutex.smv

Model

Counter-example
Specification

mutex.smv <stdout>

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 93

SMV Program
Example (1/2)

MODULE user(turn,id,other)
VAR state: {n, t, c};
DEFINE my_turn :=
 (other=n) | ((other=t) & (turn=id));
ASSIGN
init(state) := n;
next(state) := case
 (state = n) : {n, t};
 (state = t) & my_turn: c;
 (state = c) : n;
 1 : state;
esac;

SPEC AG((state = t) -> AF (state = c))

n

t

c
my_turn

!my_turn

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 94

SMV Program
Example (2/2)

MODULE main
VAR turn: {1, 2};
 user1: user(turn, 1, user2.state);
 user2: user(turn, 2, user1.state);
ASSIGN
init(turn) := 1;
next(turn) := case
 (user1.state=n) & (user2.state=t): 2;
 (user2.state=n) & (user1.state=t): 1;
 1: turn;
esac;

SPEC AG !((user1.state=c) &
(user2.state=c))

SPEC AG !(user1.state=c)

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 95

Diagnostic Trace
Example

-- specification AG (state = t -> AF state = c) (in
module user1) is true

-- specification AG (state = t -> AF state = c) (in
module user2) is true

-- specification AG (!(user1.state = c & user2.state =
c)... is true

-- specification AG (!user1.state = c) is false
-- as demonstrated by the following execution sequence
state 1.1:
turn = 1
user1.state = n
user2.state = n

state 1.2:
user1.state = t

state 1.3:
user1.state = c

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 96

• The SMV program defines:
– a finite transition model M (Kripke structure),
– a set of possible initial states I (may be several),
– specifications P1 .. Pm (CTL formulas).

• For each specification P, SMV checks that
∀ so ∈ I . M, so |= P

Note: SPEC !P is not the negation of SPEC P:
both can be false (in some initial states),
both can be true (vacuously when I=∅).

The Essence of SMV

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 97

Variables and Transitions
(Assignment Style)

VAR state: {n, t, c};
ASSIGN
init(state) := n;
next(state) := case
 (state = n) : {n, t}; ...
esac;

• Finite data types (incl. numbers and arrays).
• Usual operations x&y, x+y, etc., case statement.
• All assignments are evaluated in parallel.
• No control flow (must be simulated with vars).
• SMV detects circular and duplicate assignments.

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 98

Modules

MODULE user(turn,id,other)
VAR ...
ASSIGN ...
MODULE main
VAR user1: user(turn,1,user2.state);
 ...

• Parameters passed by reference.
• Top-level module main.
• Composition is synchronous by default:

all modules move at each step.

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 99

Processes

VAR node1: process node(1);
 node2: process node(2);

• Composition of processes is asynchronous:
one process moves at each step.

• Boolean variable running in each process
– running=1 when that process is selected to run.
– Used for fairness constraints (see later).

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 100

Fairness

MODULE user(turn,id,other)
VAR ...
ASSIGN ...
SPEC AG AF (state = c)
FAIRNESS (state = t)

• Check specifications, assuming fairness
conditions hold repeatedly (infinitely often).

• Useful for liveness properties.
• Fair scheduling: FAIRNESS running

n

t

c
my_turn

!my_turn

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 101

Variables and Transitions
(Constraint Style)

VAR pos: {0,1,2,3,4,5};
INIT pos < 2
TRANS (next(pos)-pos) in {+2,-1}
INVAR !(pos=3)

• Any propositional formula is allowed
=> flexible for translation from other languages.

• INVAR p is equivalent to INIT p
TRANS next(p)

but implemented more efficiently.
• Risk of inconsistent models (TRANS p & !p).

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 102

Well-Formed Programs?

• In assignment style, by construction:
– always at least one initial state,
– all states have at least one next state,
– non-determinism is apparent (unassigned

variables,set assignments, interleaving).
• In constraint style:

– INIT and TRANS constraints can be inconsistent,
– the level of non-determinism is emergent from

the conjunction of all constraints.

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 103

Variable Ordering

• BDDs require a fixed variable ordering .
– Critical for performance (BDD size).
– Best one is hard to find (NP-complete).

• SMV does not optimize by default but
– can read, write ordering in a file,
– can search for better ordering on demand.

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 104

NuSMV

• From ITC-IRST (Trento, Italy) and CMU.
• New version of SMV, completely rewritten:

– Same language as SMV.
– Modular, documented APIs, easily customized.
– Specifications in CTL or LTL.
– Graphical User Interface.

• See http://nusmv.irst.itc.it/

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 105

Related Tools

• Cadence SMV (Cadence Berkeley Labs)
– From Ken McMillan, original author of SMV.
– Supports refinement, compositional verification.
– New language but accepts CMU SMV.
– see http://www-cad.eecs.berkeley.edu/~kenmcmil/smv/

• Bounded Model-Checking
– Based on SAT solvers
– Bounded verification
– Checks LTL formulae (=> Büchi automata)
– Part of NuSMV

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 106

SMV
Summary

• BDD-based symbolic model checker.
• Modeling language based on synchronous

transition systems.
• Constraint style: more versatile, less strict

=> good for use as back-end tool.
• 1st generation: CMU
• 2nd generation: Cadence, NuSMV
• Variant: BMC (SAT based)

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 107

SMV
References

Ken McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.
Based on Ken McMillan's PhD thesis on SMV.

Ken L. McMillan. The SMV System (draft). February 1992.
http://www.cs.cmu.edu/~modelcheck/smv/smvmanual.r2.2.ps
The (old) user manual provided with the SMV program.

A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A New
Symbolic Model Verifier. In N. Halbwachs and D. Peled, eds.,
Proceedings of International Conference on Computer-Aided
Verification (CAV'99), LNCS 1633:495-499, Springer Verlag.
Survey paper on NuSMV.

Symbolic Model Checking
Applications in Software

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 109

Applications of
Symbolic Model Checking

• Used in industry for hardware design
– Commercial tools (Cadence)
– Fits well with boolean modeling

• Some success stories in protocol design
– Cache coherence of IEEE Futurebus+
– HDLC

• Not so good for software design
– Gap between programming/design language

and verification modeling language.

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 110

Model-Based Autonomy

• Unattended control of a complex device
(e.g. a spacecraft)

• Based on AI technology
• General reasoning engine +

application-specific model
• Use model to respond to

unanticipated situations

=> Verify the model !

Reasoning
Engine Model

commands status

Spacecraft

Autonomous controller

model of

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 111

 The Livingstone
Diagnostic System

Mode
Ident.

Mode
Recov.

Executive

Livingstone

commands sensors

state goal path

• Mode identification &
recovery:
– identify current state

(including faults)
– find path to goal state

• Model-based
• From NASA Ames
• Run in space

(DS- 1, May 1999)

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 112

Verification
of Autonomy Models

Domain
Model

SMV
Model

Domain
Requirements

SMV
Specifications

Domain
Trace

SMV
Trace

Model-Based
Autonomous
Controller

SMV

T
R
A
N
S
L
A
T
O
R

Model-Based Autonomy Verification

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 113

Livingstone Models

• Models = concurrent
transition systems

• Qualitative values
=> finite state

• Nominal/fault modes
• Probabilities on

faults

ClosedClosed

ValveValve
OpenOpen StuckStuck

openopen

StuckStuck
closedclosed

OpenOpen CloseClose

p=0p=0.01.01

inflow = outflow = 0
Courtesy Autonomous Systems Group, NASA Ames

p=0.05p=0.05

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 114

• Use atmosphere from Mars to
make fuel for return flight.

• Livingstone controller developed
at NASA Kennedy.

• Components are tanks, reactors,
valves, sensors...

• Exposed improper flow modeling.
• Very "loose" state space:

– 1050 states
– all states reachable in 3 steps

Application
 In-Situ Propellant Production

CO2 + 2H2 —> CH4 + O2

Mars
atmosphere

oxidizerfuel

on-board

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 115

• Intuition: bad is diagnosable if and only if
there is no pair of trajectories, one reaching a bad state, the
other reaching a good state, with identical observations.
– or some generalization of that: (context, two different faults, ...)

• Principle:
– consider two concurrent copies x1, x2 of the process,

with coupled inputs u and outputs y
– check for reachability of (good(x1) && bad(x2))

• Back to a classical (symbolic) model checking problem !
• Supported by Livingstone-to-SMV translator

x1

x2

u y

Verification of Diagnosability
u1/y1 … un/yn good

badu1/y1 … un/yn

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 116

Application: X-34 / PITEX

• Propulsion IVHM Technology Experiment (ARC, GRC)
• Livingstone applied to propulsion feed system of space vehicle
• Livingstone model is 4·1033 states
• Found impossible diagnosis of stuck venting valve

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 117

Applications of SMV
Summary

• Symbolic model checking:
OK for hardware, quid for software?

• Needs translation from programming
language to verification language and back!

• 2 examples for autonomy software using
SMV.

MoVES WP5-6-7 meeting © Charles Pecheur and Willem Visser 2000–2008 118

Applications of SMV
References

C. Pecheur and R. Simmons. “From Livingstone to SMV: Formal
Verification for Autonomous Spacecrafts”. First Goddard Workshop
on Formal Approaches to Agent-Based Systems, NASA Goddard,
April 5-7, 2000.
Verification of Livingstone with SMV.

R. Simmons and C. Pecheur. “Automating Model Checking for
Autonomous Systems”. AAAI Spring Symposium on Real-Time
Autonomous Systems, Stanford CA, March 2000.
Verification of TDL with SMV.

