Verification of Autonomy Software

Contact: Charles Pecheur (RIACS)

pecheur@email.arc.nasa.gov

with Tony Lindsey (QSS)

Stacy Nelson (NelsonConsult)

Reid Simmons (Carnegie Mellon)

Alessandro Cimatti (IRST, Italy)

Controlled vs. Autonomous

- Short time cycle (sec..min)
- •Human deals with unexpected
- Open-loop, easy to test
- •Tractable state space, testing is appropriate

- Long time cycle (day..year)
- Machine deals with unexpected
- •Closed-loop, hard to test
- •Huge state space, testing is insufficient

Livingstone

A model-based diagnosis system, uses a discrete, qualitative model to detect and diagnose faults.

Livingstone-to-SMV Translator

Diagnosis

Verification

- Allows exhaustive analysis of Livingstone models (10⁵⁰⁺ states)
- Uses SMV: symbolic model checker (BDD and SAT)
- Enriched spec syntax (vs. SMV's core temporal logic)
- Hide away SMV, offer a model checker for Livingstone
- Graphical interface, trace display

Livingstone PathFinder (LPF)

- Execute the Real Program in a simulated environment (testbed)
- Instrument the Code to be able to backtrack between alternate paths
- Modular architecture, allows different diagnosis, simulators, search algorithms
 - e.g. depth-first / breadth-first / random / guided / interactive / ...

Verification of Diagnosability

- Q: From observations (input/output), can diagnosis always tell when plant comes to a bad state?
- A: YES unless plant can go good or bad with the same observations (and therefore diagnosis cannot tell)

Verification using model checking (SMV)

- Two "siamese twin" copies of the plant (L/R), with coupled observations
- verify that one cannot reach:
 (L in good) and (R in bad)

Verification of IVHM* for Next-Gen Space Vehicle

*IVHM = Integrated Vehicle Health Management = Integrated prognosis/diagnosis

IVHM framework developed by Northrop Grumman Corp.

- Adopted Model-Based Diagnosis, including Livingstone Technology infusion project:
- Survey of NASA current V&V practice, applicable formal methods, our verification tools
 See <u>ase.arc.nasa.gov/vvivhm</u>
- Maturation of Livingstone verification tools (translator and LPF): tool extensions, GUI, improved documentation and packaging, integration with other IVHM tools

Symbolic Model Checking

Model Checking = verification by exhaustive exploration

- + Full coverage (incl. non-determinism)
- Limited by state space explosion
- Symbolic Model Checking =
 Processes sets of states,
 Represented as boolean formulas,
 Encoded as binary decision diagrams (BDDs).
- Can handle larger state spaces (10⁵⁰ and up)
 - but BDD size can explode too
- Works very well for Livingstone models
- Most widely used: SMV (Carnegie Mellon / Cadence / <u>IRST</u>)
- Variant: Bounded Model Checking using SAT solvers

To Probe Further

On-Line

- Livingstone to SMV Translator: ase.arc.nasa.gov/mpl2smv
- Livingstone PathFinder: ase.arc.nasa.gov/lpf
- Verification of IVHM: ase.arc.nasa.gov/vvivhm

Publications

- Stacy Nelson, Charles Pecheur. Formal Verification of a Next-Generation Space Shuttle. FAABS II, Greenbelt, MD, October 2002. To be published in LNCS.
- Charles Pecheur, Alessandro Cimatti. Formal
 Verification of Diagnosability via Symbolic Model
 Checking. MoChArt-2002, Lyon, France, July 2002.
- Steven Brown, Charles Pecheur. Model-Based
 Verification of Diagnostic Systems. Proceedings of JANNAF Joint Meeting, Destin, FL, April 8-12, 2002.
- Charles Pecheur, Reid Simmons. From Livingstone to SMV: Formal Verification for Autonomous Spacecrafts. FAABS I, April 2000. LNCS 1871, Springer Verlag.

Reports

- Stacy Nelson, Charles Pecheur. NASA processes/methods applicable to IVHM V&V. NASA/CR-2002-211401, April 2002.
- Stacy Nelson, Charles Pecheur. **Methods for V&V of IVHM intelligent systems**. NASA/CR-2002-211402, April 2002.
- Stacy Nelson, Charles Pecheur. Diagnostic Model V&V Plan/Methods for DME. NASA/CR-2002-211403, April 2002
- Charles Pecheur. Verification and Validation of Autonomy Software at NASA. NASA/TM 2000-209602, August 2000.

Publications and Reports available on-line at:

http://ase.arc.nasa.gov/pecheur/publi.html