VERIFICATION OF AUTONOMY SOFTWARE

CONTACT: CHARLES PECHEUR (RIACS) pecheur@email.arc.nasa.gov

WITH TONY LINDSEY (QSS)

STACY NELSON (NELSONCONSULT) **REID SIMMONS (CARNEGIE MELLON)** ALESSANDRO CIMATTI (IRST, ITALY)

LIVINGSTONE -to-SMV TRANSLATOR

LIVINGSTONE PATHFINDER (LPF)

- Allows exhaustive analysis of Livingstone models (10⁵⁰⁺ states)
- Uses SMV: symbolic model checker (BDD and SAT)
- Enriched spec syntax (vs. SMV's core temporal logic)
- Hide away SMV, offer a model checker for Livingstone
- Graphical interface, trace display

- Execute the Real Program in a simulated environment (testbed)
- Instrument the Code to be able to backtrack between alternate paths
- Modular architecture, allows different diagnosis, simulators, search algorithms e.g. depth-first / breadth-first / random / guided / interactive / .

VERIFICATION OF IVHM* for NEXT-GEN SPACE VEHICLE

*IVHM = Integrated Vehicle Health Management = Integrated prognosis/diagnosis

IVHM framework developed by Northrop Grumman Corp.

- Adopted Model-Based Diagnosis, including Livingstone Technology infusion project:
- Survey of NASA current V&V practice, applicable formal methods, our verification tools See ase.arc.nasa.gov/vvivhm
- **Maturation** of Livingstone verification tools (translator and LPF): tool extensions, GUI, improved documentation and packaging, integration with other IVHM tools

VERIFICATION OF DIAGNOSABILITY

- Q: From observations (input/output), can diagnosis always tell when plant comes to a bad state?
- A: YES unless plant can go good or bad with the same observations (and therefore diagnosis cannot tell)

Verification using model checking (SMV)

- Two "siamese twin" copies of the plant (L/R), with coupled observations
- verify that one cannot reach:

(L in good) and (R in bad)

LIVINGSTONE SYMBOLIC MODEL CHECKING A model-based diagnosis system,

inflow = outflow

Courtesy Autonomous Systems Group, NASA Ames

- Symbolic Model Checking =
- Processes sets of states, Represented as boolean formulas. Encoded as binary decision diagrams (BDDs).
- Can handle larger state spaces (1050 and up)
- but BDD size can explode too
- Works very well for Livingstone models
- Most widely used: SMV (Carnegie Mellon / Cadence / IRST)
- Variant: Bounded Model Checking using SAT solvers

CONTROLLED

- Short time cycle (sec..min)
- Human deals with unexpected
- Open-loop, easy to test
- •Tractable state space, testing is appropriate

AUTONOMOUS

- Long time cycle (day..year)
- Machine deals with unexpected
- Closed-loop, hard to test
- ·Huge state space, testing is insufficient

TO PROBE FURTHER

On-Line

• Livingstone to SMV Translator

- ase.arc.nasa.gov/mpl2smv · Livingstone PathFinder: ase.arc.nasa.gov/lpf
- Verification of IVHM: ase.arc.nasa.gov/vvivhm

Publications · Stacy Nelson, Charles Pecheur, Formal Verification of

Greenbelt, MD, October 2002. To be published in LNCS. Charles Pecheur, Alessandro Cimatti, Formal

Verification of Diagnosability via Symbolic Model Checking. MoChArt-2002, Lyon, France, July 2002. Steven Brown, Charles Pecheur. Model-Based Verification of Diagnostic Systems. Proceedings of JANNAF Joint Meeting, Destin, FL, April 8-12, 2002

Reports

Stacy Nelson, Charles Pecheur. NASA processes/methods applicable to IVHM V&V NASA/CR-2002-211401, April 2002.

Stacy Nelson, Charles Pecheur. Methods for V&V of

Charles Pecheur. Verification and Validation of Autonomy Software at NASA. NASA/TM 2000-209602, August 2000.

Publications and Reports available on-line at: http://ase.arc.nasa.gov/pecheur/publi.html