
Software Model Checking
Tools and Trends at NASA

Klaus Havelund
Charles Pecheur
Reid Simmons
Willem Visser

 Recom / QSS / NASA Ames

 RIACS / NASA Ames

 Carnegie Mellon University

 RIACS / NASA Ames

14 June 2000 © Havelund, Pecheur, Simmons and Visser 2

Contact Info

Klaus Havelund <havelund@ptolemy.arc.nasa.gov>
NASA Ames Research Center, M/S 269-2
Moffett Field, CA 94035, U.S.A.

Charles Pecheur <pecheur@ptolemy.arc.nasa.gov>
NASA Ames Research Center, M/S 269-2
Moffett Field, CA 94035, U.S.A.

Reid Simmons <reids@cs.cmu.edu>
Robotics Institute, Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213, U.S.A.

Willem Visser <wvisser@ptolemy.arc.nasa.gov>
NASA Ames Research Center, M/S 269-2
Moffett Field, CA 94035, U.S.A.

14 June 2000 © Havelund, Pecheur, Simmons and Visser 3

Outline

• Model Checking for Autonomy Software
– SMV (And Compiling to It)
– Verification of Autonomy Software

• Model Checking for Programming Languages
– Model Checking Programs
– Runtime Analysis of Programs

Charles

Reid

Willem

Klaus

SMV
And Compiling to It

Charles Pecheur

RIACS / NASA Ames
partially based on material from Marius Minea

14 June 2000 © Havelund, Pecheur, Simmons and Visser 5

Overview

• SMV = Symbolic Model Verifier.

• Developed by Ken McMillan
at Carnegie Mellon University.

• Modeling language for transition systems
based on parallel assignments.

• Specifications in temporal logic CTL.

• BDD-based symbolic model checking:
can handle very large state spaces.

14 June 2000 © Havelund, Pecheur, Simmons and Visser 6

What SMV Does

MODULE user(...) ...

MODULE main
VAR turn: {1 , 2};
 user1: u ser(...);
...

SPEC AG !(
 (user1.s tate = c) &
 (user2.s tate = c))

-- specifica tion AG ...
 is false
-- as demons trated by ...
state 1.1:
turn = 1
user1.state = n
user2.state = n

state 1.2:
...

resources us ed: ...

smv mutex.smv

Model

Counter-example
Specification

mutex.smv <stdout>

14 June 2000 © Havelund, Pecheur, Simmons and Visser 7

SMV Program
Example (1/2)

MODULE user(turn,id,other)
VAR state: {n, t, c};
DEFINE my_turn :=
 (other=n) | ((other=t) & (turn=id));
ASSIGN
init(state) := n;
next(state) := case
 (state = n) : {n, t};
 (state = t) & my_turn: c;
 (state = c) : n;
 1 : state;
esac;

SPEC AG((state = t) -> AF (state = c))

n

t

c
my_turn

!my_turn

14 June 2000 © Havelund, Pecheur, Simmons and Visser 8

SMV Program
Example (2/2)

MODULE main
VAR turn: {1, 2};
 user1: user(turn, 1, user2.state);
 user2: user(turn, 2, user1.state);
ASSIGN
init(turn) := 1;
next(turn) := case
 (user1.state=n) & (user2.state=t): 2;
 (user2.state=n) & (user1.state=t): 1;
 1: turn;
esac;

SPEC AG !((user1.state=c) & (user2.state=c))
SPEC AG !(user1.state=c)

14 June 2000 © Havelund, Pecheur, Simmons and Visser 9

Diagnostic Trace
Example

-- specification AG (state = t -> AF state = c) (in
module user1) is true

-- specification AG (state = t -> AF state = c) (in
module user2) is true

-- specification AG (!(user1.state = c & user2.state =
c)... is true

-- specification AG (!user1.state = c) is false
-- as demonstrate d by the following e xecution sequence
state 1.1:
turn = 1
user1.state = n
user2.state = n

state 1.2:
user1.state = t

state 1.3:
user1.state = c

14 June 2000 © Havelund, Pecheur, Simmons and Visser 10

• The SMV program defines:
– a finite transition model M (Kripke structure),
– a set of possible initial states I (may be several),
– specifications P1 .. Pm (CTL formulas).

• For each specification P, SMV checks that
∀ so ∈ I . M, so |= P

Note: SPEC !P is not the negation of SPEC P:
both can be false (in some initial states),
both can be true (vacuously when I=∅).

The Essence of SMV

14 June 2000 © Havelund, Pecheur, Simmons and Visser 11

Variables and Transitions
(Assignment Style)

VAR state : {n, t, c};
ASSIGN
init(state) := n;
next(state) := case
 (state = n) : {n, t}; ...
esac;

• Finite data types (incl. numbers and arrays).

• Usual operations x&y , x+y , etc., case statement.

• All assignments are evaluated in parallel.

• No control flow (must be simulated with vars).

• SMV detects circular and duplicate assignments.

14 June 2000 © Havelund, Pecheur, Simmons and Visser 12

Defined Symbols

DEFINE my_turn :=
 other=n | (other=t & turn=id);
ASSIGN
next(state) := case ...
 (state = t) & my_turn : c; ...
esac;

• Defines an abbreviation (macro definition).

• No new state variable is created
=> no added complexity for model checking.

• No type declaration is needed.

14 June 2000 © Havelund, Pecheur, Simmons and Visser 13

Modules

MODULE user (turn,id,other)
VAR ...
ASSIGN ...

MODULE main
VAR user1: user (turn,1,user2.state);
 ...

• Parameters passed by reference.
• Top-level module main .
• Composition is synchronous by default:

all modules move at each step.

14 June 2000 © Havelund, Pecheur, Simmons and Visser 14

Records

Modules without parameters and assignments.

MODULE point
VAR x : {0,1,2,3,4,5};
 y : {0,1,2,3,4,5};

MODULE main
VAR p : point ;
ASSIGN
 init (p.x) := 0; init(p.y) := 0;
 ...

14 June 2000 © Havelund, Pecheur, Simmons and Visser 15

Processes

VAR node1: process node(1);

 node2: process node(2);

• Composition of processes is asynchronous:
one process moves at each step.

• Boolean variable running in each process
– running =1 when that process is selected to run.
– Used for fairness constraints (see later).

14 June 2000 © Havelund, Pecheur, Simmons and Visser 16

Specifications

SPEC AG ((state = t) -> AF (state = c))

"Whenever state t is reached, state c will
always eventually be reached."

• Standard CTL syntax:
AX p , AF p , AG p, A[p U q] , EX p , ...

• Can be added in any module.

• Each specification is verified separately.

14 June 2000 © Havelund, Pecheur, Simmons and Visser 17

Fairness

MODULE user(turn,id,other)
VAR ...
ASSIGN ...
SPEC AG AF (state = c)
FAIRNESS (state = t)

• Check specifications, assuming fairness
conditions hold repeatedly (infinitely often).

• Useful for liveness properties.

• Fair scheduling: FAIRNESS running

n

t

c
my_turn

!my_turn

14 June 2000 © Havelund, Pecheur, Simmons and Visser 18

Variables and Transitions
(Constraint Style)

VAR pos : {0,1,2,3,4,5};
INIT pos < 2
TRANS (next(pos)-pos) in {+2,-1}
INVAR !(pos=3)

• Any propositional formula is allowed
=> flexible for translation from other languages.

• INVAR p is equivalent to INIT p
TRANS next(p)

but implemented more efficiently.

• Risk of inconsistent models (TRANS p & !p).

14 June 2000 © Havelund, Pecheur, Simmons and Visser 19

Well-Formed Programs?

• In assignment style, by construction:
– always at least one initial state,

– all states have at least one next state,

– non-determinism is apparent (unassigned
variables,set assignments, interleaving).

• In constraint style:
– INIT and TRANS constraints can be inconsistent,

– the level of non-determinism is emergent from
the conjunction of all constraints.

14 June 2000 © Havelund, Pecheur, Simmons and Visser 20

Inconsistency

• Inconsistent INIT constraints
=> inconsistent model: no initial state.
– SPEC 0 (or any SPEC P) is vacuously true.

• Inconsistent TRANS constraints
=> deadlock state: state with no next state
=> transition relation is not complete.
– SMV does not work correctly in this case.

– SMV will detect and report it.

14 June 2000 © Havelund, Pecheur, Simmons and Visser 21

Variable Ordering

• BDDs require a fixed variable ordering .
– Critical for performance (BDD size).

– Best one is hard to find (NP-complete).

• SMV does not optimize by default but
– can read, write ordering in a file,

– can search for better ordering on demand.

14 June 2000 © Havelund, Pecheur, Simmons and Visser 22

Re-ordering Variables

Using command line options:
smv -o demo. var

Outputs variable ordering to demo. var .
demo. var is text, can be re-ordered manually.

smv -i demo. var

Inputs variable ordering from demo.var .
smv -reorder

Does variable re-ordering when BDD size
exceeds a certain (configurable) limit.

smv -reorder - oo demo. var

Outputs to demo. var after each change.

14 June 2000 © Havelund, Pecheur, Simmons and Visser 23

Re-ordering Variables
Method for Tough Cases

Problem (Livingstone ISPP model):
smv ispp .smv

-> Memory overflow.
smv -reorder ispp .smv

-> keeps re-ordering again and again...

Solution:
smv -reorder - oo ispp .var ispp .smv

Wait until "enough" re-ordering (statistics).
^C

smv -i ispp.var ispp .smv
-> Goes to completion (1050 states).

14 June 2000 © Havelund, Pecheur, Simmons and Visser 24

Availability

• Freely downloadable.

• Source or binaries for Unix
(SunOS4, SunOS5, Linux x86, Ultrix).

• Windows NT port (Dong Wang).

• see http://www.cs.cmu.edu/~modelcheck/smv.html

14 June 2000 © Havelund, Pecheur, Simmons and Visser 25

NuSMV

• From ITC-IRST (Trento, Italy) and CMU.

• New version of SMV, completely rewritten:
– Same language as SMV.

– Modular, documented APIs, easily customized.

– Specifications in CTL or LTL.

– Graphical User Interface.

– Usually faster but uses more memory.

• See http://sra.itc.it/tools/nusmv/index.html

14 June 2000 © Havelund, Pecheur, Simmons and Visser 26

Other Related Tools

• Cadence SMV (Cadence Berkeley Labs)
– From Ken McMillan, original author of SMV.
– Supports refinement, compositional verification.
– New language but accepts CMU SMV.
– see http://www-cad.eecs.berkeley.edu/~kenmcmil/smv/

• BMC = Bounded Model Checker (CMU)
– Uses SAT procedures instead of BDDs:

bounded depth but usually faster, less memory.
– Simple SMV-like language (no modules).
– Early beta version.
– see http://www.cs.cmu.edu/~modelcheck/bmc.html

14 June 2000 © Havelund, Pecheur, Simmons and Visser 27

References

Ken McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

Based on Ken McMillan's PhD thesis on SMV.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang.
Symbolic model checking: 10^20 states and beyond. Information and
Computation, vol. 98, no. 2, 1992.

The reference survey paper on the principles of SMV.

Ken L. McMillan. The SMV System (draft). February 1992.
http://www.cs.cmu.edu/~modelcheck/smv/smvmanual.r2.2.ps

The (old) user manual provided with the SMV program.

14 June 2000 © Havelund, Pecheur, Simmons and Visser 28

Verification of Autonomy Software

Reid Simmons
Carnegie Mellon University

14 June 2000 © Havelund, Pecheur, Simmons and Visser 29

Autonomous Systems

• Achieve complex tasks in uncertain,
unstructured environments
– Combine deliberative and reactive behaviors

– Highly conditional; Non-local flow of control

– Feedback loops at multiple levels of abstraction

• Architectures for Autonomy
– Specialized representations and algorithms

– Model-based programming

14 June 2000 © Havelund, Pecheur, Simmons and Visser 30

Aspects of Verification

• Verifying the Interpreter
– Special-purpose languages

• Verifying for Internal Correctness
– Check for deadlock, safety, resource conflict, …

• Verifying for External Correctness
– How the system interacts with the environment

14 June 2000 © Havelund, Pecheur, Simmons and Visser 31

Architecture for Verification
of Autonomy Software

Representation
Language

SMV
Model

Domain
Requirements

SMV
Specifications

Causal
Explanation

SMV
Trace

Special-Purpose
Interpreter

SMV

T
R
A
N
S
L
A
T
O
R

Autonomy Software Verification

14 June 2000 © Havelund, Pecheur, Simmons and Visser 32

Planner/
Scheduler
Planner/

Scheduler ExecutiveExecutive

LivingstoneLivingstoneMission
Manager
Mission
Manager

Remote Agent

Real-Time
Control

Goals Model

MRMI
current state

Livingstone

obsRecovery

14 June 2000 © Havelund, Pecheur, Simmons and Visser 33

• Model-based system for fault diagnosis
– Detects conflicts between observed and

predicted state variables

– Diagnoses inconsistencies (nominal/fault modes)

– Finds recovery actions

– Qualitative

– Hierarchical

– Lisp-based

Livingstone

ClosedClosed

OpenOpen
StuckStuck
openopen

StuckStuck
closedclosed

OpenOpen CloseClose

ValveValve

VDECUVDECU

cmd-in

OffOff

DriverDriver
OnOn

FailedFailedOnOn OffOff

cmd-out

cmd-in

valve
position

14 June 2000 © Havelund, Pecheur, Simmons and Visser 34

Translation

Livingstone
Model

SMV
ModelLivingstone

SMV

T
R
A
N
S
L
A
T
O
R

14 June 2000 © Havelund, Pecheur, Simmons and Visser 35

Formalizing the Model

MPL SMV

component module

module module

variables scalar variables

structures module variables

mode transitions TRANS

model constraints INVAR

initial state INIT

Main difficulty is translating Livingstone’s flat name space

14 June 2000 © Havelund, Pecheur, Simmons and Visser 36

Livingstone to SMV

MODULE valve
VAR mode: {Open,Closed,

 StuckO,StuckC};
 valve-position: {Open, Closed};
 cmd-in: {open,close};
DEFINE faults:={StuckO,StuckC};
TRANS
 (mode=Closed & cmd-in=open) ->
 (next(mode) in {Open union faults})
INVAR
 (mode=Open -> valve-position=Open)

(defcomponent valve ()
 (:inputs (cmd-in :type valve-cmd))
 (:outputs (valve-position

 :type open-closed-type))
 ...
 (Closed :type ok-mode
 :model (open (valve-position))
 :transitions
 ((do-open :when (open cmd)
 :next Open) ...))
 (StuckC :type :fault-mode ...)
 ...)

14 June 2000 © Havelund, Pecheur, Simmons and Visser 37

Requirements

Livingstone
Model

SMV
Model

Livingstone
Requirement

SMV
Specifications

Livingstone

SMV

T
R
A
N
S
L
A
T
O
R

14 June 2000 © Havelund, Pecheur, Simmons and Visser 38

Specifying Properties

• Extend Livingstone to specify
CTL properties directly

• (all (globally (implies (off (admittance outlet))
 (off (flow z-flow-module)))))

• Add high-level properties
– Completeness, consistency, reachability, …

• Add auxiliary predicates
– broken, failed, multibroken, ...

14 June 2000 © Havelund, Pecheur, Simmons and Visser 39

Explanations

Livingstone
Model

SMV
Model

Livingstone
Requirement

SMV
Requirement

Causal
Explanation

SMV
Trace

Livingstone

SMV

T
R
A
N
S
L
A
T
O
R

14 June 2000 © Havelund, Pecheur, Simmons and Visser 40

Explaining Witnesses

• Use Truth Maintenance System (TMS)
– Recreate chain of inferences

– Record dependencies

– Generate explanation
(AG (NOT (EQ VDECU.DRIVER.MODE FAILED))) is false because
In State 1
 1. VDECU.DRIVER.MODE is initially OFF
 2. VDECU.DRIVER.CMD-OUT is NO-COMMAND
 based on 1 and
 vdecu.driver.mode = off -> vdecu.driver.cmd-out = no-command
 3. VDECU.DRIVER.CMD-OUT is not ON
 based on 2 and EXCLUSIVE-VALUE
In State 2
 4. VDECU.DRIVER.MODE non-deterministically transitions to FAILED
 based on 1, 3, and
 vdecu.driver.mode = off_ & !vdecu.driver.cmd-out = on_ -> next(vdecu.driver.mode) in (off union failed)
 5. (NOT (EQ VDECU.DRIVER.MODE FAILED)) is FALSE
 based on 4

14 June 2000 © Havelund, Pecheur, Simmons and Visser 41

Translating TDL

Task
Descriptions

SMV
ModelTDL

SMV

T
R
A
N
S
L
A
T
O
R

• TDL: Task Description Language
– Extension of C++

– Task decomposition, task synchronization,
monitoring, exception handling

14 June 2000 © Havelund, Pecheur, Simmons and Visser 42

Formalizing the Model

TDL SMV

task module

task/subtask relationship module variables

task state scalar variables

state transitions ASSIGN

temporal constraints INVAR and parameters

asynchronous nature PROCESS variables
and FAIRNESS constraints

14 June 2000 © Havelund, Pecheur, Simmons and Visser 43

Verifying Task Descriptions

• Can verify temporal properties
of hierarchical tasks
– deadlock, safety, liveness, …

– can handle conditional execution

• Working on:
– monitoring and exception handling

– iteration and recursion

A

B C

D E

14 June 2000 © Havelund, Pecheur, Simmons and Visser 44

Verifying the ESL Engine

• Executive Support Language (ESL)
– Built on top of multi-threaded Lisp

• Verify whether implementation matches
requirements
– Create abstract model of code in PROMELA

– Verify properties of interest over all possible
execution traces

– Found several subtle bugs in the code
• See paper in LFM 2000 proceedings!

14 June 2000 © Havelund, Pecheur, Simmons and Visser 45

Example: Property Locks

• Property Lock : Similar to a semaphore
– Must be released when task terminates

• The Bug:
– Task body is wrapped by code to catch

exceptions and to release locks (in that order)

– Problem arises if exception is raised while
trying to release locks

– Solution: Surround lock-release code in a
critical section

14 June 2000 © Havelund, Pecheur, Simmons and Visser 46

Summary

• Automatic Translation of Special-Purpose
Languages for Autonomy Software

• Extensions for Specifying Requirements
Directly

• Tools for Analyzing Counter-Examples

14 June 2000 © Havelund, Pecheur, Simmons and Visser 47

References

• C. Pecheur and R. Simmons. “From Livingstone to SMV:
Formal Verification for Autonomous Spacecrafts”. First
Goddard Workshop on Formal Approaches to Agent-
Based Systems, NASA Goddard, April 5-7, 2000.

• R. Simmons and C. Pecheur. “Automating Model
Checking for Autonomous Systems”. AAAI Spring
Symposium on Real-Time Autonomous Systems, Stanford
CA, March 2000.

• K. Havelund, M. Lowry, S. Park, C. Pecheur, J. Penix, W.
Visser, J.L. White. “Formal Analysis of the Remote Agent
- Before and After Flight”. Fifth NASA Langley Formal
Methods Workshop, Virginia, June 2000.

Model Checking Programs

Willem Visser

RIACS / NASA Ames

14 June 2000 © Havelund, Pecheur, Simmons and Visser 49

Model Checking Programs

• Model checking usually applied to designs
– Some errors get introduced after designs

– Design errors are missed due to lack of detail

– Sometimes there is no design

• Can model checking find errors in real programs?
– Yes, many examples in the literature

• Can model checkers be used by programmers?
– Only if it takes real programs as input

14 June 2000 © Havelund, Pecheur, Simmons and Visser 50

Main Issues

• Memory
– Explicit-state model checking’s Achilles heel
– State of a software system can be complex
– Require efficient encoding of state, or,
– State-less model checking

• Input notation not supported
– Translate to existing notation
– Custom-made model checker

• State-space Explosion

14 June 2000 © Havelund, Pecheur, Simmons and Visser 51

State-less Model Checking

• Must limit search-depth to ensure termination

• Based on partial-order reduction techniques

• Annotate code to allow verifier to detect
“important” transitions

• Examples include
– VeriSoft

• http://www1.bell-labs.com/project/verisoft/

– Rivet
• http://sdg.lcs.mit.edu/rivet.html

14 June 2000 © Havelund, Pecheur, Simmons and Visser 52

Traditional Model Checking

• Translation-based using existing model checker
– Hand-translation

– Semi-automatic translation

– Fully automatic translation

• Custom-made model checker
– Fully automatic translation

– More flexible

14 June 2000 © Havelund, Pecheur, Simmons and Visser 53

Hand-Translation

abstraction

translation

Verification model

Program

• Hand translation of program to model checker’s input notation

• “Meat-axe” approach to abstraction

• Labor intensive and error-prone

14 June 2000 © Havelund, Pecheur, Simmons and Visser 54

Hand-Translation
 Examples

• Remote Agent – Havelund,Penix,Lowry 1997
– http://ase.arc.nasa.gov/havelund

– Translation from Lisp to Promela (most effort)

– Heavy abstraction

– 3 man months

• DEOS – Penix et al. 1998/1999
– http://ase.arc.nasa.gov/visser

– C++ to Promela (most effort in environment)

– Limited abstraction - programmers produced sliced system

– 3 man months

14 June 2000 © Havelund, Pecheur, Simmons and Visser 55

Semi-Automatic Translation

• Table-driven translation and abstraction
– Feaver system by Gerard Holzmann
– User specifies code fragments in C and how to translate

them to Promela (SPIN)
– Translation is then automatic
– Found 75 errors in Lucent’s PathStar system
– http://cm.bell-labs.com/cm/cs/who/gerard/

• Advantages
– Can be reused when program changes
– Works well for programs with long development and

only local changes

14 June 2000 © Havelund, Pecheur, Simmons and Visser 56

Fully Automatic Translation

• Advantage
– No human intervention required

• Disadvantage
– Limited by capabilities of target system

• Examples
– Java PathFinder 1- http://ase.arc.nasa.gov/havelund/jpf.html

• Translates from Java to Promela (Spin)

– JCAT - http://www.dai-arc.polito.it/dai-arc/auto/tools/tool6.shtml
• Translates from Java to Promela (or dSpin)

– Bandera - http://www.cis.ksu.edu/santos/bandera/
• Translates from Java bytecode to Promela, SMV or dSpin

14 June 2000 © Havelund, Pecheur, Simmons and Visser 57

Custom-made Model Checkers

• Allows efficient model checking
– Often no translation is required
– Algorithms can be tailored

• Translation-based approaches
– dSpin

• Spin extended with dynamic constructs
• Essentially a C model checker
• http://www.dai-arc.polito.it/dai-arc/auto/tools/tool7.shtml

– Java Model Checker (from Stanford)
• Translates Java bytecode to SAL language
• Custom-made SAL model checker
• http://sprout.stanford.edu/uli/

14 June 2000 © Havelund, Pecheur, Simmons and Visser 58

Java PathFinder 2

• Based on new Java Virtual Machine
– Handle all of Java, since it works with bytecodes

• Written in Java
– 1 month to develop version with only integers

• Efficient encoding of states
– Complex states are translated to integer vector
– Garbage collection
– Canonical heap representation

• http://ase.arc.nasa.gov/jpf

14 June 2000 © Havelund, Pecheur, Simmons and Visser 59

Reducing the State Space

• Partial-order reductions
– Vital for efficient explicit-state model checking
– Must be able to identify independent transitions

• Static analysis

• Abstraction
– Under-approximations

• Slicing, i.e. a cultured “meat-axe”

– Over-approximations
• Predicate abstraction
• Type-based abstraction

14 June 2000 © Havelund, Pecheur, Simmons and Visser 60

Slicing in JPF

• JPF uses Bandera’s slicer
• Bandera slices w.r.t.

– Deadlock - i.e. communication statements
– Variables occurring in temporal properties
– Variables participating in race-violations

• Used with JPF’s runtime analysis

• More examples of slicing for model checking
– Slicing for Promela (Millet and Teitelbaum)

• http://netlib.bell-labs.com/netlib/spin/ws98/program.html

– Slicing for Hardware Description Languages (Shankar et al.)
• http://www.cs.wisc.edu/~reps/

14 June 2000 © Havelund, Pecheur, Simmons and Visser 61

Predicate Abstraction

• Create abstract state-space w.r.t. set of predicates
defined in concrete system
– Abstract interpretation

• First proposed by Graf and Saidi
– http://www.csl.sri.com/~saidi/

– http://www-verimag.imag.fr/~graf/

– see also http://theory.stanford.edu/people/uribe/

• Only applies to static programs, that manipulates
global variables
– Not directly applicable to object-oriented programs

14 June 2000 © Havelund, Pecheur, Simmons and Visser 62

Predicate Abstraction

x ≠ y

Abstract

Concrete x = y

F T

α : int × int bool

EQ = T EQ = F

x = 0
y = 0

x = 0
y = 1

y++

EQ := F

EQ ≡ (x = y) EQ ≡ (x = y)

• Mapping of a concrete system to an abstract system, whose states
 correspond to truth values of a set of predicate
• Create abstract state-graph during model checking, or,
• Create an abstract transition system before model checking

14 June 2000 © Havelund, Pecheur, Simmons and Visser 63

JPF Abstraction Technique

• Find abstraction mapping (α) by
user guidance

• Use decision procedures to
automatically compute abstract
interpretation of concrete transitions

• Validity checking of pre-images

• Over approximation with
nondeterminism

x = m
y = n

x = m
y = n+1

y++

EQ := EQ ? F : T or F

EQ ≡ (x = y)

14 June 2000 © Havelund, Pecheur, Simmons and Visser 64

JPF’s Java Abstraction

• Annotations used to indicate abstractions
— Abstract.remove(x);

Abstract.remove(y);
Abstract.addBoolean(ÒEQÓ, x==y);

• Tool generates abstract Java program
– Using Stanford Validity Checker (SVC)
– JVM is extended with nondeterminism to handle over

approximation

• Abstractions can be local to a class or global
across multiple classes
— Abstract.addBoolean(ÒEQÓ, A.x==B.y);

– Dynamic predicate abstraction, since it works across instances

14 June 2000 © Havelund, Pecheur, Simmons and Visser 65

Conclusions

• Model checking programs is an active field
– At least 5 groups are checking Java

• Model checking needs some help
– Static analysis

– Abstraction – abstract interpretation

– Runtime analysis
• Gathering information during one run through the

code to guide the model checker towards errors

• Next talk

Runtime Analysis of Programs

Klaus Havelund

Recom / QSS / NASA Ames

14 June 2000 © Havelund, Pecheur, Simmons and Visser 67

The State Space
Explosion Problem

• Real programs have too many states for
unfocused model checking.

• The model checker needs to be focused on
program fragments that “matter”.

• Abstraction is the solution.
• However, we probably need complementary

techniques which can examine the state
space in a less complete way.

• We also need guided model checking.

Are there Other Solutions?

Solutions which can find errors in
multi threaded programs, and which

do not require repeated test runs?

14 June 2000 © Havelund, Pecheur, Simmons and Visser 69

Yes: Runtime Analysis!

• Conclude properties of a program from a
single run of the program.

• Look for the bug’s “foot prints”.

• Bug does not have to occur in the run in
order to be detected. Examples will show
this.

• Goal: the choice of execution trace should
not influence result of analysis.

14 June 2000 © Havelund, Pecheur, Simmons and Visser 70

How to do
Runtime Analysis

• Run the program once.
• Collect information about run in a database.

What information depends on the property
being analyzed.

• Database is analyzed “on-the-fly” or after (a
forced) program termination.

• Warnings are issued in case the contents of
the database suggests that properties can be
violated in this or other runs.

14 June 2000 © Havelund, Pecheur, Simmons and Visser 71

Runtime Analysis
Plusses and Minuses

+ Scales well (one trace)

+ Often finds the bugs it
is supposed to find

- Gives false positives

- Gives false negatives

- Limited to special
classes of bugs

14 June 2000 © Havelund, Pecheur, Simmons and Visser 72

Two Examples of
Runtime Analysis

• Data race detection: detects simultaneous
access to unprotected variables by several
threads.

• Deadlock detection: detects deadlocks
between threads that access shared
resources.

14 June 2000 © Havelund, Pecheur, Simmons and Visser 73

Data Races

A data race occurs when two threads
access a shared variable,

at least one access is a write,
and no mechanism is used to prevent simultaneous access.

x = x + 1 x = x + 1x

Thread 1
Shared
variable Thread 2

Example Solutions: monitors, semaphores, …

14 June 2000 © Havelund, Pecheur, Simmons and Visser 74

Data Race Detection

• The Eraser algorithm
(Savage,Burrows,Nelson,Sobalvarro).

• Detects data race potentials by observing
execution trace - keeping track of which
locks are active when variables are
accessed.

14 June 2000 © Havelund, Pecheur, Simmons and Visser 75

Example Java Program

class Value{
 int x = 1;
 void add(Value v){x = x + v.get();}
 int get(){return x;}
}

v1 = new Value();
synchronized(v1){
 v1.add(v2);
}

synchronized(v2){
 v2.add(v1);
}

v2 = new Value();

Thread T1 Thread T2

14 June 2000 © Havelund, Pecheur, Simmons and Visser 76

Examining a Run

0: T1.monitorenter(v1);
1: T1.getfield(v1.x);
2: T1.getfield(v2.x);
3: T1.putfield(v1.x);
4: T1.monitorexit(v1);

5: T2.monitorenter(v2);
6: T2.getfield(v2.x);
7: T2.getfield(v1.x);
8: T2.putfield(v2.x);
9: T2.monitorexit(v2);

v1.x : <read,T1,v1>
 <write,T1,v1>
 <read,T2,v2>

V2.x : <read,T1,v1>
 <read,T2,v2>
 <write,T2,v2>

<access,thread,active locks>

14 June 2000 © Havelund, Pecheur, Simmons and Visser 77

The Basic Algorithm

takeLock(t,l)
 set(t) = set(t) union {l}

releaseLock(t,l)
 set(t) = set(t) minus {l}

set(t) : set of locks owned by thread t
set(x) : set of locks protecting variable x

firstAccess(t,x)
 set(x) = set(t)

laterAccess(t,x)
 set(x) = set(x) intersect set(t);
 if set(x) == {} then warning

14 June 2000 © Havelund, Pecheur, Simmons and Visser 78

Examining Run
using Basic Algorithm

0: T1.monitorenter(v1);
1: T1.getfield(v1.x);
2: T1.getfield(v2.x);
3: T1.putfield(v1.x);
4: T1.monitorexit(v1);

5: T2.monitorenter(v2);
6: T2.getfield(v2.x);
7: T2.getfield(v1.x);
8: T2.putfield(v2.x);
9: T2.monitorexit(v2);

 T1 T2 v1.x v2.x
{v1}

{v1}
{v1}

{v1}
{}

{v2}
{}

{}

{}

14 June 2000 © Havelund, Pecheur, Simmons and Visser 79

Basic Algorithm
Yields False Positives

• Initialization/single threaded use: usually
done without locks.

• Shared read access: several threads should
be allowed to read if no-one writes after the
initialization.

14 June 2000 © Havelund, Pecheur, Simmons and Visser 80

The Extended Algorithm

not used

exclusive

shared

shared
modified

wr

rd (new thread)rd,wr (first thread)

rd

wr (new thread)

wr

rd,wr

= no action

= refinement

= also warnings

14 June 2000 © Havelund, Pecheur, Simmons and Visser 81

Deadlocks

A deadlock can occur when threads
access and lock shared resources,
and lock these in different order.

L2

1

2 1

2
L1

T1 T2

1

2 1

2
Problem:
T1 locks L1 first
T2 locks L2 first

Example Solution: Impose order on locks: L1 < L2

14 June 2000 © Havelund, Pecheur, Simmons and Visser 82

Deadlock Detection

• The GoodLock algorithm (Havelund).

• Detects deadlock potentials by observing
execution trace - keeping track of which
locks are taken by threads, and in which
order they are taken.

14 June 2000 © Havelund, Pecheur, Simmons and Visser 83

Modified Java Program

class Value{
 int x = 1;
 synchronized void add(Value v){x = x + v.get();}
 synchronized int get(){return x;}
}

v1 = new Value();

 v1.add(v2) v2.add(v1)

v2 = new Value();

Thread T1 Thread T2

14 June 2000 © Havelund, Pecheur, Simmons and Visser 84

Examining a Run

0: T1.invokevirtual(v1.add);
1: T1.invokevirtual(v2.get);
2: T1.return(v2.get);
3: T1.return(v1.add);

4: T2.invokevirtual(v2.add);
5: T2.invokevirtual(v1.get);
6: T2.return(v1.get);
7: T2.return(v2.add);

v2

T1

v1 v2

v1

T2

Lock Trees

14 June 2000 © Havelund, Pecheur, Simmons and Visser 85

More Elaborate Example

synchronized(L1){
 synchronized(L3){
 synchronized(L2){};
 synchronized(L4){}
 }
};
synchronized(L4){
 synchronized(L2){
 synchronized(L3){}
 }
}

synchronized(L1){
 synchronized(L2){
 synchronized(L3){}
 }
};
synchronized(L4){
 synchronized(L3){
 synchronized(L2){}
 }
}

Thread T1: Thread T2:

14 June 2000 © Havelund, Pecheur, Simmons and Visser 86

Create Lock Trees
During Run

T1

L3

L4

L2

L3L2 L4

L1

T2

L1 L4

L2

L3

L3

L2

14 June 2000 © Havelund, Pecheur, Simmons and Visser 87

Analyze Lock Trees
After Run

L3

L4

L2

L3L2 L4

L1

T1 T2

L1 L4

L2

L3

L3

L2

examine

14 June 2000 © Havelund, Pecheur, Simmons and Visser 88

Examine L3
in T1’s Left Branch

L3

L4

L2

L3L2 L4

L1

T1 T2

L1 L4

L2

L3

L3

L2

examine

14 June 2000 © Havelund, Pecheur, Simmons and Visser 89

Basic Algorithm
Yields False Positives

L2

1 L3

T1 T2

2

3 2

3

L1
11

Both threads take
L1 first.

The lock L1 protects
against <L2,L3>
deadlock:

14 June 2000 © Havelund, Pecheur, Simmons and Visser 90

Close L1 Tree in T2
After Examination of L1

L3

L4

L2

L3L2 L4

L1

T1 T2

L1 L4

L2

L3

L3

L2

examine

Sub tree of L1
is closed

14 June 2000 © Havelund, Pecheur, Simmons and Visser 91

How to Interpret
Warnings from Analysis

program

warnings

runtime
analysis

14 June 2000 © Havelund, Pecheur, Simmons and Visser 92

Runtime Analysis Can Guide
 Model Checking

model check

program

warnings

runtime
analysis

Runtime analysis:
Consequences of warnings
can be examined.

Model checking:
State space can be
reduced.

14 June 2000 © Havelund, Pecheur, Simmons and Visser 93

Analyzing a Big
State Space

v1

v2

23

10

T1 T2

Environment: 40 threads, each performing
10.000 assignments to shared variable.
More than 10 states! 160

20 groups
in total

Record dependency information:
• Which threads start which threads?
• Which threads read/write which objects?
• Calculate smallest window from warnings!

Main

14 June 2000 © Havelund, Pecheur, Simmons and Visser 94

Result of Running
JPF2 on Example

Runtime Analysis:

…
Thread T1 takes lock on v1
…
EXECUTION INTERRUPTED!
…

Dependencies:

Task T1:
 creater : Main
 reads : v1,v2
 writes : v1
…

Lock Trees:

Thread T1:
0 v1
0.0 v2

Thread T2:
0 v2
0.0 v1
…

Lock Order Conflict:

Locks on v1 and v2 are
taken in opposite order.

Lock on v2 is taken last by T1
 Value.add line 4
 Task.run line 17
Lock on v1 is taken last by T2
 Value.add line 4
 Task.run line 17

Window Extension:

Warning Window : T1, T2
Extended Window : Main, T1, T2

Model Checking of
Extended Window:

*** Deadlock ***
… error trail …

27 seconds

2 seconds

14 June 2000 © Havelund, Pecheur, Simmons and Visser 95

Conclusions and
Future Work

• Deadlock occurred on board Deep-Space 1 due to
missing critical section. Eraser can find the error.

• Minimize false positives.
• Generalize deadlock algorithm to N.
• Alternative kinds of runtime analysis.
• Runtime analysis during model checking.
• Optimize: only analyze shared objects, …
• Feed warnings to static slicing tool (Bandera).
• Investigate how useful runtime analysis is, and

generalize.

14 June 2000 © Havelund, Pecheur, Simmons and Visser 96

References

• "Eraser: A Dynamic Data Race Detector for
Multithreaded Programs", S. Savage, M. Burrows,
G. Nelson, P. Sobalvarro.
http://camars.kaist.ac.kr/etc/SOSP16/PAPERS/SAVAGE/SAVAGE.HTM

• "Using Runtime Analysis to Guide Model
Checking of Java Programs", K. Havelund.
http://ase.arc.nasa.gov/havelund

