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Overview

• SMV = Symbolic Model Verifier.

• Developed by Ken McMillan
at Carnegie Mellon University.

• Modeling language for transition systems
based on parallel assignments.

• Specifications in temporal logic CTL.

• BDD-based symbolic model checking:
can handle very large state spaces.
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What SMV Does

MODULE user( ...) ...

MODULE main
VAR turn: {1 , 2};
    user1: u ser(...);
...

SPEC AG !(
    (user1.s tate = c) &
    (user2.s tate = c))

-- specifica tion AG ...
   is false
-- as demons trated by ...
state 1.1:
turn = 1
user1.state = n
user2.state = n

state 1.2:
...

resources us ed: ...

smv mutex.smv

Model

Counter-example
Specification

mutex.smv <stdout>



14 June 2000 © Havelund, Pecheur, Simmons and Visser 7

SMV Program
Example (1/2)

MODULE user(turn,id,other)
VAR state: {n, t, c};
DEFINE my_turn :=
   (other=n) | ((other=t) & (turn=id));
ASSIGN
init(state) := n;
next(state) := case
   (state = n) : {n, t};
   (state = t) & my_turn: c;
   (state = c) : n;
   1 : state;
esac;

SPEC AG((state = t) -> AF (state = c))

n

t

c
my_turn

!my_turn
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SMV Program
Example (2/2)

MODULE main
VAR turn: {1, 2};
    user1: user(turn, 1, user2.state);
    user2: user(turn, 2, user1.state);
ASSIGN
init(turn) := 1;
next(turn) := case
   (user1.state=n) & (user2.state=t): 2;
   (user2.state=n) & (user1.state=t): 1;
   1: turn;
esac;

SPEC AG !((user1.state=c) & (user2.state=c))
SPEC AG !(user1.state=c)
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Diagnostic Trace
Example

-- specification AG (state = t -> AF state = c) (in
module user1) is true

-- specification AG (state = t -> AF state = c) (in
module user2) is true

-- specification AG (!(user1.state = c & user2.state =
c)... is true

-- specification AG (!user1.state = c ) is false
-- as demonstrate d by the following e xecution sequence
state 1.1:
turn = 1
user1.state = n
user2.state = n

state 1.2:
user1.state = t

state 1.3:
user1.state = c
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• The SMV program defines:
– a finite transition model M (Kripke structure),
– a set of possible initial states I (may be several),
– specifications P1 .. Pm (CTL formulas).

• For each specification P, SMV checks that
∀ so ∈ I  .  M, so |= P

Note: SPEC !P  is not the negation of SPEC P:
both can be false (in some initial states),
both can be true (vacuously when I=∅).

The Essence of SMV
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Variables and Transitions
(Assignment Style)

VAR state : {n, t, c};
ASSIGN
init( state ) := n;
next( state ) := case
   ( state  = n) : {n, t}; ...
esac;

• Finite data types (incl. numbers and arrays).

• Usual operations x&y , x+y , etc., case  statement.

• All assignments are evaluated in parallel.

• No control flow (must be simulated with vars).

• SMV detects circular and duplicate assignments.
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Defined Symbols

DEFINE my_turn  :=
   other=n | (other=t & turn=id);
ASSIGN
next(state) := case ...
   (state = t) & my_turn :  c; ...
esac;

• Defines an abbreviation (macro definition).

• No new state variable is created
=> no added complexity for model checking.

• No type declaration is needed.
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Modules

MODULE user (turn,id,other)
VAR ...
ASSIGN ...

MODULE main
VAR user1: user (turn,1,user2.state);
    ...

• Parameters passed by reference.
• Top-level module main .
• Composition is synchronous by default:

all modules move at each step.
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Records

Modules without parameters and assignments.

MODULE point
VAR  x : {0,1,2,3,4,5};
     y : {0,1,2,3,4,5};

MODULE main
VAR  p : point ;
ASSIGN
   init (p.x) := 0; init(p.y) := 0;
   ...
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Processes

VAR node1: process  node(1);

    node2: process  node(2);

• Composition of processes is asynchronous:
one process moves at each step.

• Boolean variable running  in each process
– running =1 when that process is selected to run.
– Used for fairness constraints (see later).
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Specifications

SPEC AG ((state = t) -> AF (state = c))

"Whenever state t  is reached, state c  will
always eventually be reached."

• Standard CTL syntax:
AX p , AF p , AG p, A[p U q] , EX p , ...

• Can be added in any module.

• Each specification is verified separately.
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Fairness

MODULE user(turn,id,other)
VAR ...
ASSIGN ...
SPEC AG AF (state = c)
FAIRNESS (state = t)

• Check specifications, assuming fairness
conditions hold repeatedly (infinitely often).

• Useful for liveness properties.

• Fair scheduling: FAIRNESS running

n

t

c
my_turn

!my_turn
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Variables and Transitions
(Constraint Style)

VAR pos : {0,1,2,3,4,5};
INIT pos  < 2
TRANS (next( pos )-pos) in {+2,-1}
INVAR !( pos=3)

• Any propositional formula is allowed
=> flexible for translation from other languages.

•  INVAR p    is equivalent to INIT p
TRANS next(p)

but implemented more efficiently.

• Risk of inconsistent models (TRANS p & !p ).
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Well-Formed Programs?

• In assignment style, by construction:
– always at least one initial state,

– all states have at least one next state,

– non-determinism is apparent (unassigned
variables,set assignments, interleaving).

• In constraint style:
– INIT  and TRANS constraints can be inconsistent,

– the level of non-determinism is emergent from
the conjunction of all constraints.
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Inconsistency

• Inconsistent INIT  constraints
=> inconsistent model: no initial state.
– SPEC 0 (or any SPEC P) is vacuously true.

• Inconsistent TRANS constraints
=> deadlock state: state with no next state
=> transition relation is not complete.
– SMV does not work correctly in this case.

– SMV will detect and report it.
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Variable Ordering

• BDDs require a fixed variable ordering .
– Critical for performance (BDD size).

– Best one is hard to find (NP-complete).

• SMV does not optimize by default but
– can read, write ordering in a file,

– can search for better ordering on demand.
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Re-ordering Variables

Using command line options:
smv -o demo. var

Outputs variable ordering to demo. var .
demo. var  is text, can be re-ordered manually.

smv -i demo. var

Inputs variable ordering from demo.var .
smv -reorder

Does variable re-ordering when BDD size
exceeds a certain (configurable) limit.

smv -reorder - oo demo. var

Outputs to demo. var  after each change.
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Re-ordering Variables
Method for Tough Cases

Problem (Livingstone ISPP model):
smv ispp .smv

-> Memory overflow.
smv -reorder  ispp .smv

-> keeps re-ordering again and again...

Solution:
smv -reorder - oo ispp .var ispp .smv

Wait until "enough" re-ordering (statistics).
^C

smv -i ispp.var ispp .smv
-> Goes to completion (1050 states).
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Availability

• Freely downloadable.

• Source or binaries for Unix
(SunOS4, SunOS5, Linux x86, Ultrix).

• Windows NT port (Dong Wang).

• see http://www.cs.cmu.edu/~modelcheck/smv.html
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NuSMV

• From ITC-IRST (Trento, Italy) and CMU.

• New version of SMV, completely rewritten:
– Same language as SMV.

– Modular, documented APIs, easily customized.

– Specifications in CTL or LTL.

– Graphical User Interface.

– Usually faster but uses more memory.

• See http://sra.itc.it/tools/nusmv/index.html
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Other Related Tools

• Cadence SMV (Cadence Berkeley Labs)
– From Ken McMillan, original author of SMV.
– Supports refinement, compositional verification.
– New language but accepts CMU SMV.
– see http://www-cad.eecs.berkeley.edu/~kenmcmil/smv/

• BMC  = Bounded Model Checker (CMU)
– Uses SAT procedures instead of BDDs:

bounded depth but usually faster, less memory.
– Simple SMV-like language (no modules).
– Early beta version.
– see http://www.cs.cmu.edu/~modelcheck/bmc.html
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Verification of Autonomy Software

Reid Simmons
Carnegie Mellon University
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Autonomous Systems

• Achieve complex tasks in uncertain,
unstructured environments
– Combine deliberative and reactive behaviors

– Highly conditional; Non-local flow of control

– Feedback loops at multiple levels of abstraction

• Architectures for Autonomy
– Specialized representations and algorithms

– Model-based programming
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Aspects of Verification

• Verifying the Interpreter
– Special-purpose languages

• Verifying for Internal Correctness
– Check for deadlock, safety, resource conflict, …

• Verifying for External Correctness
– How the system interacts with the environment
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Architecture for Verification
of Autonomy Software

Representation
Language

SMV
Model

Domain
Requirements

SMV
Specifications

Causal
Explanation

SMV
Trace

Special-Purpose
Interpreter

SMV

T
R
A
N
S
L
A
T
O
R

Autonomy Software Verification
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Planner/
Scheduler
Planner/

Scheduler ExecutiveExecutive

LivingstoneLivingstoneMission
Manager
Mission
Manager

Remote Agent

Real-Time
Control

Goals Model

MRMI
current state

Livingstone

obsRecovery
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• Model-based system for fault diagnosis
– Detects conflicts between observed and

predicted state variables

– Diagnoses inconsistencies (nominal/fault modes)

– Finds recovery actions

– Qualitative

– Hierarchical

– Lisp-based

Livingstone

ClosedClosed

OpenOpen
StuckStuck
openopen

StuckStuck
closedclosed

OpenOpen CloseClose

ValveValve

VDECUVDECU

cmd-in

OffOff

DriverDriver
OnOn

FailedFailedOnOn OffOff

cmd-out

cmd-in

valve
position
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Translation

Livingstone
Model

SMV
ModelLivingstone

SMV

T
R
A
N
S
L
A
T
O
R
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Formalizing the Model

MPL SMV

component module

module module

variables scalar variables

structures module variables

mode transitions TRANS

model constraints INVAR

initial state INIT

Main difficulty is translating Livingstone’s flat name space
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Livingstone to SMV

MODULE valve
VAR   mode: {Open,Closed,

        StuckO,StuckC};
           valve-position: {Open, Closed};
           cmd-in: {open,close};
DEFINE faults:={StuckO,StuckC};
TRANS
  (mode=Closed & cmd-in=open) ->
    (next(mode) in {Open union faults})
INVAR
 (mode=Open -> valve-position=Open)

(defcomponent valve ()
  (:inputs (cmd-in :type valve-cmd))
  (:outputs (valve-position

    :type open-closed-type))
 ...
  (Closed :type ok-mode
    :model (open (valve-position))
    :transitions
      ((do-open :when (open cmd)
        :next Open) ...))
  (StuckC :type :fault-mode ...)
  ...)
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Requirements

Livingstone
Model

SMV
Model

Livingstone
Requirement

SMV
Specifications

Livingstone

SMV

T
R
A
N
S
L
A
T
O
R
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Specifying Properties

• Extend Livingstone to specify
CTL properties directly

• (all (globally (implies (off (admittance outlet))
                                    (off (flow z-flow-module)))))

• Add high-level properties
– Completeness, consistency, reachability, …

• Add auxiliary predicates
– broken, failed, multibroken, ...



14 June 2000 © Havelund, Pecheur, Simmons and Visser 39

Explanations

Livingstone
Model

SMV
Model

Livingstone
Requirement

SMV
Requirement

Causal
Explanation

SMV
Trace

Livingstone

SMV

T
R
A
N
S
L
A
T
O
R
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Explaining Witnesses

• Use Truth Maintenance System (TMS)
– Recreate chain of inferences

– Record dependencies

– Generate explanation
(AG (NOT (EQ VDECU.DRIVER.MODE FAILED))) is false because
In State 1
  1. VDECU.DRIVER.MODE is initially OFF
  2. VDECU.DRIVER.CMD-OUT is NO-COMMAND
     based on 1 and
     vdecu.driver.mode = off -> vdecu.driver.cmd-out = no-command
  3. VDECU.DRIVER.CMD-OUT is not ON
     based on 2 and EXCLUSIVE-VALUE
In State 2
  4. VDECU.DRIVER.MODE non-deterministically transitions to FAILED
     based on 1, 3, and
     vdecu.driver.mode = off_ & !vdecu.driver.cmd-out = on_ -> next(vdecu.driver.mode) in (off union failed)
  5. (NOT (EQ VDECU.DRIVER.MODE FAILED)) is FALSE
      based on 4
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Translating TDL

Task
Descriptions

SMV
ModelTDL

SMV

T
R
A
N
S
L
A
T
O
R

• TDL: Task Description Language
– Extension of C++

– Task decomposition, task synchronization,
monitoring, exception handling
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Formalizing the Model

TDL SMV

task module

task/subtask relationship module variables

task state scalar variables

state transitions ASSIGN

temporal constraints INVAR and parameters

asynchronous nature PROCESS variables
and FAIRNESS constraints
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Verifying Task Descriptions

• Can verify temporal properties
of hierarchical tasks
– deadlock, safety, liveness, …

– can handle conditional execution

• Working on:
– monitoring and exception handling

– iteration and recursion

A

B C

D E
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Verifying the ESL Engine

• Executive Support Language (ESL)
– Built on top of multi-threaded Lisp

• Verify whether implementation matches
requirements
– Create abstract model of code in PROMELA

– Verify properties of interest over all possible
execution traces

– Found several subtle bugs in the code
• See paper in LFM 2000 proceedings!
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Example: Property Locks

• Property Lock : Similar to a semaphore
– Must be released when task terminates

• The Bug:
– Task body is wrapped by code to catch

exceptions and to release locks (in that order)

– Problem arises if exception is raised while
trying to release locks

– Solution: Surround lock-release code in a
critical section
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Summary

• Automatic Translation of Special-Purpose
Languages for Autonomy Software

• Extensions for Specifying Requirements
Directly

• Tools for Analyzing Counter-Examples
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Model Checking Programs

• Model checking usually applied to designs
– Some errors get introduced after designs

– Design errors are missed due to lack of detail

– Sometimes there is no design

• Can model checking find errors in real programs?
– Yes, many examples in the literature

• Can model checkers be used by programmers?
– Only if it takes real programs as input
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Main Issues

• Memory
– Explicit-state model checking’s Achilles heel
– State of a software system can be complex
– Require efficient encoding of state, or,
– State-less model checking

• Input notation not supported
– Translate to existing notation
– Custom-made model checker

• State-space Explosion
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State-less Model Checking

• Must limit search-depth to ensure termination

• Based on partial-order reduction techniques

• Annotate code to allow verifier to detect
“important” transitions

• Examples include
– VeriSoft

• http://www1.bell-labs.com/project/verisoft/

– Rivet
• http://sdg.lcs.mit.edu/rivet.html
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Traditional Model Checking

• Translation-based using existing model checker
– Hand-translation

– Semi-automatic translation

– Fully automatic translation

• Custom-made model checker
– Fully automatic translation

– More flexible
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Hand-Translation

abstraction

translation

Verification model

Program

• Hand translation of program to model checker’s input notation

• “Meat-axe” approach to abstraction

• Labor intensive and error-prone
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Hand-Translation
 Examples

• Remote Agent – Havelund,Penix,Lowry 1997
– http://ase.arc.nasa.gov/havelund

– Translation from Lisp to Promela (most effort)

– Heavy abstraction

– 3 man months

• DEOS – Penix et al. 1998/1999
– http://ase.arc.nasa.gov/visser

– C++ to Promela (most effort in environment)

– Limited abstraction - programmers produced sliced system

– 3 man months
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Semi-Automatic Translation

• Table-driven translation and abstraction
– Feaver system by Gerard Holzmann
– User specifies code fragments in C and how to translate

them to Promela (SPIN)
– Translation is then automatic
– Found 75 errors in Lucent’s PathStar system
–  http://cm.bell-labs.com/cm/cs/who/gerard/

• Advantages
– Can be reused when program changes
– Works well for programs with long development and

only local changes
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Fully Automatic Translation

• Advantage
– No human intervention required

• Disadvantage
– Limited by capabilities of target system

• Examples
– Java PathFinder 1- http://ase.arc.nasa.gov/havelund/jpf.html

• Translates from Java to Promela (Spin)

– JCAT - http://www.dai-arc.polito.it/dai-arc/auto/tools/tool6.shtml
• Translates from Java to Promela (or dSpin)

– Bandera - http://www.cis.ksu.edu/santos/bandera/
• Translates from Java bytecode to Promela, SMV or dSpin
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Custom-made Model Checkers

• Allows efficient model checking
– Often no translation is required
– Algorithms can be tailored

• Translation-based approaches
– dSpin

• Spin extended with dynamic constructs
• Essentially a C model checker
• http://www.dai-arc.polito.it/dai-arc/auto/tools/tool7.shtml

– Java Model Checker (from Stanford)
• Translates Java bytecode to SAL language
• Custom-made SAL model checker
• http://sprout.stanford.edu/uli/
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Java PathFinder 2

• Based on new Java Virtual Machine
– Handle all of Java, since it works with bytecodes

• Written in Java
– 1 month to develop version with only integers

• Efficient encoding of states
– Complex states are translated to integer vector
– Garbage collection
– Canonical heap representation

• http://ase.arc.nasa.gov/jpf
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Reducing the State Space

• Partial-order reductions
– Vital for efficient explicit-state model checking
– Must be able to identify independent transitions

• Static analysis

• Abstraction
– Under-approximations

• Slicing, i.e. a cultured “meat-axe”

– Over-approximations
• Predicate abstraction
• Type-based abstraction
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Slicing in JPF

• JPF uses Bandera’s slicer
• Bandera slices w.r.t.

– Deadlock - i.e. communication statements
– Variables occurring in temporal properties
– Variables participating in race-violations

• Used with JPF’s runtime analysis

• More examples of slicing for model checking
– Slicing for Promela (Millet and Teitelbaum)

• http://netlib.bell-labs.com/netlib/spin/ws98/program.html

– Slicing for Hardware Description Languages (Shankar et al.)
• http://www.cs.wisc.edu/~reps/
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Predicate Abstraction

• Create abstract state-space w.r.t. set of predicates
defined in concrete system
– Abstract interpretation

• First proposed by Graf and Saidi
– http://www.csl.sri.com/~saidi/

– http://www-verimag.imag.fr/~graf/

– see also http://theory.stanford.edu/people/uribe/

• Only applies to static programs, that manipulates
global variables
– Not directly applicable to object-oriented programs
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Predicate Abstraction

x ≠ y

Abstract

Concrete x = y

F T

α : int × int     bool

EQ = T EQ = F

x = 0
y = 0

x = 0
y = 1

y++

EQ := F

EQ ≡ (x = y) EQ ≡ (x = y)

• Mapping of a concrete system to an abstract system, whose states
  correspond to truth values of a set of predicate
• Create abstract state-graph during model checking, or,
• Create an abstract transition system before model checking
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JPF Abstraction Technique

• Find abstraction mapping (α) by
user guidance

• Use decision procedures to
automatically compute abstract
interpretation of concrete transitions

• Validity checking of pre-images

• Over approximation with
nondeterminism

 

x = m
y = n

x = m
y = n+1

y++

EQ := EQ ? F : T or F

EQ ≡ (x = y)
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JPF’s Java Abstraction

• Annotations used to indicate abstractions
— Abstract.remove(x);

Abstract.remove(y);
Abstract.addBoolean(ÒEQÓ, x==y);

• Tool generates abstract Java program
– Using Stanford Validity Checker (SVC)
– JVM is extended with nondeterminism to handle over

approximation

• Abstractions can be local to a class or global
across multiple classes
— Abstract.addBoolean(ÒEQÓ, A.x==B.y);

– Dynamic predicate abstraction, since it works across instances
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Conclusions

• Model checking programs is an active field
– At least 5 groups are checking Java

• Model checking needs some help
– Static analysis

– Abstraction – abstract interpretation

– Runtime analysis
• Gathering information during one run through the

code to guide the model checker towards errors

• Next talk
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The State Space
Explosion Problem

• Real programs have too many states for
unfocused model checking.

• The model checker needs to be focused on
program fragments that “matter”.

• Abstraction is the solution.
• However, we probably need complementary

techniques which can examine the state
space in a less complete way.

• We also need guided model checking.



Are there Other Solutions?

Solutions which can find errors in
multi threaded programs, and which

do not require repeated test runs?
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Yes: Runtime Analysis!

• Conclude properties of a program from a
single run of the program.

• Look for the bug’s “foot prints”.

• Bug  does not have to occur in the run in
order to be detected. Examples will show
this.

• Goal: the choice of execution trace should
not influence result of analysis.



14 June 2000 © Havelund, Pecheur, Simmons and Visser 70

How to do
Runtime Analysis

• Run the program once.
• Collect information about run in a database.

What information depends on the property
being analyzed.

• Database is analyzed “on-the-fly” or after (a
forced) program termination.

• Warnings are issued in case the contents of
the database suggests that properties can be
violated in this or other runs.
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Runtime Analysis
Plusses and Minuses

+ Scales well (one trace)

+ Often finds the bugs it
is supposed to find

- Gives false positives

- Gives false negatives

- Limited to special
classes of bugs
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Two Examples of
Runtime Analysis

• Data race detection: detects simultaneous
access to unprotected variables by several
threads.

• Deadlock detection: detects deadlocks
between threads that access shared
resources.
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Data Races

A  data race occurs when two threads 
access a shared variable, 

at least one access is a write, 
and no mechanism is used to prevent simultaneous access.

x = x + 1 x = x + 1x

Thread 1
Shared
variable Thread 2

Example Solutions: monitors, semaphores, …
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Data Race Detection

• The Eraser algorithm
(Savage,Burrows,Nelson,Sobalvarro).

•  Detects data race potentials by observing
execution trace - keeping track of which
locks are active when variables are
accessed.
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Example Java Program

class Value{
  int    x = 1;
  void add(Value v){x = x + v.get();}
  int    get(){return x;}
}

v1 = new Value(); 
synchronized(v1){
  v1.add(v2);
}

synchronized(v2){
  v2.add(v1);
}

v2 = new Value(); 

Thread T1 Thread T2
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Examining a Run

0:  T1.monitorenter(v1);
1:  T1.getfield(v1.x);
2:  T1.getfield(v2.x);
3:  T1.putfield(v1.x);
4:  T1.monitorexit(v1);

5:  T2.monitorenter(v2);
6:  T2.getfield(v2.x);
7:  T2.getfield(v1.x);
8:  T2.putfield(v2.x);
9:  T2.monitorexit(v2);

v1.x : <read,T1,v1>
          <write,T1,v1>
          <read,T2,v2>

V2.x : <read,T1,v1>
           <read,T2,v2>
           <write,T2,v2>

<access,thread,active locks>
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The Basic Algorithm

takeLock(t,l)
  set(t) = set(t) union {l}

releaseLock(t,l)
  set(t) = set(t) minus {l}

set(t)  : set of locks owned by thread t
set(x) : set of locks protecting variable x

firstAccess(t,x)
  set(x) = set(t)

laterAccess(t,x)
  set(x) = set(x) intersect set(t);
  if set(x) == {} then warning
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Examining Run
using Basic Algorithm

0:  T1.monitorenter(v1);
1:  T1.getfield(v1.x);
2:  T1.getfield(v2.x);
3:  T1.putfield(v1.x);
4:  T1.monitorexit(v1);

5:  T2.monitorenter(v2);
6:  T2.getfield(v2.x);
7:  T2.getfield(v1.x);
8:  T2.putfield(v2.x);
9:  T2.monitorexit(v2);

 T1      T2     v1.x     v2.x
{v1}

{v1}
{v1}

{v1}
{}

{v2}
{}

{}

{}
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Basic Algorithm
Yields False Positives

• Initialization/single threaded use: usually
done without locks.

• Shared read access: several threads should
be allowed to read if no-one writes after the
initialization.



14 June 2000 © Havelund, Pecheur, Simmons and Visser 80

The Extended Algorithm

not used

exclusive

shared

shared
modified

wr

rd (new thread)rd,wr (first thread)

rd

wr (new thread)

wr

rd,wr

= no action

= refinement

= also warnings
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Deadlocks

A  deadlock can occur when threads
access and lock shared resources,
and lock these in different order.

L2

1

2 1

2
L1

T1 T2

1

2 1

2
Problem:
T1 locks L1 first
T2 locks L2 first

Example Solution: Impose order on  locks: L1 < L2
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Deadlock Detection

• The GoodLock algorithm (Havelund).

•  Detects deadlock potentials by observing
execution trace - keeping track of which
locks are taken by threads, and in which
order they are taken.



14 June 2000 © Havelund, Pecheur, Simmons and Visser 83

Modified Java Program

class Value{
  int    x = 1;
  synchronized void add(Value v){x = x + v.get();}
  synchronized int    get(){return x;}
}

v1 = new Value(); 

  v1.add(v2)   v2.add(v1)

v2 = new Value(); 

Thread T1 Thread T2
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Examining a Run

0:  T1.invokevirtual(v1.add);
1:  T1.invokevirtual(v2.get);
2:  T1.return(v2.get);
3:  T1.return(v1.add);

4:  T2.invokevirtual(v2.add);
5:  T2.invokevirtual(v1.get);
6:  T2.return(v1.get);
7:  T2.return(v2.add);

v2

T1

v1 v2

v1

T2

Lock Trees
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More Elaborate Example

synchronized(L1){
   synchronized(L3){
      synchronized(L2){};
      synchronized(L4){}
   }
};
synchronized(L4){
   synchronized(L2){
      synchronized(L3){}
   }
}  

synchronized(L1){
   synchronized(L2){
      synchronized(L3){}
   }
};
synchronized(L4){
   synchronized(L3){
      synchronized(L2){}
   }
}

Thread T1: Thread T2:
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Create Lock Trees
During Run

T1

L3

L4

L2

L3L2 L4

L1

T2

L1 L4

L2

L3

L3

L2
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Analyze Lock Trees
After Run

L3

L4

L2

L3L2 L4

L1

T1 T2

L1 L4

L2

L3

L3

L2

examine
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Examine L3
in T1’s Left Branch

L3

L4

L2

L3L2 L4

L1

T1 T2

L1 L4

L2

L3

L3

L2

examine
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Basic Algorithm
Yields False Positives

L2

1 L3

T1 T2

2

3 2

3

L1
11

Both threads take
L1 first.

The lock L1 protects
against <L2,L3>
deadlock:
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Close L1 Tree in T2
After Examination of L1

L3

L4

L2

L3L2 L4

L1

T1 T2

L1 L4

L2

L3

L3

L2

examine

Sub tree of L1
is closed 
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How to Interpret
Warnings from Analysis

program

warnings

runtime 
analysis
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Runtime Analysis Can Guide
 Model Checking

model check

program

warnings

runtime 
analysis

Runtime analysis:
Consequences of warnings
can be examined.

Model checking:
State space can be
reduced. 
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Analyzing a Big
State Space

v1

v2

23

10

T1 T2

Environment: 40 threads, each performing
10.000 assignments to shared variable.
More than 10    states! 160

20 groups
in total

Record dependency information:
• Which threads start which threads?
• Which threads read/write which objects?
• Calculate smallest window from warnings!

Main
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Result of Running
JPF2 on Example

Runtime Analysis:
----------------------
…
Thread T1 takes lock on v1
…
EXECUTION INTERRUPTED!
…

Dependencies:
------------------
Task T1:
  creater : Main
  reads   :  v1,v2
  writes  :  v1
…

Lock Trees:
--------------
Thread T1:
0   v1
0.0  v2

Thread T2:
0  v2
0.0  v1
…

Lock Order Conflict:
------------------------
Locks on v1 and v2 are
taken in opposite order.

Lock on v2 is taken last by T1
  Value.add line 4
  Task.run line 17
Lock on v1 is taken last by T2
  Value.add line 4
  Task.run line 17

Window Extension:
-----------------------
Warning Window  : T1, T2
Extended Window : Main, T1, T2

Model Checking of 
Extended Window:
-----------------------
*** Deadlock ***
… error trail …

27 seconds

2 seconds
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Conclusions and
Future Work

• Deadlock occurred on board Deep-Space 1 due to
missing critical section. Eraser can find the error.

• Minimize false positives.
• Generalize deadlock algorithm to N.
• Alternative kinds of runtime analysis.
• Runtime analysis during model checking.
• Optimize: only analyze shared objects, …
• Feed warnings to static slicing tool (Bandera).
• Investigate how useful runtime analysis is, and

generalize.
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