
Verification and Validation of
Integrated Vehicle

Health Management

Charles Pecheur (RIACS)
with contributions from Stacy Nelson (Nelson Consulting)

Charles Pecheur (RIACS)
with contributions from Stacy Nelson (Nelson Consulting)

Outline

• V&V of Model-Based Diagnosis
– Concepts, Approaches, Tools.

• V&V of IVHM for Next-Gen. Shuttle
– Highlights of work performed for SLI under the Northrop-

Grumman contract.

• V&V Tool Demonstration
– Description of example used and results.

• V&V of Model-Based Diagnosis
– Concepts, Approaches, Tools.

• V&V of IVHM for Next-Gen. Shuttle
– Highlights of work performed for SLI under the Northrop-

Grumman contract.

• V&V Tool Demonstration
– Description of example used and results.

V&V of Advanced Diagnosis

• Future space missions need extended diagnosis capabilities
– to extract and correlate information from a larger array of components

– to be able to handle a larger range of unpredictable scenarios

• The space of possible situations increases dramatically

• Extended V&V capabilities are needed
– Test more cases, faster, automatically

– Analyze coverage, cover many cases with one test

– Design for V&V, perform V&V early, take advantage of high-level
models

• Future space missions need extended diagnosis capabilities
– to extract and correlate information from a larger array of components

– to be able to handle a larger range of unpredictable scenarios

• The space of possible situations increases dramatically

• Extended V&V capabilities are needed
– Test more cases, faster, automatically

– Analyze coverage, cover many cases with one test

– Design for V&V, perform V&V early, take advantage of high-level
models

Diagnosis

sensors

Device
(state)

commands

Diagnosis

Controller

state

Model

Environment
(state)

model
of

used
by

• Fault Protection = Fault
Detection
Identification
Recovery

• Goal: determine hidden state
from visible commands and sensors

• Model used to build diagnosis, at
design time and/or at run time

• Recovery is part of Controller

• Fault Protection = Fault
Detection
Identification
Recovery

• Goal: determine hidden state
from visible commands and sensors

• Model used to build diagnosis, at
design time and/or at run time

• Recovery is part of Controller

Diagnosis

sensorscommands

Diagnosis

Controller

state used
by

V&V Criteria for Diagnosis:
Model Correctness

Model

Environment
(state)

Is the model valid w.r.t. the
physical device?

• Is it internally well-formed
(complete, consistent, ...)?

• Does it correctly model the
device specs?

• Do the specs correctly capture
the physical device?

Is the model valid w.r.t. the
physical device?

• Is it internally well-formed
(complete, consistent, ...)?

• Does it correctly model the
device specs?

• Do the specs correctly capture
the physical device?

Device
(state)

model
of

sensors

Model

Environment
(state)

Device
(state)

model
of

commands

Controller

state used
by

Does the actual program perform
according to specifications?

• Is it free from programming defects
(array bounds, pointers, etc)?

• Are the algorithms correct?

• Does the code correctly implement
them?

Does the actual program perform
according to specifications?

• Is it free from programming defects
(array bounds, pointers, etc)?

• Are the algorithms correct?

• Does the code correctly implement
them?

Diagnosis

V&V Criteria for Diagnosis:
Program Correctness

Diagnosis

Controller

state used
by

Environment
(state)

Is it possible to perform the required
diagnosis, given the available data?

According to the model
(assuming model correctness),

• ... can faults be detected as required?

• ... can fault groups be reduced as
required?

Is it possible to perform the required
diagnosis, given the available data?

According to the model
(assuming model correctness),

• ... can faults be detected as required?

• ... can fault groups be reduced as
required?

Device
(state)

model
of

Model

V&V Criteria for Diagnosis:
Diagnosability

sensorscommands

used
by

Model

model
of

V&V Criteria for Diagnosis:
Integration Correctness

Does the combination of the different
parts work as expected?

• Does the operating framework properly
supports the components and
interactions?

• Is the provided diagnosis adequate w.r.t.
the rest of the controller?

• Is the integrated system free of
unwanted interferences?

Does the combination of the different
parts work as expected?

• Does the operating framework properly
supports the components and
interactions?

• Is the provided diagnosis adequate w.r.t.
the rest of the controller?

• Is the integrated system free of
unwanted interferences?

sensorscommands

Diagnosis

Controller

state

Environment
(state)

Device
(state)

Simulation-Based V&V

• Execute the Real Program in a simulated environment (testbed)
• Instrument the Code to be able to backtrack between alternate paths
• Modular architecture, allows different diagnosis, simulators, search algorithms
• Expands conventional testing with model checking concepts

– Increased automation reduces test suite development costs
– Optimized execution (backtracking) reduces test execution times
– Modularity allows easy configuration to adjust fidelity, coverage, speed, focus, ...

• Execute the Real Program in a simulated environment (testbed)
• Instrument the Code to be able to backtrack between alternate paths
• Modular architecture, allows different diagnosis, simulators, search algorithms
• Expands conventional testing with model checking concepts

– Increased automation reduces test suite development costs
– Optimized execution (backtracking) reduces test execution times
– Modularity allows easy configuration to adjust fidelity, coverage, speed, focus, ...

Search
Engine

A
P
I

A
P
I

get state
set state

single step
backtrack

T
E
S
T
B
E
D sensorscommands

Diagnosis

Control/Fault
Generator

state

Device/Envir.
Simulatorfaults

A
P
I

A
P
I

A
P
I

A
P
I

A
P
I

A
P
I

Livingstone PathFinder (LPF)

• Simulation-Based V&V for the Livingstone diagnosis system
• Uses Livingstone engine for simulator too

– Other simulators can be substituted where available
• Scenario=non-deterministic program

– Typically: a sequence of commands with one among a set of faults occurring anywhere

• Simulation-Based V&V for the Livingstone diagnosis system
• Uses Livingstone engine for simulator too

– Other simulators can be substituted where available
• Scenario=non-deterministic program

– Typically: a sequence of commands with one among a set of faults occurring anywhere

sensors

Simulator
(Livingstone)

Model
commands

& faults

Engine
(Livingstone)

Model

Diagnosis

Driver Scenario
(w/ branches)

Search
Engine

get state
set state

single step
backtrack

T
E
S
T
B
E
D

Model-Based V&V

Design
Model

Verification
Model

Design
Specification

Verification
Specification

Design
Results

Verification
Results

Design/Runtime
Tool

Verification
Tool

T
R
A
N
S
L
A
T
O
R

Design Verification

• Apply verification tools to design models
• Translator hides away specificities of Verification Tool
• High-level models amenable to exhaustive analysis (e.g. model checking)
• Model-based diagnosis can use the same model!

• Apply verification tools to design models
• Translator hides away specificities of Verification Tool
• High-level models amenable to exhaustive analysis (e.g. model checking)
• Model-based diagnosis can use the same model!

Livingstone-to-SMV Translator

Livingstone
Model

SMV
Model

Livingstone
Specification

(enriched)

SMV
Specification

(CTL logic)

Livingstone
Trace

SMV
Trace

Livingstone

SMV

T
R
A
N
S
L
A
T
O
R

Diagnosis Verification

• Allows exhaustive analysis of Livingstone models (1050+ states)
• Uses SMV: symbolic model checker (BDD and SAT)
• Enriched spec syntax (vs. SMV's core temporal logic)
• Hide away SMV, offer a model checker for Livingstone
• Graphical interface, trace display

• Allows exhaustive analysis of Livingstone models (1050+ states)
• Uses SMV: symbolic model checker (BDD and SAT)
• Enriched spec syntax (vs. SMV's core temporal logic)
• Hide away SMV, offer a model checker for Livingstone
• Graphical interface, trace display

• Use atmosphere from Mars to
make fuel for return flight.

• Livingstone-based controller
developed at NASA KSC.

• Largest model is 1055 states.
• Live experience of V&V

methods used by non-
specialists.

• SMV Exposed several
modeling errors.

• Use atmosphere from Mars to
make fuel for return flight.

• Livingstone-based controller
developed at NASA KSC.

• Largest model is 1055 states.
• Live experience of V&V

methods used by non-
specialists.

• SMV Exposed several
modeling errors.

V&V of Models Example:
 In-Situ Propellant Production

CO2 + 2H2 —> CH4 + O2

Mars
atmosphere

oxidizerfuel

on-board

In-Situ Propellant Production
Errors Found

• "If the outlet was zero admittance, then there can be no flow in
the z-flow module"
VERIFY INVARIANT (ispp.admittance.outlet=off ->

ispp.z-flow-module.flow=off)
Result shows a trace to a state where admittance is off and there is flow.

• "The relative flow in the RWGS trap is a function of the input and
output flows"
VERIFY FUNCTION rwgs.rwgs_trap.relative_flow

OF rwgs.rwgs_trap.flow_in, rwgs.rwgs_trap.flow_out
Result shows two traces to states with the same flow_in and flow_out and
different relative_flow.

Note: old data re-formatted using new tool features

• "If the outlet was zero admittance, then there can be no flow in
the z-flow module"
VERIFY INVARIANT (ispp.admittance.outlet=off ->

ispp.z-flow-module.flow=off)
Result shows a trace to a state where admittance is off and there is flow.

• "The relative flow in the RWGS trap is a function of the input and
output flows"
VERIFY FUNCTION rwgs.rwgs_trap.relative_flow

OF rwgs.rwgs_trap.flow_in, rwgs.rwgs_trap.flow_out
Result shows two traces to states with the same flow_in and flow_out and
different relative_flow.

Note: old data re-formatted using new tool features

Verification of Diagnosability

Verification using model checking (SMV)
• Two "siamese twin" copies of the plant (L/R),

 with coupled observations
• verify that one cannot reach:

(L in good) and (R in bad)

Verification using model checking (SMV)
• Two "siamese twin" copies of the plant (L/R),

 with coupled observations
• verify that one cannot reach:

(L in good) and (R in bad)

obs
obs

goodgood

badbad

Q: From observations (input/output), can diagnosis always tell
when plant comes to a bad state?

A: YES unless plant can go good or bad with the same
observations (and therefore diagnosis cannot tell)

Q: From observations (input/output), can diagnosis always tell
when plant comes to a bad state?

A: YES unless plant can go good or bad with the same
observations (and therefore diagnosis cannot tell)

L:plant

R:plant

X-34 / PITEX
• Propulsion IVHM Technology

Experiment (ARC, GRC)
• Livingstone applied to propulsion

feed system of space vehicle
• Livingstone model is 4·1033 states

• Propulsion IVHM Technology
Experiment (ARC, GRC)

• Livingstone applied to propulsion
feed system of space vehicle

• Livingstone model is 4·1033 states

• "Diagnosis can decide whether the venting valve VR01 is closed or
stuck open (assuming no other failures)"
INVAR !test.multibroken() & twin(!test.broken())
VERIFY INVARIANT !(test.vr01.mode=stuckOpen &

twin(test.vr01.valvePosition=closed))
Results show a pair of traces with same observations, one leading to VR01 stuck
open, the other to VR01 closed. Application specialists fixed their model.

• "Diagnosis can decide whether the venting valve VR01 is closed or
stuck open (assuming no other failures)"
INVAR !test.multibroken() & twin(!test.broken())
VERIFY INVARIANT !(test.vr01.mode=stuckOpen &

twin(test.vr01.valvePosition=closed))
Results show a pair of traces with same observations, one leading to VR01 stuck
open, the other to VR01 closed. Application specialists fixed their model.

PITEX Diagnosability – Error Found

V&V Solutions for Diagnosis

• Model Correctness
– Model-Based V&V for (generic) well-formedness, (specific) documented

properties of the device

– Testing, Simulation-Based V&V for model-based diagnosis

– Compared Simulation of high-level vs. high-fidelity models

• Program Correctness
– General Software V&V: proofs of algorithms, static analysis for runtime

errors, model checking for concurrency, ...

– Testing, Simulation-Based V&V

– For re-usable parts (inference engine), one-time V&V effort, then
increased confidence from repeated use (cf. Java VM)

• Model Correctness
– Model-Based V&V for (generic) well-formedness, (specific) documented

properties of the device

– Testing, Simulation-Based V&V for model-based diagnosis

– Compared Simulation of high-level vs. high-fidelity models

• Program Correctness
– General Software V&V: proofs of algorithms, static analysis for runtime

errors, model checking for concurrency, ...

– Testing, Simulation-Based V&V

– For re-usable parts (inference engine), one-time V&V effort, then
increased confidence from repeated use (cf. Java VM)

V&V Solutions for Diagnosis (cont'd)

• Diagnosability
– Model-Based V&V using twin model approach or other

– Testing, Simulation-Based V&V

– This is a system design issue

• Integration Correctness
– Mostly Testing, especially once hardware is included

– Simulation-Based V&V for software-level integration, extended to
include controller (and planner etc.)

– General Software V&V on framework/support code

– Compositional reasoning: assume/guarantee, program-by-contract

• Diagnosability
– Model-Based V&V using twin model approach or other

– Testing, Simulation-Based V&V

– This is a system design issue

• Integration Correctness
– Mostly Testing, especially once hardware is included

– Simulation-Based V&V for software-level integration, extended to
include controller (and planner etc.)

– General Software V&V on framework/support code

– Compositional reasoning: assume/guarantee, program-by-contract

Related Work

• DS1 Remote Agent (Havelund-Lowry-Penix, ARC)
– Focus on Executive

– Parts model-checked at Ames in 1997, 5 errors found

– Deadlock during flight in 1999, error similar to one of those found (but in a
different part)

• HSTS Planner Models (Havelund-Pecheur-Penix, ARC)
– Early experiment in model-based V&V at Ames

– Compared 3 model checkers

• Lightweight Formal Methods (Feather-Smith, JPL)
– Verify generated plans against flight rules

– Use database: plans as data, properties as queries

• DS1 Remote Agent (Havelund-Lowry-Penix, ARC)
– Focus on Executive

– Parts model-checked at Ames in 1997, 5 errors found

– Deadlock during flight in 1999, error similar to one of those found (but in a
different part)

• HSTS Planner Models (Havelund-Pecheur-Penix, ARC)
– Early experiment in model-based V&V at Ames

– Compared 3 model checkers

• Lightweight Formal Methods (Feather-Smith, JPL)
– Verify generated plans against flight rules

– Use database: plans as data, properties as queries

Conclusions
• Advanced diagnosis demands advanced V&V

• Model-Based V&V:
– Not restricted to model-based diagnosis (but same model can be used for

diagnosis and V&V)

– High-level, formal model enables early and thorough analysis

• Simulation-Based V&V:
– Extends testing to better speed, automation, coverage

– On finished/refined product: less thorough but more accurate

• General software practices and processes still apply

• ARC can provide: – guidance on general issues,
– tools for specific parts.

• Advanced diagnosis demands advanced V&V

• Model-Based V&V:
– Not restricted to model-based diagnosis (but same model can be used for

diagnosis and V&V)

– High-level, formal model enables early and thorough analysis

• Simulation-Based V&V:
– Extends testing to better speed, automation, coverage

– On finished/refined product: less thorough but more accurate

• General software practices and processes still apply

• ARC can provide: – guidance on general issues,
– tools for specific parts.

Outline

• V&V of Model-Based Diagnosis
– Concepts, Approaches, Tools.

• V&V of IVHM for Next-Gen. Shuttle
– Highlights of work performed for SLI under the Northrop-

Grumman contract.

• V&V Tool Demonstration
– Description of example used and results.

• V&V of Model-Based Diagnosis
– Concepts, Approaches, Tools.

• V&V of IVHM for Next-Gen. Shuttle
– Highlights of work performed for SLI under the Northrop-

Grumman contract.

• V&V Tool Demonstration
– Description of example used and results.

Verification of IVHM
for Next-Gen Space Vehicle

IVHM framework developed by Northrop Grumman Corp.

• Adopted Model-Based Diagnosis, including Livingstone

Technology infusion project:

• Survey of NASA current V&V practice, applicable formal
methods, our verification tools
See ase.arc.nasa.gov/vvivhm

• Maturation of Livingstone verification tools (translator
and LPF): tool extensions, GUI, improved documentation
and packaging, integration with other IVHM tools

IVHM framework developed by Northrop Grumman Corp.

• Adopted Model-Based Diagnosis, including Livingstone

Technology infusion project:

• Survey of NASA current V&V practice, applicable formal
methods, our verification tools
See ase.arc.nasa.gov/vvivhm

• Maturation of Livingstone verification tools (translator
and LPF): tool extensions, GUI, improved documentation
and packaging, integration with other IVHM tools

More Info: http://ase.arc.nasa.gov/vvivhm

CASE STUDY: V&V of IVHM – Risk Reduction

IEEE/EIA 12207.0-1996Reproduced by GLOBAL(A Joint Standard Developed by IEEE and EIA)ENGINEERING DOCUMENTSWith The Permission of IEEEUnder Royalty AgreementIEEE/EIA StandardIndustry Implementation ofInternational StandardISO/IEC 12207 : 1995(ISO/IEC 12207) Standard for InformationTechnology-Software life cycle processesMarch 1998THE INSTITUTE OF ELECTRICALELECTRONIC INDUSTRIES ASSOCIATIONAND ELECTRONICSENGINEERING DEPARTMENTENGINEERS, INC.

RTCA

SOFTWARE CONSIDERATION
IN AIRBORNE SYSTEMS

AND EQUIPMENT CERTIFICATION

DOCUMENT NO. RTCA/DO-178B

GOAL: Formal verification of

diagnostic systems based on
NASA and FAA safety critical

certification standards:

IEEE 12207 and DO-178B

BENEFIT: Reduce risk for
developing IVHM systems
used on 2nd Gen RLV

KEY RESULTS:
Three reports, two improved tools
• NASA/CR-2002-211401 – Survey of
NASA V&V Processes/Methods
•NASA/CR-2002-211402 – V&V of
Advanced Systems at NASA
•NASA/CR-2002-211403 – New V&V
tools for Diagnostic Modeling
Environment (DME)

•Livingstone Model Verifier/JMPL2SMV
tool (model checking)
•Livingstone PathFinder tool
(simulator)

STANDARDS

2nd Gen RLV

Formal Methods

• Different "formal" methods
– Different strengths

– Different applicability areas

• Different "formal" methods
– Different strengths

– Different applicability areas

Testing

Runtime
Monitoring

Static
Analysis

Model
Checking

Theorem
Proving

Expertise

AssuranceTraditional Formal
(from John Rushby)

Applicable

Too Hard
"need PhD"

Current

Formal Methods in
the Software Lifecycle

Software
Architectural Design

KEY

Phase

Product

Verify

Validate

System
Integration

System
Architectural Design

Runtime
Monitoring

Static
Analysis

Model
Checking

System
Requirements

Software
Requirements Analysis

Software
Qualification Testing

Software Integration

System
Qualification Testing

Software
Unit Testing

Software Coding

Software
Detailed Design

New V&V Processes

Formal Methods Applicable SW Life
Cycle Phase

Formal Verification Activities

Any System Requirements
Analysis

SW Requirements
Analysis

Perform a new development activity called “formalization”
during which a new work product called a “formal
specification” is created.

This can be a separate product or an addition to an
existing work product such as a requirements document.
Documenting requirements reduces confusion later in the
project and promotes customer approval of the software
and system. Creating a formal specification enables the
application of formal methods at later stages. It can also
increase the accuracy of requirements and promote
communication between developers and test engineers.

Model Checking
(Theorem Proving)

System Requirements
Analysis

SW Requirements
Analysis

Perform a new analysis activity called “proving assertions”
to enhance the correctness of the formal specification and
to understand the implications of the design captured in
the requirements and specification.

New V&V Processes (cont'd)
Formal Methods Applicable SW Life

Cycle Phase
Formal Verification Activities

Static Analysis SW & Model Detailed
Design

SW Coding

SW & Model Unit
Testing

SW Qualification
Testing

Use Static Analysis tools in addition to a compiler during
code development. This can reduce the amount of
traditional unit testing and even system-level qualification
testing required while increasing the accuracy of the
program.

Static Analysis may also be applicable at the later stages
of the Detailed Design phase.

Model Checking SW Coding

SW & Model Unit
Testing

If available for the programming language and platform
used, use model checkers in addition to standard
debugging and test control tools. This can greatly improve
the odds of detecting some errors, such as race
conditions in concurrent programs.

Runtime Monitoring SW Coding

SW & Model Unit
Testing

SW Qualification
Testing

System Qualification
Testing

Use Runtime Monitoring during simulation testing at each
phase where program code gets executed. This can
provide more information about potential errors.

NASA Examples

• Model Checking of Remote Agent [Havelund et.al.]

– Detected errors similar to one that actually occurred in flight!

• Model Checking of Planning Models [Khatib et.al.]

– Real-time models (uses UPPAAL)

• Lightweight FM for Remote Agent Exec [Feather et.al.]

– Analyze execution traces a posteriori

• Model Checking of Remote Agent [Havelund et.al.]

– Detected errors similar to one that actually occurred in flight!

• Model Checking of Planning Models [Khatib et.al.]

– Real-time models (uses UPPAAL)

• Lightweight FM for Remote Agent Exec [Feather et.al.]

– Analyze execution traces a posteriori

V&V Tool Maturation

Goal: Improve Usability of Validation and Verification Tools

• LMV Trace Translation √
– From SMV Back to Livingstone

• LMV New Specification Patterns √
– Easier to Use than Temporal Logic

• LMV Control Center √
– GUI for Setting Parameters, Running, Viewing Results

• LPF Control Center √
– GUI for Setting Parameters, Running, Viewing Results

• Documentation and Packaging √
– Extend Documentation, Simplify Installation

Goal: Improve Usability of Validation and Verification Tools

• LMV Trace Translation √
– From SMV Back to Livingstone

• LMV New Specification Patterns √
– Easier to Use than Temporal Logic

• LMV Control Center √
– GUI for Setting Parameters, Running, Viewing Results

• LPF Control Center √
– GUI for Setting Parameters, Running, Viewing Results

• Documentation and Packaging √
– Extend Documentation, Simplify Installation

Future Work

• Continued development of current methods and tools
– New target diagnosis systems, simulators, search algorithms

– Case studies, Experiments

– Maturation (user interface, documentation, integration in design
environments, technology infusion)

• Address Fault Recovery
– Include reactive control with fault remediation in Simulation-Based V&V

– Apply Model-Based V&V to models that include control

• Continued development of current methods and tools
– New target diagnosis systems, simulators, search algorithms

– Case studies, Experiments

– Maturation (user interface, documentation, integration in design
environments, technology infusion)

• Address Fault Recovery
– Include reactive control with fault remediation in Simulation-Based V&V

– Apply Model-Based V&V to models that include control

To Probe Further
On-Line
• Livingstone to SMV Translator:

ase.arc.nasa.gov/mpl2smv

• Livingstone PathFinder:
ase.arc.nasa.gov/lpf

• Verification of IVHM:
ase.arc.nasa.gov/vvivhm

Publications
• Stacy Nelson, Charles Pecheur. Formal Verification of a Next-

Generation Space Shuttle. FAABS II, Greenbelt, MD, October
2002. To be published in LNCS.

• Charles Pecheur, Alessandro Cimatti. Formal Verification of
Diagnosability via Symbolic Model Checking. MoChArt-2002,
Lyon, France, July 2002.

• Steven Brown, Charles Pecheur. Model-Based Verification of
Diagnostic Systems. Proceedings of JANNAF Joint Meeting, Destin,
FL, April 8-12, 2002.

• Charles Pecheur, Reid Simmons. From Livingstone to SMV:
Formal Verification for Autonomous Spacecrafts. FAABS I,
April 2000. LNCS 1871, Springer Verlag.

On-Line
• Livingstone to SMV Translator:

ase.arc.nasa.gov/mpl2smv

• Livingstone PathFinder:
ase.arc.nasa.gov/lpf

• Verification of IVHM:
ase.arc.nasa.gov/vvivhm

Publications
• Stacy Nelson, Charles Pecheur. Formal Verification of a Next-

Generation Space Shuttle. FAABS II, Greenbelt, MD, October
2002. To be published in LNCS.

• Charles Pecheur, Alessandro Cimatti. Formal Verification of
Diagnosability via Symbolic Model Checking. MoChArt-2002,
Lyon, France, July 2002.

• Steven Brown, Charles Pecheur. Model-Based Verification of
Diagnostic Systems. Proceedings of JANNAF Joint Meeting, Destin,
FL, April 8-12, 2002.

• Charles Pecheur, Reid Simmons. From Livingstone to SMV:
Formal Verification for Autonomous Spacecrafts. FAABS I,
April 2000. LNCS 1871, Springer Verlag.

Reports
• Stacy Nelson, Charles Pecheur. NASA

processes/methods applicable to IVHM V&V.
NASA/CR-2002-211401, April 2002.

• Stacy Nelson, Charles Pecheur. Methods for
V&V of IVHM intelligent systems. NASA/CR-
2002-211402, April 2002.

• Stacy Nelson, Charles Pecheur. Diagnostic
Model V&V Plan/Methods for DME.
NASA/CR-2002-211403, April 2002.

• Charles Pecheur. Verification and Validation
of Autonomy Software at NASA. NASA/TM
2000-209602, August 2000.

Reports
• Stacy Nelson, Charles Pecheur. NASA

processes/methods applicable to IVHM V&V.
NASA/CR-2002-211401, April 2002.

• Stacy Nelson, Charles Pecheur. Methods for
V&V of IVHM intelligent systems. NASA/CR-
2002-211402, April 2002.

• Stacy Nelson, Charles Pecheur. Diagnostic
Model V&V Plan/Methods for DME.
NASA/CR-2002-211403, April 2002.

• Charles Pecheur. Verification and Validation
of Autonomy Software at NASA. NASA/TM
2000-209602, August 2000.

Publications and Reports available on-line at:

http://ase.arc.nasa.gov/pecheur/publi.html

Publications and Reports available on-line at:

http://ase.arc.nasa.gov/pecheur/publi.html

Outline

• V&V of Model-Based Diagnosis
– Concepts, Approaches, Tools.

• V&V of IVHM for Next-Gen. Shuttle
– Highlights of work performed for SLI under the Northrop-

Grumman contract.

• V&V Tool Demonstration
– Description of example used and results.

• V&V of Model-Based Diagnosis
– Concepts, Approaches, Tools.

• V&V of IVHM for Next-Gen. Shuttle
– Highlights of work performed for SLI under the Northrop-

Grumman contract.

• V&V Tool Demonstration
– Description of example used and results.

Demonstration
The Electric Model

cmdIn=on/off/noCommand

display=zero/normal light=off/on

dead blown
short

i=0

i=high
v=low

display=zero

breaker

bulbmeter

v=zero

v=normal
mode=off/on

v=zero/normal/low

i=zero/normal/high

cmdIn=replace/noCommand

V

Electric Model Components

off

reset

on

off

on

replace
[i=zero]

replace
[i=zero]

replace
[i≠zero]

ok
 [i=zero] [i≠zero]

blown short

hazard

ok dead

breaker
bulb

meter(battery)

Demo: LMV and LPF on Elec

• Elec in Oliver

• LMV on Elec

• LPF on Elec

• Replay LPF Traces in Oliver

NB: Oliver (a.k.a. Stanley II) is the graphic
development/simulation environment for Livingstone
models.

• Elec in Oliver

• LMV on Elec

• LPF on Elec

• Replay LPF Traces in Oliver

NB: Oliver (a.k.a. Stanley II) is the graphic
development/simulation environment for Livingstone
models.

LMV on PITEX
• 1-month experiment in Oct-Nov 02

– by Roberto Cavada (IRST, NuSMV developer)

• Focus on diagnosability

• Goals
– Evaluate scalability

– Refine wrt. application needs

• Compared NuSMV variants
– BDD vs. SAT, found SAT much better

• Found application-relevant anomaly in PITEX model

• See report: RIACS TR 03.03

• 1-month experiment in Oct-Nov 02
– by Roberto Cavada (IRST, NuSMV developer)

• Focus on diagnosability

• Goals
– Evaluate scalability

– Refine wrt. application needs

• Compared NuSMV variants
– BDD vs. SAT, found SAT much better

• Found application-relevant anomaly in PITEX model

• See report: RIACS TR 03.03

LPF on PITEX
• By Tony Lindsey (QSS / NASA ARC)

– Supported by ECS project

• Two scenarios considered:
– Random: auto-generated scenario (10K states)

– PITEX: combining PITEX test scenarios (90 states)

• Explores 50-100 states / min
– Too long for live demonstration

• First rounds (early 2002, early 2003)
– Found errors in LPF and Livingstone (checkpointing)

• By Tony Lindsey (QSS / NASA ARC)
– Supported by ECS project

• Two scenarios considered:
– Random: auto-generated scenario (10K states)

– PITEX: combining PITEX test scenarios (90 states)

• Explores 50-100 states / min
– Too long for live demonstration

• First rounds (early 2002, early 2003)
– Found errors in LPF and Livingstone (checkpointing)

LPF on PITEX (cont'd)

• Types of diagnosis properties verified
– "some diagnosis matches the true faults":

reports many errors, mostly spurious/benign (hidden faults).

– "some diagnosis subsumes the true faults":
only 5 errors with Random scenario (10K states),
considered useful by PITEX modelers at ARC.

– Further refinements will likely need domain knowledge: when is a
fault relevant/critical?

• Types of diagnosis properties verified
– "some diagnosis matches the true faults":

reports many errors, mostly spurious/benign (hidden faults).

– "some diagnosis subsumes the true faults":
only 5 errors with Random scenario (10K states),
considered useful by PITEX modelers at ARC.

– Further refinements will likely need domain knowledge: when is a
fault relevant/critical?

