
©Charles Pecheur 2003 1

Verification of Intelligent Software

Charles Pecheur (RIACS / NASA Ames)

©Charles Pecheur 2003 2

Contents

Model Checking for Intelligent Software

• Why?
Intelligent software, how to verify it?

• What?
A bird's-eye view of model checking

• How?
Experiences in the ASE Group

Model Checking for Intelligent Software

• Why?
Intelligent software, how to verify it?

• What?
A bird's-eye view of model checking

• How?
Experiences in the ASE Group

©Charles Pecheur 2003 3

Contents

Model Checking for Intelligent Software

• Why?
Intelligent software, how to verify it?

• What?
A bird's-eye view of model checking

• How?
Experiences in the ASE Group

Model Checking for Intelligent Software

• Why?
Intelligent software, how to verify it?

• What?
A bird's-eye view of model checking

• How?
Experiences in the ASE Group

©Charles Pecheur 2003 4

Autonomous Systems

Deep space mission spacecrafts

=> add on-board intelligence

• From self-diagnosis
to on-board science.

• Smaller mission control crews
=> reduced cost

• Less reliance on control link
=> OK for deep space

Deep space mission spacecrafts

=> add on-board intelligence

• From self-diagnosis
to on-board science.

• Smaller mission control crews
=> reduced cost

• Less reliance on control link
=> OK for deep space

©Charles Pecheur 2003 5

Integrated Vehicle
Health Maintenance

Automated analysis of vehicle data
=> improved diagnosis and prognosis

• Smaller mission control crews
=> reduced cost

• Improved health knowledge
=> optimize maintenance costs,
reduce risk

Automated analysis of vehicle data
=> improved diagnosis and prognosis

• Smaller mission control crews
=> reduced cost

• Improved health knowledge
=> optimize maintenance costs,
reduce risk

©Charles Pecheur 2003 6

Model-Based Autonomy

• Based on AI technology

• General reasoning engine +
application-specific model

• Use model to respond to
unanticipated situations

• Based on AI technology

• General reasoning engine +
application-specific model

• Use model to respond to
unanticipated situations

Reasoning
Engine Model

commands status

Spacecraft

Autonomous controller

model of

©Charles Pecheur 2003 7

Example: Remote Agent
• From Ames and JPL

• On Deep Space One in May 1999 (1st AI in space!)

• From Ames and JPL

• On Deep Space One in May 1999 (1st AI in space!)

Model Model

©Charles Pecheur 2003 8

MRMI

Com
m

and

Discretized
Observations

Mode
updates Goals

Model
Reconfig
Command

current state

Plan Execution System
High level operational plan

Livingstone

Courtesy Autonomous Systems Group, NASA Ames

 Livingstone
Model-Based Diagnosis

Remote Agent's model-based fault recovery sub-systemRemote Agent's model-based fault recovery sub-system

©Charles Pecheur 2003 9

Controlled vs. Autonomous

Controller

“Valve 1 stuck” “Open valve 2”

Tester

“Here we are”“Go to Saturn” Tester

?

Controller

Planner MIRExec

©Charles Pecheur 2003 10

Testing intelligent software?
• Programs are much more complex

• Many more scenarios

=> testing gives low coverage

• Concurrency!
Due to scheduling,
the same inputs (test) can give
different outputs (results)

=> test results are not reliable

• Programs are much more complex

• Many more scenarios

=> testing gives low coverage

• Concurrency!
Due to scheduling,
the same inputs (test) can give
different outputs (results)

=> test results are not reliable

A.read?0

A.write!1

B.read?1

B.write!2

B.read?0

B.write!1

A.write!1

0

0

01

1 1

12

A.read?x;
A.write !x+1;

B.read?y;
B.write !y+1;

0

©Charles Pecheur 2003 11

Contents

Model Checking for Intelligent Software

• Why?
Intelligent software, how to verify it?

• What?
A bird's-eye view of model checking

• How?
Experiences in the ASE Group

Model Checking for Intelligent Software

• Why?
Intelligent software, how to verify it?

• What?
A bird's-eye view of model checking

• How?
Experiences in the ASE Group

©Charles Pecheur 2003 12

Model Checking
Check whether a system S satisfies a property P
by exhaustive exploration of all executions of S

• Controls scheduling => better coverage

• Can be done at early stage => less costly

• Widely used in hardware, coming in software

• Examples: Spin (Bell Labs), Murphi (Stanford)

Check whether a system S satisfies a property P
by exhaustive exploration of all executions of S

• Controls scheduling => better coverage

• Can be done at early stage => less costly

• Widely used in hardware, coming in software

• Examples: Spin (Bell Labs), Murphi (Stanford)

©Charles Pecheur 2003 13

Model ...

Controller

Planner MIRExec

Modeling
Abstraction

Verification

©Charles Pecheur 2003 14

Model Checking

Controller

Planner MIRExec

“Valve is closed when
Tank is empty”

AG (tank=empty
=> valve=closed)

Modeling
Abstraction

Verification

©Charles Pecheur 2003 15

State Space Explosion

K processes with N local states ≤ NK global statesK processes with N local states ≤ NK global states

Controller

Planner MIRExec

“Valve is closed when
Tank is empty”

Model Checker
Run

Yes/No because ...

Controller

Planner MIRExec

“Valve is closed when
Tank is empty”

Model Checker
Run

No more
memory

Theory:

Practice:

©Charles Pecheur 2003 16

State Space Explosion
(by the numbers)

• k independent threads of n steps each =
– (n+1)k states

– k(n+1)(n)k-1 transitions

– (kn)! / (n!)k execution paths

• k independent threads of n steps each =
– (n+1)k states

– k(n+1)(n)k-1 transitions

– (kn)! / (n!)k execution paths

4.8335E+31732050161051105

4.7054E+215324014641104

5.551E+1236301331103

184756220121102

11011101

90542723

(k*n)! / (n!)^kk*n*(n+1)^(k-1)(n+1)^knk

pathstransstatesstepsthreads

©Charles Pecheur 2003 17

Modeling

This is the tough job!
• Translation: to model checker's syntax

e.g. C —> Promela (Spin)

• Abstraction: ignore irrelevant parts
e.g. contents of messages

• Simplification: downsize relevant parts
e.g. number of processes, size of buffers

This is the tough job!
• Translation: to model checker's syntax

e.g. C —> Promela (Spin)

• Abstraction: ignore irrelevant parts
e.g. contents of messages

• Simplification: downsize relevant parts
e.g. number of processes, size of buffers

Controller

Planner MIRExec

“Valve is closed when
Tank is empty”

Model Checker
Run

Yes/No because ...
Translation
Abstraction

Simplification

©Charles Pecheur 2003 18

Temporal Logic

• Propositional logic + quantifiers over executions

• Example: "every request gets a response"
AG (Req => AF Resp)

Always Globally, if Req then Always Finally Resp

• Branching (CTL) vs. linear (LTL)
– different verification techniques

– neither is more general than the other

• Model checking without TL
– Assertions, invariants

– Compare systems, observers

• Propositional logic + quantifiers over executions

• Example: "every request gets a response"
AG (Req => AF Resp)

Always Globally, if Req then Always Finally Resp

• Branching (CTL) vs. linear (LTL)
– different verification techniques

– neither is more general than the other

• Model checking without TL
– Assertions, invariants

– Compare systems, observers

©Charles Pecheur 2003 19

Symbolic Model Checking
• Manipulates sets of states,

Represented as boolean formulas,
Encoded as binary decision diagrams.

• Can handle large state spaces (1050 and up).

• BDD computations:
– Efficient algorithms for needed operations.

– BDD size is still exponential in worst case.

– Highly sensitive (e.g. to variable ordering) and hard
to optimize.

• Example: SMV/NuSMV (Carnegie Mellon/IRST)

• Manipulates sets of states,
Represented as boolean formulas,
Encoded as binary decision diagrams.

• Can handle large state spaces (1050 and up).

• BDD computations:
– Efficient algorithms for needed operations.

– BDD size is still exponential in worst case.

– Highly sensitive (e.g. to variable ordering) and hard
to optimize.

• Example: SMV/NuSMV (Carnegie Mellon/IRST)

x

y

0 1 2 ...0
1

...

x=2 ⁄ y=1

1 0

x=2

y=1

©Charles Pecheur 2003 20

Bounded Model Checking

• Symbolic model checking variant.

• Uses SAT (propositional satisfiability) rather than BDDs.
– Idea: unroll transition relation a finite number of times into a (big)

constraint network.

• Bounded-depth only, not complete.

• Polynomial space!

• Exponential time in the worst-case but
modern SAT solvers are very efficient in most practical cases.

• Example: NuSMV (using the Chaff solver from Princeton)

• Symbolic model checking variant.

• Uses SAT (propositional satisfiability) rather than BDDs.
– Idea: unroll transition relation a finite number of times into a (big)

constraint network.

• Bounded-depth only, not complete.

• Polynomial space!

• Exponential time in the worst-case but
modern SAT solvers are very efficient in most practical cases.

• Example: NuSMV (using the Chaff solver from Princeton)

©Charles Pecheur 2003 21

Real-Time and Hybrid

• "Classic" model checking: finite state, un-timed

• Real-time model checking: add clocks
e.g. Khronos (Verimag), Uppaal (Uppsala/Aalborg)

• Hybrid model checking: add derivatives
e.g. Hytech (Berkeley)

More complex problems & less mature tools

• "Classic" model checking: finite state, un-timed

• Real-time model checking: add clocks
e.g. Khronos (Verimag), Uppaal (Uppsala/Aalborg)

• Hybrid model checking: add derivatives
e.g. Hytech (Berkeley)

More complex problems & less mature tools

cl<5 cl≥4cl:=0

dx/dt=2 x≥4x:=0

©Charles Pecheur 2003 22

Contents

Model Checking for intelligent software

• Why?
intelligent software, how to verify it?

• What?
A bird's-eye view of model checking

• How?
Experiences in the ASE Group at NASA Ames

Model Checking for intelligent software

• Why?
intelligent software, how to verify it?

• What?
A bird's-eye view of model checking

• How?
Experiences in the ASE Group at NASA Ames

©Charles Pecheur 2003 23

Verification of
Remote Agent Executive

• Smart executive system with AI features (Lisp)

• Modeled (1.5 month) and
Model-checked with Spin (less than a week)

• 5 concurrency bugs found, that would have been
hard to find through traditional testing

• Smart executive system with AI features (Lisp)

• Modeled (1.5 month) and
Model-checked with Spin (less than a week)

• 5 concurrency bugs found, that would have been
hard to find through traditional testing

(Lowry, Havelund and Penix)

©Charles Pecheur 2003 24

Hunting the RAX Bug

• 18 May 1999: Remote Agent Experiment suspended
following a deadlock in RA EXEC
=> Q: could V&V have found it?

• Over-the-week-end "clean room" experiment
• => A: V&V "found" it... two years ago!

Similar to one of the 5 bugs found before (elsewhere)
– Highly unlikely to occur
– Never occurred during thorough testing
– Occurred in flight!

• Morale: Testing not enough for concurrency bugs!

• 18 May 1999: Remote Agent Experiment suspended
following a deadlock in RA EXEC
=> Q: could V&V have found it?

• Over-the-week-end "clean room" experiment
• => A: V&V "found" it... two years ago!

Similar to one of the 5 bugs found before (elsewhere)
– Highly unlikely to occur
– Never occurred during thorough testing
– Occurred in flight!

• Morale: Testing not enough for concurrency bugs!

(Lowry, White, Havelund, Pecheur, ...)

©Charles Pecheur 2003 25

Verification of
Model-Based Autonomy

Reasoning Engine
• Relatively small, generic

algorithm => use prover

• Requires V&V expert level but
once and for all

• At application level, assume
correctness
(cf. compiler)

Reasoning Engine
• Relatively small, generic

algorithm => use prover

• Requires V&V expert level but
once and for all

• At application level, assume
correctness
(cf. compiler)

Reasoning
Engine Model

Autonomous Controller

Reasoning Engine + Model ???

Model
• Complex assembly of

interacting components
=> model checking

• Avoid V&V experts
=> automated translation
Not too hard because models
are abstract

Model
• Complex assembly of

interacting components
=> model checking

• Avoid V&V experts
=> automated translation
Not too hard because models
are abstract

©Charles Pecheur 2003 26

Verification of
Planner/Scheduler Models

• Model-based planner from Remote Agent
Models: constraint style, real-time

• Small sample model translated by hand
Subset of the full modeling language, untimed

• Compare 3 model checkers: Spin, Murphi, SMV
=> SMV much easier and faster (≈0.05s vs. ≈30s)

• Continuation (Khatib): handle timed properties using
real-time model checker (Uppaal)

• Model-based planner from Remote Agent
Models: constraint style, real-time

• Small sample model translated by hand
Subset of the full modeling language, untimed

• Compare 3 model checkers: Spin, Murphi, SMV
=> SMV much easier and faster (≈0.05s vs. ≈30s)

• Continuation (Khatib): handle timed properties using
real-time model checker (Uppaal)

(Penix, Pecheur and Havelund)

©Charles Pecheur 2003 27

Verification of
Livingstone Models

Livingstone
Model

SMV
Model

Livingstone
Requirement

SMV
Requirement

Livingstone
Trace

SMV
Trace

Livingstone

SMV

T
R
A
N
S
L
A
T
O
R

Autonomy Verification

(Pecheur, Simmons)

©Charles Pecheur 2003 28

Simulation-Based Verification
Livingstone PathFinder (LPF)

• Real system => accuracy.
• More control => more coverage.
• For any discrete-event controller (not only model-based).

• Real system => accuracy.
• More control => more coverage.
• For any discrete-event controller (not only model-based).

Search
EngineSearch

Engine

• single step
• backtrack
• select choices
• get/set state
• ...

Engine Model

Autonomous Controller Search
Engine

Spacecraft
Simulator

Driver ...
T
E
S
T
B
E
D Exec Control API

(Pecheur, Lindsey)

©Charles Pecheur 2003 29

Model Checking Java
Java PathFinder (JPF)

• Java PathFinder 1: Translator to Promela (Spin)
• Java PathFinder 2: Based on custom Java VM.

– Supports all Java bytecode.
– Emphasis on efficient encoding of states (heap, GC).
– Integrates static analysis for partial-order reduction, run-time

analysis, abstraction, symbolic data, ...
– Applied to DEOS avionics OS, planetary rover exec, MD-11

autopilot simulator...

• Java PathFinder 1: Translator to Promela (Spin)
• Java PathFinder 2: Based on custom Java VM.

– Supports all Java bytecode.
– Emphasis on efficient encoding of states (heap, GC).
– Integrates static analysis for partial-order reduction, run-time

analysis, abstraction, symbolic data, ...
– Applied to DEOS avionics OS, planetary rover exec, MD-11

autopilot simulator...

(Havelund, Visser, ...)

©Charles Pecheur 2003 30

Compositional verification

• Assume-guarantee reasoning on separate
components of a system

=> prove properties of the whole
from properties of the parts

• Automated extraction of assumptions

• Assume-guarantee reasoning on separate
components of a system

=> prove properties of the whole
from properties of the parts

• Automated extraction of assumptions

(Giannakopoulou, Pasareanu)

©Charles Pecheur 2003 31

Runtime Analysis
Java Path Explorer (JPaX)

• An observer analyses an event stream from an
instrumented program to detect anomalies.

• Analyze temporal logic properties, hazardous
concurrency patterns (lock ordering, data races).

• On actual program runs => limited but highly scalable.

• An observer analyses an event stream from an
instrumented program to detect anomalies.

• Analyze temporal logic properties, hazardous
concurrency patterns (lock ordering, data races).

• On actual program runs => limited but highly scalable.

(Havelund, Rosu)

©Charles Pecheur 2003 32

Conclusions

Model checking:
• Needed for automated/autonomous systems

testing is not enough

• General pros&cons apply:
– exhaustive... if model is small enough

– automatic verification... but tough modeling

• Works nicely on autonomy models

• Solutions inbetween testing and model checking

• Not short of tough problems:
– Real-time, hybrid, AI

– Learning/adaptive systems: after training/including training

Model checking:
• Needed for automated/autonomous systems

testing is not enough

• General pros&cons apply:
– exhaustive... if model is small enough

– automatic verification... but tough modeling

• Works nicely on autonomy models

• Solutions inbetween testing and model checking

• Not short of tough problems:
– Real-time, hybrid, AI

– Learning/adaptive systems: after training/including training

©Charles Pecheur 2003 33

Pointers

• Pecheur's home page
http://ase.arc.nasa.gov/pecheur
http://ase.arc.nasa.gov/pecheur/publi.html
http://ase.arc.nasa.gov/pecheur/talks.html

• JavaPathFinder
http://ase.arc.nasa.gov/visser/jpf

• ASE group at NASA Ames
http://ase.arc.nasa.gov

• Pecheur's home page
http://ase.arc.nasa.gov/pecheur
http://ase.arc.nasa.gov/pecheur/publi.html
http://ase.arc.nasa.gov/pecheur/talks.html

• JavaPathFinder
http://ase.arc.nasa.gov/visser/jpf

• ASE group at NASA Ames
http://ase.arc.nasa.gov

