Symbolic Model Checking of Logics with Actions

Charles Pecheur charles.pecheur@uclouvain.be Franco Raimondi f.raimondi@cs.ucl.ac.uk

An Observable System

- An observable system
 - Electric circuit
- Hidden state
 - Bulb and meter can fail
- Visible observations
 - Read the meter, see the light

Diagnosis

- Diagnosis: from (history of) observations, infer state
 - Q: If there is no light and the meter reads zero, is there a current?
 - A: Maybe, if the meter is broken and the bulb has a short

Diagnosability

• Diagnosability:

diagnosis is possible (up to desired precision, assuming context, ...)

- Q: Can I safely know when there is a short?
- A: Yes, assuming single failures

From Diagnosability to Knowledge

• A condition F (fault) can be **diagnosed**

an **agent** preceiving the observations (the diagnoser) always **knows** whether F holds or not

iff

• In epistemic temporal logic CTLK:

 $\mathsf{AG}(\mathsf{K}_D F \lor \mathsf{K}_D \neg F)$

where D is the diagnoser

From Knowledge to Actions

• In epistemic logic, agent A knows a fact ϕ

 ϕ is true in any possible state (world) consistent with $A\mbox{'s}$ knowledge

iff

- Formalized as an epistemic accessibility (equivalence) relation ~_A between states that are indistinguishable by A
- We obtain a system with several transition relations $\langle S, S_0, \rightarrow, \sim_{A_1}, \dots, \sim_{A_n} \rangle$ for *n* agents
- Or equivalently, a labelled transition system $\langle S, S_0, A, \xrightarrow{a} \rangle$, where $A = \{T, A_1, \dots, A_n\}$

Model-Checking Diagnosability

- Custom diagnosability checker by Pecheur [MOCHART02,IJCAI03]
 - Uses NuSMV as back-end
 - Idea: try epistemic approach instead?
- Custom CTLK checker by Raimondi [TACAS06]
 - BDD-based, directly on interpreted systems
 - Very rudimentary modelling language
 - Idea: use NuSMV instead?
- Extend SMV to actions, then to CTLK
 - This talk

Outline

- Mixing states and actions: ARCTL
- Model checking of ARCTL
- ARCTL in SMV (two takes)
- Application to CTLK and experiments
- Related work, summary, perspectives

State-Based Temporal Logic

- The "classical" temporal logic
- Interpreted over executions of state machines, (unlabelled) transition systems
 - Atoms \mathcal{P}_S are interpreted on states
 - Kripke structure (KS) $\langle S, S_0, \mathcal{R}, \mathcal{V} \rangle$, where $\mathcal{R} \subseteq S \times S$ and $\mathcal{V} : S \to 2^{\mathcal{P}_S}$
- LTL, CTL, CTL*, μ -calculus, etc.
- **Example:** AG ($request \Rightarrow$ AF response)

Action-Based Temporal Logic

- Variant from the process algebra world
- Interpreted on **labelled** transitions systems
 - Atoms are **actions** (i.e. transition labels)
 - labelled transitions system (LTS) $\langle S, S_0, A, T \rangle$, where $T \subseteq S \times A \times S$
- No atoms on states; states are "not visible" (behavioural view)
- Action-CTL (ACTL) [deNicola-Vaandrager], ACTL*, Hennessy-Milner, etc.
- **Example:** AG_{true} ($\neg EX_{request}$ $EG_{\neg response}$ true)

Mixing States and Actions

- Three generalizations:
 - Allow arbitrary atoms \mathcal{P}_A interpreted over A
 - Allow both state and action atoms
 - Allow finite full-paths (i.e. sink states)
- Mixed transition systems (MTS) $\langle S, S_0, A, T, V_S, V_A \rangle$, where
 - $\mathcal{T} \subseteq \mathcal{S} \times \mathcal{A} \times \mathcal{S}$
 - $\mathcal{V}_S: \mathcal{S} \to 2^{\mathcal{P}_S}$
 - $\mathcal{V}_A: \mathcal{A} \to 2^{\mathcal{P}_A}$
- Contains LTS and KS as sub-structures

Action-Restricted CTL

- To support CTLK, we want to combine different transition/accessibility relations →, ~_{A1}, ..., ~_{An} into a single labelled transition relation over alphabet *A* = {*T*, *A*₁, ..., *A_n*}
- Correspondingly, we want to extend CTL so that temporal operators can be restricted to a given set of (or condition on) actions
 - e.g. over all T-paths, ϕ holds globally
- Action-Restricted CTL (ARCTL) generalizes path quantifiers A, E into A_{α} , E_{α} restricted to α -paths

ARCTL Semantics

- Given a mixed transition system $\mathcal{M},$ let
 - $\Pi(s)$ the set of (finite or infinite) full-paths of ${\cal M}$ from s
 - α a propositional formula over \mathcal{P}_A
 - $\mathcal{M}|_{\alpha}$ the restriction of \mathcal{M} to α -actions
 - $\Pi|_{\alpha}(s)$ the set of full-paths of $\mathcal{M}|_{\alpha}$ from s
- For a path formula γ , we have
 - $s \models \mathsf{A}_{\alpha}\gamma \text{ iff } \forall \pi \in \Pi|_{\alpha}(s) \cdot \pi \models \gamma$
 - $s \models \mathsf{E}_{\alpha}\gamma \text{ iff } \exists \pi \in \Pi|_{\alpha}(s) \cdot \pi \models \gamma$

(full formal definitions in the paper)

ARCTL Properties and Remarks

- Obviously $E_{true}\gamma \equiv E\gamma$ and $A_{true}\gamma \equiv A\gamma$
- In general $\Pi|_{\alpha}(s) \not\subseteq \Pi(s)$ and thus $\mathsf{E}_{\alpha}\gamma \not\Rightarrow \mathsf{E}\gamma$
 - because a (finite) α-full-path may only be a prefix of a (finite or infinite) full-path
 - e.g. $E_a G p \not\Rightarrow EG p \text{ on } p \xrightarrow{a} p \xrightarrow{b} \overline{p}$
- In comparison, ACTL puts action conditions on temporal quantifiers,
 - e.g. $EF_{\alpha} \phi =$ "all paths are α -paths until they reach ϕ "
 - Not adequate for our purpose

Finite Paths

Unlike classical definitions of model-checking, we allow **finite full-paths**

- Even with infinite full-paths, we would have finite α -full-paths anyway
- The semantics of CTL (and thus ARCTL) generalizes nicely
 - This is not new
- In particular, $\pi \models X \phi$ iff $|\pi| \ge 1 \land \pi(1) \models \phi$
 - $E_{\alpha}X\phi$ xor $A_{\alpha}X\neg\phi$ xor $\neg E_{\alpha}X$ true
- G ϕ holds for finite α -full-paths where ϕ holds
 - We define $G^{\omega} \phi$ for infinite paths only

Model Checking of ARCTL

Generalizes CTL model checking:

- All ARCTL operators can be reduced to $E_{\alpha}X$ and $E_{\alpha}U$ and $E_{\alpha}G^{\omega}$
 - Additional conditions w.r.t. finite paths
 - e.g. $A_{\alpha}F\phi \equiv \neg E_{\alpha}[\neg \phi \cup \neg \phi \land \neg E_{\alpha}X true] \land \neg E_{\alpha}G^{\omega} \neg \phi$
- Given sets of states S, S' and actions A ∈ 2^A, we define functions eax(A, S), eau(A, S, S') and eag(A, S) capturing the semantics of those operators
 - e.g. $eau(A, S, S') = \mu Z \cdot S' \cup (S \cap eax(A, Z))$
- For any formula φ we can compute [[φ]] using these functions
- This can all be computed using BDDs

Model Checking: details

$$eax(A,S) = \{s \mid \exists a, s' \cdot s \xrightarrow{a} s' \land a \in A \land s' \in S\}$$
$$eau(A,S,S') = \mu Z \cdot S' \cup (S \cap eax(A,Z))$$
$$eag(A,S) = \nu Z \cdot S \cap eax(A,Z)$$

$$\begin{bmatrix} \mathsf{E}_{\alpha} \mathsf{X} \phi \end{bmatrix} = eax(\llbracket \alpha \rrbracket, \llbracket \phi \rrbracket) \\ \llbracket \mathsf{A}_{\alpha} \mathsf{X} \phi \rrbracket = \underline{eax(\llbracket \alpha \rrbracket)} \cap \neg eax(\llbracket \alpha \rrbracket, \neg \llbracket \phi \rrbracket) \\ \llbracket \mathsf{E}_{\alpha}(\phi \cup \phi') \rrbracket = eau(\llbracket \alpha \rrbracket, \llbracket \phi \rrbracket, \llbracket \phi' \rrbracket) \\ \llbracket \mathsf{A}_{\alpha}(\phi \cup \phi') \rrbracket = \neg eau(\llbracket \alpha \rrbracket, \neg \llbracket \phi' \rrbracket, \neg \llbracket \phi' \rrbracket \cap (\neg \llbracket \phi \rrbracket \cup \underline{\neg eax(\llbracket \alpha \rrbracket)})) \\ \cap \neg eag(\llbracket \alpha \rrbracket, \neg \llbracket \phi' \rrbracket) \end{bmatrix}$$

 $\left[\right]$

Finite Paths and Fairness

- CTL can be verified modulo fairness conditions
 - Sets of sets of states that fair traces visit infinitely often
 - LTL is reducible to CTL+fairness
- Could be extended to labelled paths and ARCTL
 - With fairness conditions on states and actions
- However, by definition, finite full-paths are unfair
 - A revised notion of fairness (with model checking solution) is needed
 - For further investigation ...

SMV (with Actions)

- NuSMV: symbolic model checker (IRST)
 - Rich modular modeling language
 - Properties in CTL
 - Many features, open-source
- The SMV language supports actions!
 - Named input variables (IVARs)
 - Unfortunately, may appear only in the model, not in the CTL properties

ARCTL in SMV (Take One)

First approach:

- Reduce mixed transition structure \mathcal{M} to Kripke structure $post(\mathcal{M})$
- Reduce ARCTL formula φ to plain CTL formula post(φ)

Such that

 $(\mathcal{M}, s) \models \phi \quad \text{iff} \quad (post(\mathcal{M}), s) \models post(\phi)$

- Check $(post(\mathcal{M}), s) \models post(\phi)$ in NuSMV
 - Does not use IVARs

Post-Projection of Actions

Principle:

• Project action propositions into the next state

•
$$\mathcal{S}' = \mathcal{A} \times \mathcal{S}, \, \mathcal{P}' = \mathcal{P}_S \cup \mathcal{P}_A$$

- $s \xrightarrow{a} s'$ becomes $(*, s) \longrightarrow (a, s')$, for any action *
- Reduce ARCTL to CTL accordingly, e.g.

$$post(\mathsf{E}_{\alpha}\mathsf{X}\,\phi) = \mathsf{E}\mathsf{X}\,(\alpha \wedge post(\phi))$$

$$post(\mathsf{A}_{\alpha}\mathsf{X}\,\phi) = \mathsf{A}\mathsf{X}\,(\alpha \Rightarrow post(\phi)) \wedge \underline{\mathsf{E}\mathsf{X}\,\alpha}$$

$$post(\mathsf{A}_{\alpha}(\phi \,\mathsf{U}\,\phi')) = post(\phi') \vee (\underline{\mathsf{E}\mathsf{X}\,\alpha} \wedge post(\phi)$$

$$\wedge \mathsf{A}\mathsf{X}\,\mathsf{A}[\underline{\mathsf{E}\mathsf{X}\,\alpha} \wedge post(\phi) \,\mathsf{U}\,\neg\alpha \lor post(\phi')])$$

• Erratum: underlined terms missing in paper

Post-Projection in SMV

Both reductions have been implemented as M4 macros

- TRANS_A(a,t) \mapsto TRANS next(a) -> (t)
- $EU_A(a,p,q) \mapsto$ (((p) & EX E[(a) & (p) U (a) & (q)]) | (q))
 - where a is an action formula, p, q are state formulae, t is a transition constraint
- User has to decide which variables are for actions (a) and which are for states (p, q)

ARCTL in SMV (Take Two)

Second approach: extend NuSMV to provide native support for ARCTL

- Use IVARs for action variables
 - Any valuation of IVARs is a different action label
- Extended syntax EAX (α) ϕ , EA (α) [$\phi \cup \phi'$], etc.
- Implementation of eax(A, S), eau(A, S, S') and eag(A, S) on BDDs
 - As variants of existing ex(S), eu(S, S') and eg(S)
- Not done yet: generation of counter-examples

CTLK in ARCTL

Principle: temporal transitions $s \rightarrow s'$ and epistemic accessibility relations $s \sim_{A_i} s'$ become different labels of a single labelled transition relation

- Multi-agent system (MAS) model \mathcal{M}_K translated to MTS model $F(\mathcal{M}_K)$
- CTLK property ϕ_K translated to corresponding ARCTL property $F(\phi_K)$
 - e.g. $F(\mathsf{K}_A \phi) = \mathsf{A}_A \mathsf{X} (reachable \Rightarrow F(\phi))$
- Both translations implemented as M4 macros
- Model checked in SMV using either the native extension to ARCTL or further reduction to plain CTL
- Details in forthcoming paper...

Experiments 1

First experiment: verify diagnosability expressed in CTLK on *circuit-breaker* example

- Example from Livingstone model-based diagnosis system
 - cascade of circuit breakers
 - Automatically translated to SMV

Results 1

- Diagnosability property: AG ($K_D(faulty) \lor K_D(\neg faulty)$)
- Used native ARCTL implementation
- Tried for various model sizes (depth of the cascade)
- Verified up to 240-bit states in less than 10 min
 - Performance similar to factory NuSMV on plain CTL properties

Experiments 2

Second experiment: verify CTLK properties of the *Dining Cryptographers protocol*

- Not diagnosis, Classical example for general epistemic properties
 - Scalable number *N* of agents (the Cryptographers)
- Verified protocol correctness properties
- Results are not in this paper, submitted
- 99-bit state for N = 5
- Comparison with Verics [Penczek et al.], MCMAS [Raimondi et al.]

Results 2

Related Work

- Other action-based logic model checkers:
 - EST [Meolic et al.] for variant of ACTL
 - SAM [Fancheti et al.] for ACTL with fixpoint operators

No state conditions, no SMV language for modeling

- Encoding of process algebras as BDDs by [Enders et al., Dsouza et al.]
- Reduction from ACTL to CTL by [de Nicola and Vaandrager]
 - In original ACTL paper
 - Adds intermediate state for every transition

Summary

- Main contributions:
 - ARCTL, a branching temporal logic with action-based and state-based atoms
 - A reduction *post* from ARCTL to CTL (with corresponding reduction on models)
 - A generalization of BDD-based model-checking from CTL to ARCTL
 - Two implementations of ARCTL in SMV: native and using *post*
- Context: diagnosability reduces to CTLK, which reduces to ARCTL
- Early but promising **experimental results**

Perspectives

- Further work:
 - Add generation of **counter-examples**
 - Study weak variants of ARCTL (i.e. ignoring internal actions)
 - Handle fairness
- Possible extensions:
 - Use SAT-based bounded model checking (restricts supported formulae)
 - Generalize to **game-theoretic** logics such as ATL