
A Global Constraint for Bin-Packing with Precedences:
Application to the Assembly Line Balancing Problem.

Pierre Schaus and Yves Deville
Department of Computing Science and Engineering,

Université catholique de Louvain,
Place Sainte Barbe 2,

B-1348 Louvain-la-Neuve, Belgium
{pierre.schaus,yves.deville}@uclouvain.be

Abstract

Assembly line balancing problems (ALBP) are of capital im-
portance for the industry since the first assembly line for the
Ford T by Henry Ford. Their objective is to optimize the
design of production lines while satisfying the various con-
straints. Precedence constraints among the tasks are always
present in ALBP. The objective is then to place the tasks
among various workstations such that the production rate is
maximized. This problem can be modeled as a bin pack-
ing problem with precedence constraints (BPPC) where the
bins are the workstations and the items are the tasks. Paul
Shaw introduced a global constraint for bin-packing (with-
out precedence). Unfortunately this constraint does not cap-
ture the precedence constraints of BPPC. In this paper, we
first introduce redundant constraints for BPPC combining the
precedences and the bin-packing, allowing to solve instances
which are otherwise intractable in constraint programming.
We also design a global constraint for BPPC, introducing
even more pruning in the search tree. We finally used our
CP model for BPPC to solve ALBP. We propose two search
heuristics, and show the efficiency of our approach on stan-
dard ALBP benchmarks. Compared to standard non CP ap-
proaches, our method is more flexible as it can handle new
constraints that might appear in real applications.

Introduction
In a variant of the bin packing problem, items of different
volume must be packed into a finite number of bins with a
fixed capacity in a way that balances the load of the differ-
ent bins (e.g. minimizes the maximum load of the bins). We
are interested in bin packing problems with precedence con-
straints between items (BPPC). Here the bins are ordered. A
precedence constraint between items a1 and a2 is satisfied if
item a1 is placed in a bin B1, and item a2 in a bin B2, with
B1 ≤ B2.

BPPC occurs frequently in the design of assembly lines
in the industry1. We are given a set of tasks of various
lengths, subject to precedence constraints, and a time con-
stant called cycle time. The problem is to distribute the tasks
over workstations along a production (assembly) line, so that
no workstation takes longer than the cycle time to complete

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1See for example the two commercial softwares Proplannerr

www.proplanner.com and OptiLiner www.optimaldesign.com

all the tasks assigned to it (station time), and the precedence
constraints are satisfied. The decision problem of optimally
partitioning (balancing) the tasks among the stations with
respect to some objective is called the assembly line bal-
ancing problem (ALBP) (Boysen, Fliedner, & Scholl 2007;
Scholl & Becker 2006).

In particular, when the number of stations is fixed, the
problem is to distribute the tasks to stations such that the
station time is balanced, that is to minimize the cycle time.
This type of problems is usually called Simple ALBP-2
(SALBP-2) (Boysen, Fliedner, & Scholl 2007). It is clear
that SALBP-2 and BPPC are equivalent.

BPPC and SALBP-2 can be solved by exact or heuris-
tic methods. In this paper, we are interested in exact meth-
ods. Existing exact methods are usually dedicated branch
and bound algorithms such as Salome 2 (Klein & Scholl
1996). These algorithms are very efficient and have been
improved since about 50 years. Unfortunately these algo-
rithms are not flexible to new constraints that might ap-
pear in real applications such as minimal distance between
two tasks or restriction on the cumulated value of a partic-
ular task attribute (see the problem classifier available on
www.assembly-line-balancing.de for more details). When
such constraints are added, we obtain so-called Generalized
Assembly Line Balancing Problems (GALBP) (Becker &
Scholl 2006). The existing exact methods are not flexible
enough to handle GALBP efficiently. The Constraint Pro-
gramming (CP) paradigm is a good candidate to tackle such
problems since constraints can be added very easily to the
model.

The Constraint Programming (CP) framework has already
been used for the bin packing problem (e.g. (Shaw 2004)).
The Balanced Academic Curriculum Problem (BACP) is
equivalent to BPPC. The objective is to schedule courses
into a given number of periods such that the prerequisites
relations between the courses are satisfied and such that the
workloads among the periods are well balanced. Basic CP
models have been proposed in (Castro & Manzano 2001;
Hnich, Kiziltan, & Walsh 2002).

In this paper, we propose a CP model for BPPC and
SALBP-2, allowing a flexible expression of new constraints,
such as in GALBP. More specifically, our contributions are :

• An efficient and simple CP model for the bin packing with
precedence constraints (BPPC).

• A new global constraint for BPPC. This constraint is
based on set variables, and exploit the transitive closure
of the precedence graph. An O(n2) filtering algorithm is
presented, where n is the number of items (tasks). This
constraint allows to solve instances which are otherwise
intractable in CP.

• An experimental validation on standard SALBP-2 bench-
marks, showing the feasibility, the efficiency, and the flex-
ibility of this approach.
The paper is structured as follows. A background on con-

straint programming is first given, followed by a CP model
for BPPC. A new global constraint and its associated filter-
ing algorithm is then described. Before concluding this pa-
per, an experimental section analyzes the performance of our
approach on standard SABLP benchmarks.

CP Background
Constraint Programming is a powerful paradigm for solving
Combinatorial Search Problems (CSP). A CSP is composed
of a set of variables; each variable having a finite domain
of possible values, and a set of constraints on the variables.
The objective is to find an assignment of the variables that
satisfies all the constraints. An objective function may also
be added. CP interleaves a search process (backtracking or
branch-and-bound) with inference (also called propagation
or filtering), aiming at reducing the search space by remov-
ing values that cannot belong to any solution.

Given a finite domain integer variable X with domain
Dom(X), we denote by Xmin and Xmax the minimum and
maximum value of its domain. Set variables in CP (Gervet
1993) allow to represent a set rather than a single value. The
domain of a set variable S is represented by two sets S and
S with S ⊆ S . The lower bound S represents the values
that must be in the set, and S represents the values that may
figure in the set; i.e. S ⊆ S ⊆ S.

Redundant constraints (also called implied or surrogate
constraints) are constraints which are implied by the con-
straints defining the problem. They do not change the set of
solutions, and hence are logically redundant. Adding redun-
dant constraints to the model may however further reduce
the search space by allowing more pruning. Redundant con-
straints have been successfully applied to various problems
such as car sequencing.

A global constraint can be seen as a constraint on a set of
variables, modeling a well-defined part of the problem, and
with a dedicated filtering algorithm (van Hoeve & Katriel
2006).

CP Models for the Bin Packing with
Precedence Constraints

The bin packing with precedence constraint (BPPC) implies
the following parameters and variables :
• n positive values [s1, ..., sn] representing the size of each

item.
• a number of available bins m.
• m variables [L1, ..., Lm] representing the load of each bin

(Dom(Li) = {0, . . . ,
∑

i si})

Figure 1: Precedence graph of the Buxey instance from
Scholl benchmark data set (Scholl 93).

• n variables [B1, ..., Bn] representing for each item the bin
where it is placed (Dom(Bi) = {1, . . . ,m})

• a precedence (directed and acyclic) graph G({1, .., n}, E)
The constraints should model the precedence, and the

load of the bins. The objective is to minimize the maximum
of the loads, i.e. minimize max{Li}.

The precedence constraints are easily modeled as a set of
constraints

Bi ≤ Bj (with (i, j) ∈ E) (1)

The simplest way to model the load of each bin is to
add binary variables Xij ∈ {0, 1} telling whether item j is
placed into bin i. These variables are linked to the variables
of the problems through reified constraints:

Xij = 1↔ Bj = i. (2)

The loads of each bin can then be expressed as a scalar prod-
uct:

Li =
∑

j

Xij · sj . (3)

This model of the BPPC is complete but can be improved
with the following redundant constraints (Shaw 2004):∑

i

Li =
∑

j

sj . (4)

The global constraint for bin packing, described in (Shaw
2004) and called IloPack in Ilog Solver (ILOG-S.A.), can
also be added.

The speedup obtained with the redundant constraints (4)
and IloPack is illustrated on a small instance of SALBP-2
from the Scholl benchmark data set (Scholl 93). The prob-
lem is to place the items (tasks) into 12 bins (workstations)
while satisfying the precedence constraints, given in Figure
1, and minimizing the maximum height of the bins.

Table 1 shows (columns A,B and C) that adding the sim-
ple redundant constraint (4) reduces significantly the number
of backtracks and time, and that the bin packing constraint
from (Shaw 2004) reduces it even more.

Redundant Constraints for the BPPC
The definition of the global constraint BPPC is the follow-
ing. BBPC([B1, ..., Bn], [L1, ..., Lm], E) holds iff

(i) Bi ≤ Bj , ∀(i, j) ∈ E and

(ii) Li =
∑
{j∈[1..n] | Bj=i} sj , ∀i ∈ [1..m].

A B C D
#bks time #bks time #bks time #bks time
6894 10.62 4850 7.34 2694 4.3 445 1.07

Table 1: Comparison in terms of backtracks and time (seconds)
of the bin packing models on the Buxey instance with 12 worksta-
tions. Column A is obtained with the basic model, column B by
adding the redundant constraint (4), column C by also adding the
IloPack constraint described in (Shaw 2004) and column D by
adding also the redundant constraints (6).

Constraints (i) and (ii) can be modeled as in previous sec-
tion with constraints (1-4) and IloPack. The IloPack
constraint from (Shaw 2004) allows a better filtering than a
simple linear model for the BPPC. We introduce new redun-
dant constraints improving the filtering for BBPC by linking
the precedences with the bin packing problem thanks to set
variables.

We denote by Pi the set variable representing the prede-
cessors of item i in the BPPC. An item j is predecessor of
an item i if and only if item j is placed in a bin preceding or
equal to the bin of item i:

j ∈ Pi ↔ Bj ≤ Bi.

The lower bound of Pi can be initialized to i plus the set
of items having an arc pointing to i in the transitive closure
of the precedence graph. The transitive closure is computed
with the O(n3) Floyd Warshall’s algorithm (see (Cormen et
al. 2001)). The preprocessing time to compute the transi-
tive closure for the instantiation of the lower bounds Pi is
negligible for the instances considered in the experimental
section (less than 150 tasks).

The upper bound Pi is initially all the tasks, that is
{1, ..., n}. A similar reasoning holds for the successor set
variable Si of item i.

The set of predecessors of item i can be used to filter the
lower bound of Bi since we know that items in Pi must be
placed before item i. For a set U with elements taken from
{1, ..., n}, we denote by sum(U) the total size of items in
U , that is sum(U) =

∑
j∈U sj .

Theorem 1 A redundant constraint for the BPPC is:

sum(Pi) =
∑

k≤Bi

Lk. (5)

Proof 1 The left and right members are simply two different
ways of counting the cumulated size of the Bi first bins. The
right member is the natural way and the left member counts
it by summing the sizes of the items lying in a bin smaller or
equal to Bi. �

Computation of sum(Pi): The computation of sum(Pi)
can be easily modeled with binary variables representing the
set of predecessors but a better formulation in terms of fil-
tering and efficiency is possible using the power of the set
variables. Indeed S(Pi) =

∑
j∈Pj

sj is expressed as such
in Ilog Solver using a global constraint called IloEqSum

making a summation over a set variable. A function must be
defined to make the mapping between the indices of items
and the size of the items: f : {1, ..., n} 7→ {s1, ..., sn} :
f(j) = sj . The global constraint takes three arguments: a
set variable, a variable and a function:

IloEqSum(Pi, sum(Pi), f) ≡
∑
j∈Pi

f(j) = sum(Pi).

Computation of
∑

k≤Bi
Lk: The formulation of∑

k≤Bi
Lk could be achieved with m binary variables

for each item i. A better formulation is possible intro-
ducing an array of m variables CL = [CL1, ..., CLm]:
CLi =

∑i
k=1 Lk for i ∈ [1, ...,m] (CL for Cumulated

Load). With this array,
∑

k≤Bi
Lk can be written with an

element constraint (Van Hentenryck P. 1988) as CLBi
.

The Ilog model of the redundant constraints (5) for the
predecessors of item i is:

IloEqSum(Pi, sum(Pi), f) ∧ sum(Pi) = CLBi . (6)

Constraint (6) filters the domains of Pi, Bi and the Li’s.
We define similar constraints for the successor variables
Si. The results obtained with the improved formulation are
given in column D of Table 1. The redundant constraints re-
ally pays off for the time (1.07 against 4.3) and the number
of backtracks (445 against 2694).

A Global Constraint for the BPPC
We give an O(n2) algorithm to filter further the domains of
[B1, ..., Bn] and [L1, ..., Lm]. This filtering does not sub-
sume the filtering obtained with the redundant constraints.
Hence it must be added to the filtering obtained with the re-
dundant constraints.

By adding the redundant constraints (6) from previous
section, we mainly prune the lower bound of the variable Bi.
Considering the array of the upper bounds of the bin loads
[Lmax

1 , ..., Lmax
m], the redundant constraint enforces that

Bmin
i ← min{j :

j∑
k=1

Lmax
k ≥

∑
j∈Pi

sj} (7)

The filtering rule (7) is one of the pruning achieved by (6).

Example 1 An item has a size of 4 and has three predeces-
sors of size 4,3,5. The maximum height of all the bins is 5.
The item can certainly not be placed before the bin 4 be-
cause for the bin 4 we have

∑4
k=1 Lmax

k = 20 ≥ 16 while
for the bin 3 we have

∑3
k=1 Lmax

k = 15 < 16.

Rule (7) is a relaxation of the largest lower bound that
could be found for Bi:
• it assumes a preemption of the items over the bins, and
• it assumes that all the predecessors can potentially start

from the first bin.
We propose an algorithm to compute a better lower bound
by conserving the preemption relaxation but disallowing a
predecessor j to start before its earliest possible bin Bmin

j .

Our algorithm requires the predecessors j to be sorted in-
creasingly with respect to their earliest possible bin Bmin

j .
This is achieved in Θ(|Pi| + m) with a counting sort algo-
rithm (Cormen et al. 2001) since the domains of the Bj’s
range over [1, ...,m]. This complexity can be simplified to
O(n) since |Pi| < n and typically m ∼ O(n) (less bins
than items).

Algorithm 1 computes the minimum possible bin for item
i by considering that :

• each predecessor j cannot start before its earliest possible
bin Bmin

j but can end in every other larger bin and
• an item can be splitted among several bins (the preemp-

tion relaxation).

Algorithm 1 first places the predecessors of i that is elements
of Pi. This is done in the forall external loop. Then the
item i in placed in the earliest possible bin without preemp-
tion for it. We assume that there are m + 1 bins of capacity
[Lmax

1 , ..., Lmax
m ,

∑n
i=1 si]. The additional fictive (m + 1)th

bin has a capacity large enough such that every items can be
put inside it. This guarantees the termination of the while
loops. The complexity of the algorithm is O(|Pi| + m)
where m is the number of bins. For n items, the complexity
becomes O(n2).

Algorithm 1 returns two values bin and idle. The value
bin is used to prune the lower bound of Bi:

Bmin
i ← max(Bmin

i , bin).

The value idle is used to prune Lmin
bin . Indeed if Bi is as-

signed then bin = Bi. It means that Lmin
bin must be at least

larger that Lmax
bin − idle:

Lmin
bin ← max(Lmin

bin , Lmax
bin − idle).

Of course, we use a similar filtering using the set variable
Si to filter the upper bound of Bi.

Experimental results
We propose two different heuristics for the SALBP-2. The
first one chooses the next variable to instantiate on bases of
the domain sizes (first fail) while the second one is based
on the topology of the precedence graph and try to build
heuristically a good solution satisfying the precedences.
For both heuristic, the decision variables to instantiate are
[B1, ..., Bn] that is for each item, we decide the bin where it
is placed:

• Heuristic 1: The next variable to instantiate is the one with
the smallest domain (classical first fail heuristic). As tie
breaking rule, the variable corresponding to the item with
largest size is chosen first. As value heuristic, the chosen
item is placed in the less loaded bin.

• Heuristic 2: The order of instantiation of the variables is
static: variables are instantiated in an arbitrary topological
order of the precedence graph (see for example the upper
numbers inside the nodes on Figure 1). Then the chosen
item is placed in the first possible bin less loaded than∑n

i=1 si/m (average load of the bins) or in the less loaded
bin if there are no such possible bin.

Algorithm 1: Considering bins of maximum loads
[Lmax

1 , ..., Lmax
m ,

∑n
i=1 si], bin is the smallest bin index

such that every item from the set Pi have been placed in
a preemptive way in a bin smaller or equal to bin with-
out starting before their earliest possible bin. The value
idle is the remaining space in this bin.
bin← 0
idle← Lmax

bin
forall j ∈ Pi \ {i} do

/* invariant: bin is the smallest bin index such that
items {1, ..., j − 1} \ {i} have all been placed in a
preemptive way in a bin smaller or equal to bin
without starting before their earliest possible bin and
idle is the remaining place in this bin. */

if Bmin
j > bin then
bin← Bmin

j
idle← Lmax

bin
s← sj

while s > 0 do
if idle > s then

idle← idle− s
s← 0

else
s← s− idle
bin← bin + 1
idle← Lmax

bin

/* place item i without preemption */
if Bmin

i > bin then
bin← Bmin

i
idle← Lmax

bin

while idle < si do
bin← bin + 1
idle← Lmax

bin

idle← idle− si

return bin, idle

We selected some instances of SALBP-2 from the bench-
mark of (Scholl 93) with a number of tasks ranging from 29
to 148. The name of the instances are given in Table 2 with
the number of tasks indicated between parentheses. For each
of the precedence graph (instance) we generate three prob-
lems with 6, 10 and 14 workstations (bins).

All experiments where conducted with Ilog solver 6.3
with a CPU Intelr Xeon(TM) 2.80GHz with a timeout of
300 seconds.

As first experiment, we propose the solve the problem
with a Branch and Bound DFS using Heuristic 1 for three
different models:
• C: state of the art CP model (1-4) and IloPack.
• D: C + redundant constraints (6).
• E: D + new filtering algorithm. The filtering algorithm

of the global constraint is triggered whenever one of the
bounds of a bin load variable Li changes.
The results obtained (time and best objective) for the set-

tings C, D and E with the first and the second heuristic are

Heuristic 1
m Time (s) Objective

C D E C D E
Buxey(29)

6 1 0 0 55 55 55
10 0 1 0 34 34 34
14 7 1 2 25 25 25

Kilbrid(45)
6 1 34 33 92 92 92

10 6 300 8 56 74 56
14 5 32 2 55 55 55

Hahn(53)
6 2 2 2 2400 2400 2400

10 3 1 1 1775 1775 1775
14 25 1 1 1775 1775 1775

Warnecke(58)
6 300 1 1 260 258 258

10 300 300 71 158 166 155
14 300 42 19 112 111 111

Tonge(70)
6 19 68 68 585 585 585

10 300 300 300 355 352 352(352)

14 300 300 300 326 267 267(251)

Wee-mag(75)
6 300 300 300 254 254 252(250)

10 300 300 300 235 201 201(150)

14 300 300 300 235 201 201(108)

Lutz2(89)
6 300 6 6 142 81 81

10 300 300 93 142 62 49
14 300 300 300 348 41 41(35)

Mukherje(94)
6 300 12 10 972 704 704

10 300 43 47 972 424 424
14 300 111 93 972 311 311

Barthold(148)
6 4 5 5 939 939 939

10 300 28 28 574 564 564
14 300 300 300 569 407 407(403)

Heuristic 2
m Time (s) Objective

C D E C D E
Buxey(29)

6 3 0 0 55 55 55
10 300 0 0 34 34 34
14 0 0 0 25 25 25

Kilbrid(45)
6 6 0 0 92 92 92

10 1 1 1 56 56 56
14 0 0 0 55 55 55

Hahn(53)
6 98 1 1 2400 2400 2400

10 300 1 1 1827 1775 1775
14 0 0 0 1775 1775 1775

Warnecke(58)
6 47 1 1 258 258 258

10 300 300 300 160 158 156(155)

14 300 300 300 113 112 112(111)

Tonge(70)
6 126 3 3 585 585 585

10 300 15 15 369 352 352
14 300 161 144 260 251 251

Wee-mag(75)
6 4 2 2 250 250 250

10 300 300 300 152 151 151(150)

14 300 300 300 111 111 111(108)

Lutz2(89)
6 300 1 1 83 81 81

10 300 2 2 51 49 49
14 300 2 2 36 35 35

Mukherje(94)
6 300 5 5 706 704 704

10 300 5 5 424 424 424
14 300 300 300 318 313 313(311)

Barthold(148)
6 300 300 300 940 940 940(939)

10 300 300 300 566 566 566(564)

14 300 31 34 404 403 403

Table 2: Results with Heuristics 1 and 2 for settings C, D and E.

given in Table 2. The optimum value is given in exponent
between parentheses whenever the optimality could not be
proved.

Analysis of results with heuristic 1: The positive effect
of the redundant constraints and the global constraint is quite
clear. Indeed, settings C, D and E allow to solve and prove
the optimality of respectively 11, 17 and 20 instances on a
total of 27 within a time limit of 5 minutes (300 seconds).
See for example for example Lutz2 instance with 10 work-
stations that could be solved only with the global constraint.

Analysis of results with heuristic 2: Settings C, D and E
allow to solve and prove the optimality of respectively 10,
20 and 20 instances on a total of 27 within a time limit of
5 minutes (300 seconds). The positive effect of the redun-
dant constraints is still impressive but the global constraint

does not allow to solve additional instances. For the instance
Warnecke with 10 workstations, the objective is better with
the global constraint.

Heuristic 2 allows to solve instances intractable with
heuristic 1 (e.g. Barthold 14). The contrary is also true since
the Warnecke instance with 10 and 14 workstations cannot
be solved with heuristic 2 and can be easily solved with
heuristic 1. For the most difficult instances unsolved with
both heuristics (Wee-mag 10 and Wee-mag 14), heuristic
2 obtains a better objective value (151<201 and 111<201)
very close to the optimal values 150 and 108.

Comparison with state of the art dedicated algorithm:
The state of the art algorithm for this problem is Salome 2
(Klein & Scholl 1996; Scholl & Becker 2006). A binary
file of the implementation of the algorithm is available on
www.assembly-line-balancing.de. Salome 2 finds the opti-

mal solutions of almost all the instances within less than one
second. As with our solution, it is not able to find and prove
the optimum for the instances Wee-mag 10 and Wee-mag
14. Salome 2 uses a lot of dominance and reduction rules
specific to this problem and objective function.

Generalized Assembly Line Balancing Problem:
SALBP-2 is an academic problem. In real life assembly
line problems, additional requirements are possible and the
dominance rules used in Salome 2 are not valid anymore.
Some possible additional constraints are (Becker & Scholl
2006):

• some tasks must be assigned in the same station,

• some tasks can not be assigned in the same station,

• there is a restriction on the cumulated value of particular
task attributes,

• some tasks need to be assigned to particular stations,

• some tasks can not be assigned to particular stations,

• some tasks need a special station,

• some tasks need a minimum distance to other tasks,

• some tasks need a maximum distance to other tasks.

All these additional constraints can be very easily added
our CP model without changing anything else while ded-
icated algorithms such as Salome 2 cannot. To show the
flexibility of our approach we have added some constraints
to the Barthold instance with 10 workstations to form a
Generalized Assembly Line Balancing Problem (GALBP):
|B138 − B16| ≤ 2, |B104 − B41| ≥ 2, |B12 − B35| ≤ 2,
|B65 − B76| ≤ 2, |B101 − B102| ≥ 2, |B83 − B113| ≥ 2,
|B19 −B28| ≥ 3 and B16 = 4.

The time needed to reach and prove optimality (662) for
settings C, D and E with Heuristic 1 are respectively 458,
171 and 143 seconds. Heuristic 2 gives bad results on the
GALBP because we designed it specifically for problems
with precedence constraints only. Here again, the new re-
dundant and global constraints really help to solve the prob-
lem faster. This problem is unsolvable with state of the art
dedicated algorithms such as Salome 2.

Another advantage of the constraint programming ap-
proach is that the objective function can be easily changed.
For example, it is often desirable to smooth the workload
among a given number of stations (Becker & Scholl 2006;
Scholl & Becker 2006; Rekiek et al. 1999). This prob-
lem is called Vertical Line Balancing. This can be effi-
ciently achieved in CP with the global constraints spread
and deviation for the variance (Pesant & Regin 2005;
Schaus et al. 2006) and the mean absolute deviation (Schaus
et al. 2007).

Conclusion and Perspectives
We proposed a CP model for BPPC and SALBP-2, al-
lowing a flexible expression of new constraints, such as
in GALBP. We also designed a global BPPC constraint
based on set variables representing the predecessors of each
items, which exploits the transitive closure of the precedence

graph. We have conducted an experimental validation on
standard SALBP-2 benchmarks, showing the feasibility, the
efficiency, and the flexibility of this approach. As future
work, we plan to make an hybridization of CP and Local
Search through Large Neighborhood Search. We also plan
to use spread and deviation to solve the Vertical Line
Balancing Problem. Currently there exists no exact method
for this problem.

Acknowledgements
This research is supported by the Walloon Region, project
Transmaze (516207) and partially by Interuniversity Attrac-
tion Poles Programme (Belgian State, Belgian Science Pol-
icy).

References
Becker, C., and Scholl, A. 2006. A survey on problems and meth-
ods in generalized assembly line balancing. European Journal of
Operational Research 168(3):694–715.
Boysen, N.; Fliedner, M.; and Scholl, A. 2007. A classification
of assembly line balancing problems. European Journal of Oper-
ational Research 674–693.
Castro, C., and Manzano, S. 2001. Variable and value ordering
when solving balanced academic curriculum problem. Proc. of
the ERCIM WG on constraints.
Cormen, T. H.; Stein, C.; Rivest, R. L.; and Leiserson, C. E. 2001.
Introduction to Algorithms. McGraw-Hill Higher Education.
Gervet, C. 1993. New structures of symbolic constraint objects:
sets and graphs.
Hnich, B.; Kiziltan, Z.; and Walsh, T. 2002. Modelling a balanced
academic curriculum problem. Proceedings of CP-AI-OR-2002.
ILOG-S.A. Ilog solver 6.3. user manual.
Klein, R., and Scholl, A. 1996. Maximizing the production rate in
simple assembly line balancing: A branch and bound procedure.
European Journal of Operational Research 91(2):367–385.
Pesant, G., and Regin, J.-C. 2005. Spread: A balancing constraint
based on statistics. Lecture Notes in Computer Science 3709:460–
474.
Rekiek, B.; De Lit, P.; Pellichero, F.; Falkenauer, E.; and
Delchambre, A. 1999. Applying the equal piles problem to bal-
ance assembly lines. Proceedings of the 1999 IEEE International
Symposium on Assembly and Task Planning 399–404.
Schaus, P.; Deville, Y.; Dupont, P.; and Régin, J. 2006. Simpli-
cation and extension of the spread constraint. Third International
Workshop on Constraint Propagation And Implementation.
Schaus, P.; Deville, Y.; Dupont, P.; and Régin, J. 2007. The
deviation constraint. LNCS CP-AI-OR 4510:269–284.
Scholl, A., and Becker, C. 2006. State-of-the-art exact and heuris-
tic solution procedures for simple assembly line balancing. Euro-
pean Journal of Operational Research 168(3):666–693.
Scholl, A. 93. Data of assembly line balancing problems. Tech-
nische Universitt Darmstadt.
Shaw, P. 2004. A constraint for bin packing. In Wallace, M., ed.,
CP, volume 3258 of LNCS, 648–662. Springer.
Van Hentenryck P., C. J.-P. 1988. Generality versus specificity: an
experience with ai and or techniques. In Proceedings of AAAI-88.
van Hoeve, W.-J., and Katriel, I. 2006. Global constraints. In
Rossi, F.; Beek, P. V.; and Walsh, T., eds., Handbook of constraint
programming. Elsevier. chapter 6, 169–208.

