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Abstract

Table constraints are very useful for modeling combinato-
rial constrained problems, and thus play an important role in
Constraint Programming (CP). During the last decade, many
algorithms have been proposed for enforcing the property
known as Generalized Arc Consistency (GAC) on such con-
straints. A state-of-the art GAC algorithm called Compact-
Table (CT), which has been recently proposed, significantly
outperforms all previously proposed algorithms. In this pa-
per, we extend this algorithm in order to deal with both short
supports and negative tables, i.e., tables that contain univer-
sal values and conflicts. Our experimental results show the
interest of using this fast general algorithm.

Introduction

Table constraints, also called extension(al) constraints, ex-
plicitly express for the variables they involve, either the al-
lowed combinations of values, called supports, or the for-
bidden combinations of values, called conflicts. Table con-
straints can theoretically encode any kind of restrictions and
are consequently very important in Constraint Programming
(CP). Indeed, as especially claimed by people from indus-
try (e.g., IBM and Google), table constraints are often re-
quired when modeling combinatorial constrained problems
in many application fields. The design of filtering algorithms
for such constraints has generated a lot of research effort,
see (Bessiere and Régin 1997; Lhomme and Régin 2005;
Lecoutre and Szymanek 2006; Gent et al. 2007; Ullmann
2007; Lecoutre 2011; Lecoutre, Likitvivatanavong, and Yap
2015; J.-B. Mairy and Deville 2014; Perez and Régin 2014;
Wang et al. 2016; Demeulenaere et al. 2016).

On classical tables, i.e., sequences of ordinary tuples,
the algorithmic progresses that have been made over the
years for maintaining the property called GAC (Generalized
Arc Consistency) are quite impressive. Roughly speaking,
an algorithm such as Compact-Table (Demeulenaere et al.
2016) is about one order of magnitude faster than the best
algorithm(s) proposed a decade ago (Lhomme and Régin
2005; Lecoutre and Szymanek 2006; Gent et al. 2007; Ull-
mann 2007). Unfortunately, table constraints admit practi-
cal boundaries because the memory space required to repre-
sent them may grow exponentially with their arity. To reduce
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space complexity, researchers have focused on various forms
of compression. For example, tries (Gent et al. 2007), Multi-
valued Decision Diagrams (MDDs) (Cheng and Yap 2010;
Perez and Régin 2014) and Deterministic Finite Automaton
(DFA) (Pesant 2004) are general structures used to represent
table constraints in a compact way, so as to facilitate filtering
process.

Cartesian product is another classical mechanism to rep-
resent compactly large sets of tuples. This is the approach
followed by works on compressed tuples (Katsirelos and
Walsh 2007; Régin 2011; Xia and Yap 2013) and short sup-
ports and tuples (Jefferson and Nightingale 2013). A short
tuple allows the presence of universal values, denoted by the
symbol *, meaning that some variables can take any values
from their domains. Other forms of compact representation
are obtained by means of sliced tables (Gharbi et al. 2014)
and smart tables (Mairy, Deville, and Lecoutre 2015).

Compact-Table (CT) is a state-of-the-art GAC algorithm
for positive (ordinary) table constraints, i.e., constraints de-
fined by tables containing (uncompressed) supports. In this
paper, we extend CT in order to be able to deal with:

e negative tables (i.e., tables containing conflicts),

e and/or short tuples (i.e., tuples containing the symbol *).

Technical Background

A constraint network (CN) N is composed of a set of n vari-
ables and a set of e constraints. Each variable x has an asso-
ciated domain, denoted by dom(x), that contains the finite
set of values that can be assigned to it. Each constraint c in-
volves an ordered set of variables, called the scope of ¢ and
denoted by scp(c), and is semantically defined by a relation,
denoted by rel(c), which contains the set of tuples allowed
for the variables involved in c. The arity of a constraint ¢
is |sep(c)|. For simplicity, a variable-value pair (x, a) such
that € scp(c) and a € dom(z) is called a value (of ¢). A
table constraint ¢ is a constraint such that rel(c) is defined
explicitly by listing (in a table) the tuples that are allowed by
c or the tuples that are disallowed by c. In the former case,
the table constraint is said to be positive whereas in the latter
case, it is said negative.

Let 7 = (a1,a2,...,a,) be a tuple of values as-
sociated with an ordered set of variables wvars(r) =
{z1,xa,...,x,}. The ith value of 7 is denoted by 7[i] or
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Figure 1: Equivalence between ordinary and short tables

Tlx;), and 7 is valid iff Yi € 1l.r,7[i]] € dom(z;). T
is a support (resp., a conflict) on a constraint ¢ such that
vars(t) = scp(c) iff 7 is a valid tuple allowed (resp., disal-
lowed) by c. If 7 is a support (resp., a conflict) on a constraint
¢ involving a variable = and such that 7[z] = a, we say that
T is a support for (resp., a conflict for) (x,a) on c.
Generalized Arc Consistency (GAC) is a well-known
domain-filtering consistency defined as follows: a constraint
¢ is GAC iff Vz € sep(c),Va € dom(x), there exists at
least one support for (x,a) on ¢. A CN N is GAC iff ev-
ery constraint of NV is GAC. Enforcing GAC is the task of
removing from domains all values that have no support on
some constraint(s). Many algorithms have been devised for
establishing GAC according to the nature of the constraints.
A very useful form of compression for tables is based on
the concept of short tuples (Jefferson and Nightingale 2013).
A short tuple allows some variables to be left out, mean-
ing that these variables can take any values from their do-
mains, which is represented by the symbol *. As an illus-
tration, Figure 1 shows on the left an ordinary table, and on
the right an equivalent short table, i.e., a table containing
short tuples. Here, assuming that dom(y) = {a,b, c}, the
short tuple 7 = (¢, *, a) represents the three ordinary tu-
ples 11, = (¢,a,a), T1p = (¢,b,a) and 71, = (¢, ¢,a), and
we say that these three tuples are subsumed by 11. A short
tuple 7 is valid iff Vi € [1; 7], 7[i] = * or 7[i] € dom(x;).

Compact-Table (CT) Algorithm

Compact-Table (CT) is a state-of-the-art algorithm for en-
forcing GAC on positive table constraints (Demeulenaere et
al. 2016). It first appeared in Or-Tools, the Google solver
that has been very competitive at the latest MiniZinc Chal-
lenges, and is now implemented in constraint solvers Os-
caR, AbsCon and Choco. CT benefits from well-established
techniques: bitwise! operations (Bliek 1996; Lecoutre and
Vion 2008), residual supports (Lecoutre, Boussemart, and
Hemery 2003; Likitvivatanavong et al. 2004; Lecoutre and
Hemery 2007), tabular reduction (Ullmann 2007; Lecoutre
2011; Lecoutre, Likitvivatanavong, and Yap 2015) and reset-
ting operations (Perez and Régin 2014). This section briefly
describes the algorithm.

CT, applied to a positive table constraint c, introduces a
bitset called currTable that keeps track at every node of

"Exploiting bit vectors becomes a more and more popular topic
in CP. See, e.g., (Van Kessel and Quimper 2012; Michel and
Van Hentenryck 2012; Wang, Sgndergaard, and Stuckey 2016).

|z y =z

1lec a a | m 2 T3

™ la b ¢ [z,a] | 0 1 0

s |b ¢ b [zb) [ 0 0 1

(a) A positive table with 3 tu- [, ] 1 0 0
ples [y,a] | 1 0 0
[y,0] [ O 1 0

[y,e) | O 0 1

1 T2 T3
1 1 1

- (c) Bitsets supports
(b) Bitset currTable

Figure 2: Bitsets introduced for CT

the search tree built by a backtrack algorithm that maintains
GAC the tuples in the table of c that are currently valid: the
tth bit of currTable is set to 1 iff the ith tuple 7; of the
table of c is currently valid. To help updating dynamically
this structure, a bitset called supports|z,a] is computed
initially (and never updated) for every value (x, a) of c¢. Each
bit at position ¢ indicates if the ith tuple 7; of the table of ¢
contains (z, a), i.e., is such that 7;[x] = a. An illustration is
given by Figure 2.

In this paper, we present a simplified form of CT, Algo-
rithm 1. The main method to call for enforcing GAC on a
positive table constraint ¢ (assuming that c is represented by
a programming object) is enforceGAC(). Its principle is to
update first the current table, filtering out (indices of) tuples
that have become invalid, and to check afterwards whether
each value has still a support.

When the algorithm is called, we assume that we get for
each variable x in the scope of ¢ (simply denoted by scp) the
set of values A, that have been removed since the last invo-
cation of the algorithm. This allows us to choose in Method
updateTable() between iterating over either the values in the
current domain of x or the values in A,, so as to update
the bitset currTable. An illustration of these two updating
modes is given by Figure 3: we suppose here that A, = {b},
and we can observe that choosing the incremental update
saves some operations compared to the reset-based one.
Note that the variable mask in Method updateTable() is a
local bitset used to update currTable through bitwise op-
erations.

Once the current table has been updated, Method filter-
Domains() tests if each value has still a support by means of
a simple bitwise intersection. For example, if currTable is
1 0 1, we can infer that the value (z,a) can be removed
because supports|z,alis 0 1 0 and

101 &« 010 = 000

Of course, many improvements, not detailed here due
to lack of space, permit a very efficient filtering process.
Limiting some operations to subsets of variables (denoted
by "% and S**P) or exploiting so-called residues has been
proved to be effective. Also, it is very important to note that
each bitset is a non-trivial data structure. Basically, each bit-
set bs is defined by an array bs.words of computer 64-bit
words, with bs.1length indicating the number of words. Im-



Algorithm 1: Class ConstraintCT

Method updateTable()
foreach variable x € scp do
mask < 0
if |Az| < |dom(z)| then
foreach value a € A, do
| mask < mask | supports(z, a]
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mask < mask
else
9 L foreach value a € dom(z) do

® 2

10 | mask < mask | supports(z, a]

1 currTable < currTable & mask

12 Method filterDomains()

13 foreach variable x € scp do

14 foreach value a € dom(z) do

15 if currTable & supports|z,a] = 0 then
16 L | dom(z) < dom(x) \ {a}

17 Method enforce GAC()
18 updateTable()

19 if currTable = O then
20 | return Backtrack
21 | filterDomains()

portantly, an index is used to identify at any moment the
subset of non-zero words in the bitset currTable, i.e., the
subset of words that contain at least one bit set to 1. By
means of a sparse-set structure (Briggs and Torczon 1993;
le Clément de Saint-Marcq et al. 2013), which permits effi-
cient reversibility when backtracking, all bitwise operations
can be performed with respect to only these non-zero words.
For example, suppose that the table of c initially contains
6,400 tuples, forming an array of 100 64-bit words, and that
at given node of the search tree, there is only one non-zero
word in currTable. Then, all operations at Lines 3, 6, 7,
10, 11, 15 and 19 in Algorithm 1 are processed while deal-
ing with only one word. Details can be found in (Demeule-
naere et al. 2016). Finally, note that 0 used at Lines 3 and 19
means computer words with all bits set to 0.

Dealing with Short Tables: CT*

Interestingly, CT can be easily adapted to deal with positive
tables containing short tuples without an increasing of the
worst-case time complexity, which is O(rdi) where 7 de-
notes the constraint arity, d the size of the largest domain, ¢
the number of tuples and w the size of the computer words
(e.g., w = 64). To handle short tables, a small modification
is required: instead of using for each value (x,a) of ¢ the
bitset supports|z, a] in both update strategies (see Lines 6
and 10 in Algorithm 1), we need two separate related bitsets.
For the reset-based update, we use the bitset supports|z, a]
whose ith bit indicates if (x, a) is accepted by the ith tuple
7; of the table of ¢, i.e., if 7;[z] = a V 7;[z] = *. For the in-
cremental update, we use the bitset supports*[z, a] whose
ith bit indicates if (z, a) is strictly accepted by the ith tuple
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Figure 3: Updating currTable from A, = {b}. (A) & (C)
on top, as well as (A) & (D) on bottom, allow us to compute
the new value of currTable.
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7; of the table, i.e., if 7;[x] = a. This means that for each
occurrence of * in a short tuple, the corresponding bits are
always set to O in the bitsets supports®. Figure 4 shows
an illustration, where bitsets supports and supports™ are
given for the short table depicted in Figure 1b.

Proposition 1 Algorithm 1, applied to a positive short table
constraint enforces GAC if Line 6 is replaced by:
mask < mask | supports*[z, a)

Proof: This holds because a short tuple 7 such that 7[y] =
*, is valid for any value remaining in dom(y).

At this stage, it is worthwhile to mention that a recently
published algorithm (Wang et al. 2016), called STRbit, also
exploits bit vectors. However, the data structures employed
are quite different, as for example, the main table VAL is
not shrunk dynamically contrary to currTable as well as
the bitsets BIT_SUP playing the role of supports. A variant
called STRbit-C can be used on compressed tuples, which
can be seen as encompassing short tuples. However the data
structures are quite sophisticated, which makes the handling
of short tuples non trivial. Besides, STRbit and its variants
have been developed exclusively on positive tables, contrary
to what we show in the next two sections for CT.



Dealing with Negative Tables: CT,,.,

The modifications brought to CT for dealing with nega-
tive tables, i.e., tables containing disallowed tuples, are dis-
cussed now. We keep working with the bitset currTable
that indicates which tuples from the initial table of c are
still valid, and we introduce bitsets conf1icts that are com-
puted exactly the same way as bitsets supports were. If the
table in Figure 2a would be assumed to be negative, then the
bitsets in Figure 2c¢ would be those for conflicts. Simply,
as the context is different, the meaning is different: instead of
permanently updating the table of supports in currTable by
means of bitsets supports, we permanently update the table
of conflicts in currTable by means of bitsets conflicts.

For filtering, the basic idea is to count for each value
(z,a) of ¢ how many valid tuples containing (z,a) are in
the current table of ¢ (hence, representing the number of con-
flicts for (z,a) on ¢) and to compare this number with the
number of valid tuples containing (x,a). When these two
numbers are equal, it simply means that all valid tuples con-
taining (, a) correspond to conflicts, and consequently that
no support for (x, a) on ¢ exists. Computing, in the context
of a constraint ¢, the number of valid tuples for any value in
the domain of a variable z is simple. This is:

HyESCp(c):y;éx|d0m<y)‘ (1)

Algorithm 2: Class ConstraintCT,,,

1 Method updateTable()
foreach variable x € scp do
mask < 0
if |Az| < |dom(z)| then
foreach value a € A, do
L mask < mask | conflicts[z,a]

= N7 RNV )

mask < "mask
else
9 foreach value a € dom(z) do
L | mask < mask | conflicts[z, d]

® 2

1 currTable < currTable & mask

12 Method filterDomains()

13 foreach variable x € scp do
14 foreach value a € dom(z) do
15 if nbls(currTable & conflicts|z,al)
= HUESCP:y#CL’|d0m(y)| then
16 dom(z) < dom(z) \ {a}
17 currTable < currTable &
“conflicts[z, a

18 Method enforceGAC()

19 updateTable()

20 if nbls(currTable) = Il cscp|dom(x)| then
21 | return Backtrack

2 | filterDomains()

When Method enforceGAC(), Algorithm 2, is called, the
first step is to update the current table, exactly as it is
done for positive table constraints, except that the bitsets

Algorithm 3: Function nb1s(bs: Bitset)

1 cnt <0
2 foreach i € 1..bs.1length do
3 | cnt < cnt+ Long.bitCount(bs.words|i])

4 return cnt

conflicts are used instead of supports. After this step,
one can possibly detect an inconsistency by computing the
number of conflicts in the current table of c¢. When this
number is equal to the number of valid tuples, it means
that no more supports exist. Function nbls(), Algorithm
3, permits to count the total number of bits set to 1 in
currTable by executing an optimized bitwise statement
such as “java.lang.Long.bitCount” (Warren 2002). Again, an
optimization, which is not detailed here although used in our
implementation, is to iterate over only non-zero words.

For filtering domains, we verify whether values have still
support or not. We call Function nb1s() on the bitwise inter-
section of currTable and conflicts[x, a] so as to com-
pute the number of conflicts for (x,a) on c. The rest of
the algorithm is similar to CT, except that when a value is
deleted, we have to update the current table at Line 17.

Proposition 2 Algorithm 2, applied to a negative table con-
straint c enforces GAC.

Proof: By means of Method updateTable() and state-
ment at Line 17, we maintain the set of conflicts on ¢ in
currTable. At Line 15, we can detect if no more support
exists for a given value (x, a), and delete it if necessary. H

The worst-case time complexity ends up to be O(rd £ k)
which is the same as CT and CT* multiplied by k the cost of
counting the active bits in a word (k = log(w) when using
Long.bitCount or can even be k£ = 1 on some architectures).

Dealing with Negative Short Tables: CT,

neg
We now show how we can extend CT to tables that are both
short and negative. There is however one limitation?: there
cannot be any overlapping between two short tuples. Two
short tuples 7, and 75 overlap iff there is an ordinary tuple
that is both subsumed by 71 and 7. For example, (a, *,b)
and (%, a, b) overlap since they both subsume (a, a, b).

One difficulty is to count (efficiently) the number of tuples
subsumed by short tuples. In order to speedup the counting
operation, the idea is to group the tuples such that each com-
puter word of the current table only refers to *-similar tuples.
Two (ordinary or short) tuples are *-similar iff they contain
the same number of * and at the same positions. For exam-
ple, (a, *,b) and (b, *, a) are *-similar. To make things clear,
let us consider the negative short table depicted in Figure
Sa. It contains 5 tuples, and one can observe the *-similarity
of 75 with 73 (since they are both ordinary tuples), and of
71 with 75. We then split this table of 5 tuples into three
groups. Importantly, in order to have only *-similar tuples
in each computer word (important property for counting, as

2This is due to our need of counting tuples. Overlapping tuples
made counting not trivial, and is let as a perspective of this work.
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seen later), we propose a very simple procedure that consists
in padding entries for each incomplete word with dummy
tuples (i.e., tuples only containing a special value L that is
not present in the initial domains of the variables) until the
word is complete. Assuming computer 4-bits words, on our
example, we obtain 3 words as shown in Figure 5b. The re-
structured bitset currTable is shown in Figure 5c; note the
presence of bits set to 0 to discard dummy tuples.

Once the bitset currTable has been restructured, count-
ing can be advantageously achieved for a given computer
word in conjunction with bit-wise operations. Indeed, the
number of ordinary tuples subsumed by any (short) tuple re-
ferred to in a given word of currTable is necessarily the
same. For example, assuming that dom(y) = {a,b,c}, 71
and 75, referred to in the second word of currTable, sub-
sume exactly 3 ordinary tuples each. For simplicity, in what
follows, we consider that nbSubsumedTuples(i) indicates
the number of ordinary tuples subsumed by any (short) tuple
referred to in the sth word of currTable. On our example,
nbSubsumedTuples(2) returns 3. With this auxiliary func-
tion, which can benefit from a cache in practice, counting is
now performed by Function nbls*, Algorithm 4.

Similarly to CT*, we also need two separate related bit-
sets for each value (x,a) of the negative short table con-
straint c. For the reset-based update, we use the bitset
conflicts[z, a] whose ith bit indicates if the value (z,a)
is accepted by the ith tuple 7; of the table of ¢, i.e., if
7;[x] = a V 7;[x] = *. For the incremental update, we use
the bitset conflicts*[z, a] whose ith bit indicates if (z, a)
is strictly accepted by the ith tuple 7; of the table, i.e., if
7;[x] = a. Of course, we need to take dummy tuples into
account when building these structures.

Proposition 3 Algorithm 2, applied to a negative short ta-

ble constraint c enforces GAC if

e structures conflicts are replaced by structures
conflicts® at Lines 6, 15 and 17,

e calls to Function nbls are replaced by calls to Function
nbls™ at Lines 15 and 20.

Proof: First, with Function nbls*, we count the right
number of bits set to 1 because computer words only contain
*-similar tuples. At Lines 6 and 17, we update currTable
with conflicts™® because * is a universal value, and con-
sequently, a short tuple can never become invalid through *.
Finally, when we count the number of bits set to 1 at Line
15, we use again conflicts™® because we have to consider
all possible values for each *.

The worst-case time complexity, similar to CT,q, is

(’)(rd%k), with ¢’ representing the number of tuples in the
table, including the dummy ones.

Algorithm 4: Function nb1s*(bs: Bitset)

1 cnt <0

2 foreach i € 1..bs.1length do

3 be < Long.bitCount(bs.words|i])

4 L cnt < cnt + be * nbSubsumedTuples(7)

5 return cnt

Experimental Results

We have implemented all algorithms described in this paper,
namely, CT, CT*, CT,,¢4 and CT},, in the Oscar solver (Os-
caR Team 2012), using 64-bit words (Long). Our implemen-
tation benefits from all optimization techniques described in
(Demeulenaere et al. 2016), which were briefly discussed in
the section about CT. Notably, we manage sparse sets in or-
der to avoid handling zero computer words. All the results
of our experiments are displayed using performance profiles
(Dolan and Moré 2002). A performance profile is a cumula-
tive distribution of the speedup performance of an algorithm
s € S compared to other algorithms of S over a set I of
instances: ps(7) = ﬁ x |{i € I :r; s < T}| where the per-

.. ti s .
formance ratio is defined as 7; , = m with ¢; 4

the time obtained with algorithm s € S on instance ¢ € 1. A
ratio ;. = 1 thus means that s is the fastest on instance i.

Unfortunately, to the best of our knowledge, there are no
available benchmarks for positive and negative short tables.
This can be explained by the fact that the first algorithm
dedicated to positive short tables has only been published
recently (Jefferson and Nightingale 2013), and that CT7, ., is
the first algorithm in the literature that can deal with nega-
tive short tables. However, we expect that short tables will
become popular in the near future because i) they represent
a useful modeling tool, ii) they can be directly represented in
format XCSP3 (Boussemart, Lecoutre, and Piette 2016), and
iii) the algorithms proposed in this paper are very efficient.

Consequently, we have generated random tables, varying
the tightness of the tables (ratio number of tuples in the
table’ over 'total number of possible tuples’) following the
discussion in (Perez and Régin 2014).
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Positive Short Tables

The series we used contains 600 instances, each with 20
variables whose domain sizes range from 5 to 7, and 40 ran-
dom positive short table constraints of arities 6 or 7, each
table having a tightness comprised between 0.5% and 2%
and a proportion of short tuples equal to 1%, 5%, 10% and
20%. Figure 6 shows the results obtained on these positive
short tables, mainly comparing CT* and ShortSTR2 (Jeffer-
son and Nightingale 2013). Clearly, CT* outperforms Short-
STR2 that is at least 7 times slower than CT* for 50% of
the instances. We have also tested CT and STR2 (Lecoutre
2011) on these instances after converting short tables into or-
dinary tuples. Here, we can can observe that CT* is 2 times
faster than CT on 20% of the instances, while saving mem-
ory space.

Negative Short Tables

On a first series, generated with the same parameters as
above except that negative short tables replace positive short
tables, Figure 7 shows that CTy., and CTy, ., are slightly
outperformed (at most 1.4 and 1.6 times slower, respec-
tively) by STRNe (Li et al. 2013), which is an adaptation
of STR2 for negative tables; for CT,., and STRNe, note
that short tables had to be converted into ordinary tables.
The second series we used does not involve short tables and
contains 45 (more difficult) instances, each with 10 vari-
ables whose domain size is 5, and 40 random negative table
constraints of arity 6, each table having a tightness of 10%,
20%, . .., 90%. Figure 8 shows the results we obtained with
CT.eq and STRNe. We also plot the curve for CT;,,, even
if only ordinary tables are present, so as to observe the over-
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head introduced by the handling of the *-similarity groups.
Clearly, CT,,4 outperforms STRNe that requires at least 3
times more time for around half of the hardest instances.
Unlike the previous series that only contains satisfiable in-
stances, about half of the instances of this series are unsat-
isfiable, making CT,,., more suitable in general when the
outcome of the problem is not known in advance.

The third series contains 100 instances, each with 3 vari-
ables whose domain size is 100, and 40 random negative
short table constraints of arity 3, each table having a tight-
ness ranging from 0.5% to 2% and a proportion of short tu-
ples equal to 5%, 10% and 20% (with no overlapping be-
tween short tuples). Here, we want to emphasize that CT;,,
can be very efficient, compared to STRNe, when the domain
sizes and the number of short tuples are very large. This is
visible in Figure 9. Roughly speaking, CTj,., is about 10
times speedier on average.

Conclusion

In this paper, we have proposed three extensions of the state-
of-the-art GAC algorithm for positive table constraints CT.
The new algorithms, CT*, CT,., and CT;"leg, can handle
short tables, negative tables, and negative short tables, re-
spectively. Exploiting bitwise operations, and notably effi-
cient bitwise counting of bits set to 1 in computer words,
these algorithms are particularly competitive, as shown by
our experiments. We do believe that these algorithms will
be adopted by constraint solver developers because short ta-
bles will become more and more popular, as they represent
a natural and simple modeling mechanism.
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