
Noname manuscript No.
(will be inserted by the editor)

Improved Filtering for the Bin-Packing with
Cardinality Constraint

Guillaume Derval · Jean-Charles Régin ·
Pierre Schaus

Received: date / Accepted: date

Abstract Previous research shows that a cardinality reasoning can improve
the pruning of the bin-packing constraint. We first introduce a new algorithm,
called BPCFlow, that filters both load and cardinality bounds on the bins,
using a flow reasoning similar to the Global Cardinality Constraint. More-
over, we detect impossible assignments of items by combining the load and
cardinality of the bins, using a method to detect items that are either ”too-
big” or ”too-small”. This method is adapted to two previously existing fil-
tering techniques along with BPCFlow, creating three new propagators. We
then experiment the four new algorithms on Balanced Academic Curriculum
Problem and Tank Allocation Problem instances. BPCFlow is shown to be
indeed stronger than previously existing filtering, and more computationally
intensive. We show that the new filtering is useful on a small number of hard
instances, while being too expensive for general use. Our results show that
the introduced ”too-big/too-small” filtering can most of the time drastically
reduce the size of the search tree and the computation time. This method is
profitable in 88% of the tested instances.

Keywords Bin-packing, cardinality, flows, constraints

G. Derval
UCLouvain, Belgium
E-mail: guillaume.derval@uclouvain.be

J-C. Régin
University of Nice Sophia-Antipolis, France
E-mail: jcregin@gmail.com

P. Schaus
UCLouvain, Belgium
E-mail: pierre.schaus@uclouvain.be

2 Guillaume Derval et al.

1 Introduction

The Bin-Packing constraint [19] models the assignment of a set of weighted
items to a set of bins. More exactly

BinPacking([X0, . . . , Xn−1], [w0, . . . , wn−1], [L0, . . . , Lm−1])

with Xi the bin to which the item i is assigned, wi the weight of this item and
Lj the load of the bin j. The constraint enforces that ∀j ∈ [0,m − 1] : Lj =∑

i|Xi=j wi.

Domain consistency filtering for Bin-Packing constraints is NP-hard. Hence
the community has worked on filtering algorithms based on relaxations follow-
ing three main directions:

– The problem can be viewed as a combination of one knapsack problems for
each bin [19]. However since it does not consider links between the bins,
the filtering poorly prunes when there are many items per bin [14].

– A natural way to see the problem is the transportation model [16]. The
transportation model uses network flows, where each item acts as a source
with capacity equal to its weight, and each bin acts as a sink. This model
captures the interactions between items and bins, but since items are al-
lowed to be cut, the relaxation is quite poor.

– Another model, the assignation model, also uses the flow view of the prob-
lem, but does not allow the item to be cut, at the expense of losing infor-
mation about the weights. To do so, it introduces redundant cardinalities.
This view is very similar to the one used by the filtering of the Global
Cardinality Constraint [15].

This last model, also known as the cardinality reasoning method, is inter-
esting on problems dominated by the assignment aspects of bin-packing. It
has shown interesting results in [18].

In the following sections, we describe a method to use the item weight in-
formation directly in the assignation model, by using the concept of minimum-
cost flows, to compute bounds on loads and cardinalities of the bins. We then
introduce a new kind of reasoning, called ”too-big/too-small”, which permits
to remove candidate items from bins.

2 Definitions and related works

Multiple propagators exist for the Bin-Packing constraint, notably the one
from Shaw[19] which attempts to filter domains of the Xi variables using a
knapsack formulation. Some work attempted to develop inconsistency check
relying on standard bin-packing lower bounds [2]. Finally, a linear program-
ming Arc-flow reformulation was proposed in [1]. Multiple lower and upper
bounds have been found for the Bin-Packing problem, such as [8,9].

Improved Filtering for the Bin-Packing with Cardinality Constraint 3

Bin-Packing with Cardinality (BPC) was introduced in [18,13] as an ex-
tension to the Bin-Packing constraint:

BinPacking([X0, . . . , Xn−1], [w0, . . . , wn−1], [L0, . . . , Lm−1], [C0, . . . , Cm−1])

with variable Cj the cardinality (number of items assigned) of bin j. It addi-
tionally enforces that ∀j ∈ [0,m− 1] : Cj = |{i | Xi = j}|.

The BPC constraint is modeled in [18] decomposing it as a standard
BinPacking and a Global Cardinality Constraint (GCC) [15]. An additional
simple algorithm computes a lower bound on the loads using the cardinalities,
which we recall in section 2.1 improving the communication between the GCC
and BinPacking. As shown experimentally in [18], even for bin-packing prob-
lems that are initially not constrained by cardinalities this combination can
bring additional pruning of the search tree.

Pelsser et al.[13] introduce an improved algorithm to further tighten the
bounds on the loads and cardinalities. The propagator is recalled briefly in
section 2.2.

Other lower and upper bounds for the BPC (or similar problems that can
represent BPC) are presented in [6–8,10].

In the following sections, we consider that, without loss of generality, the
items are ordered by decreasing weight: wi ≥ wj if i < j. We also denote by Y
and Y respectively the upper and lower bound of a given integer variable Y .

Definition 1 Let packed j be the set of items already packed in the bin j, and
let cand j be the set of items that can be assigned to the bin j:

packed j = {i | dom(Xi) = {j}} cand j = {i | j ∈ dom(Xi)∧| dom(Xi)| > 1}

We also define sum(S) =
∑

i∈S wi the sum of weights of items in set S.

2.1 Lower bound on the loads: the SimpleBPC propagator

A lower bound on the cardinality is introduced by Schaus et al.[18]. For each
bin, it finds a minimum cardinality subset Aj of cand j such that sum(Aj) ≥
Lj − sum(packed j). The update rule on the cardinality variable lower bound
is:

Cj ← max(Cj , |packed j |+ |Aj |)

Similarly, after computing the maximum cardinality subsetBj such that sum(Bj) ≤
Lj − sum(packed j), we have that

Cj ← min(Cj , |packed j |+ |Bj |)

Aj and Bj are computed greedily. For example, for Aj , with the items taken
sorted by decreasing weight, the algorithm simply computes the running sum
of weights until it overflows Lj . The SimpleBPC propagator runs in O(nm),
as it needs to visit cand j for each bin j.

4 Guillaume Derval et al.

2.2 Pelsser’s propagator

The contribution of Pelsser et al.[13] is twofold: they introduce a new upper
and lower bound for Lj and provide a more precise way to compute Aj and
Bj , using the information of the possible attributions of items to other bins.
The new bounds are:

Lj ← max(Lj , sum(packed j) + sum(Ej))

Lj ← min(Lj , sum(packed j) + sum(Fj))

with Ej (resp. Fj) the Cj − |packed j | (resp. Cj − |packed j |) first items of

minimum (resp. maximum) weight assignable together to bin j.
Aj , Bj , Ej and Fj are not computed using the previously presented greedy

algorithm. The propagator takes into account the other bins, by using only
items that are not required by other bins to fulfill their own capacity require-
ments.

More precisely, while updating the bounds on a bin j, the algorithm main-
tains an array availableForBin, where initial value for availableForBink is
|candk| − (Ck − |packedk|), which can be viewed as the number of items that
the bin k ”doesn’t need” to fulfill its cardinality lower bound Ck. Items are
then selected greedily, in the same way as the previous algorithm, but an item
i can only be taken if

∀k ∈ dom(Xi) ∧ k 6= j : availableForBink > 0

that is, no other bin k needs object i to fulfill its own lower cardinality re-
quirement Ck. In case the condition is not met, this item is not used and the
next (larger) one is considered. Each time an item i is taken (for Aj , Bj , Ej or
Fj), availableForBin is updated accordingly:

availableForBink ← availableForBink −
{

1 if k ∈ dom(Xi)
0 otherwise

Example 1 Let us compute the set Fa for the BPC instance presented in Figure
1. Fa should contain the four heaviest items assignable to bin a, without vio-
lating bounds requirements of other bins. The initial values in availableForBin
are (b = 2, c = 3, d = 2).

Items are visited in decreasing weight order. The item of weight 6 can
be added to Fa; availableForBin is updated accordingly, its new value being
(b = 1, c = 2, d = 2). Then items1 5 and 4 can also be taken, leading to values
(b = 0, c = 0, d = 2).

From there, we see that the item of weight 3 cannot be taken as availableForBinb =
0. Assigning it in addition to the previously selected item would break the car-
dinality requirement of bin b. Similarly, item 2 cannot be taken as availableForBinc =
0.

1 For simplicity, we use in the remaining of this paper items weights as a way to identify
items

Improved Filtering for the Bin-Packing with Cardinality Constraint 5

items (weights) bins

Ca = [0, 4]

Cb = [1, 2]

Cc = [1, 2]

Cc = [0, 2]

6

5

4

3

2

1

a

b

c

d

Fig. 1: BPC instance for Example 1. Weights associated with items are shown
in their respective nodes.

Item 1 fulfills the requirements to be included in Fa, as availableForBind =
1. We obtain Fa = {6, 5, 4, 1}, which provides a better bound (La ≤ 16) than
the one SimpleBPC obtains (La ≤ 18).

Additionally, if, when filling Aj (resp. Ej), the minimum load requirement Lj

(resp. cardinality requirement Cj) is not reached, the problem is unfeasible.

Compared to SimpleBPC, verifying availableForBin each time an item is
added makes Pelsser’s propagator run in O(nm2).

3 Using flow reasoning on the BPC

3.1 IsolatedBinPackingCardinality constraint

In this section, we present a new propagator that subsumes the one from
Pelsser et al.2, by using the same lower and upper bounds for L and C, but
uses a flow reasoning inherited from propagators of the Global Cardinality
Constraint (GCC)[15] to compute the various sets Aj , Bj , Ej and Fj . Note
that GCC is in fact a particular case of Bin-Packing, where all items’ weights
are unitary.

In order to pose a theoretical foundation on the flow representation of the
problem, we introduce a new constraint, IsolatedBPC:

IsolatedBPC([X0, . . . , Xn−1], [w0, . . . , wn−1], j, Lj , [C0, . . . , Cm−1]) ≡
Lj =

∑
i|Xi=j wi (Load in isolation)

∀k ∈ [0,m− 1] : Ck = |{i | Xi = k}| (GCC constraint)

2 which itself subsumes SimpleBPC

6 Guillaume Derval et al.

IsolatedBPC is obviously a decomposition of the Bin-Packing with Cardi-
nality constraint:

BinPacking([X0, . . . , Xn−1], [w0, . . . , wn−1], [L0, . . . , Lm−1], [C0, . . . , Cm−1]) ≡∧
j∈[0,m−1]

IsolatedBPC([X0, . . . , Xn−1], [w0, . . . , wn−1], j, Lj , [C0, . . . , Cm−1])

3.2 Flow theory background

We recall the basic concepts of network-flow theory [3–5] :

Definition 2 A flow network G is an oriented graph, for which each edge
(u, v) is additionally associated with a lower and upper capacity, called respec-
tively low(u, v) and up(u, v). A flow f(u, v) is a function which represents the
flow going from a vertex u to another vertex v, and which additionally respects
the conservation law3: ∀u :

∑
v f(u, v) =

∑
v f(v, u). That is, the amount of

flow entering into a node u must be equal to the amount of flow exiting it.

Definition 3 A valid flow f is a flow which respects the lower and upper
capacity of each edge: ∀u, v : low(u, v) ≤ f(u, v) ≤ up(u, v). A maximum
flow for an edge (u, v) is a flow f that maximizes the flow value on the edge
linking nodes u and v.

For simplicity of representation, we use in the remaining of this paper two
special nodes: the source s and the sink t, which are linked by an edge with
low(t, s) = 0 and up(t, s) = ∞. This edge is most of the time implied, and
when no indication on which edge the flow is maximal, it is always between t
and s.

Definition 4 A weighted flow network is a regular flow network that as-
sociates with each edge (u, v) a cost per unit of flow denoted p(u, v). The
total cost of a flow is then:

cost(f) =
∑
u,v

f(u, v) · p(u, v)

A minimum cost maximum flow f is a flow that is maximum, and that has
the minimum possible cost (i.e. there does not exist another maximum flow f ′

such that cost(f) > cost(f ′)). Max-cost max-flow and min-cost min-flow are
defined in a similar way.

Definition 5 The residual graph of a flow network G and of a flow f is
noted RG(f). It is composed of the same vertices as the original graph, and
its edges are defined as follows: ∀ edge (u, v) ∈ G,

3 low(u, v) = 0, up(u, v) = 0 and f(u, v) = 0 if the edge (u, v) does not exist

Improved Filtering for the Bin-Packing with Cardinality Constraint 7

– If f(u, v) < up(u, v), then (u, v) ∈ RG(f), and two values are associ-
ated with this edge: its capacity up′(u, v) = up(u, v)− f(u, v) and its cost
p′(u, v) = p(u, v)

– If f(u, v) > low(u, v), then (v, u) ∈ RG(f), and two values are associated
with this edge: its capacity up′(v, u) = f(u, v) − low(u, v) and its cost
p′(v, u) = −p(u, v)

An augmenting path of capacity a in a residual graph RG(f) is a path
such that the minimum capacity of any edge in the path is a. The weight of
path/cycle in RG(f) is the sum of the cost of the edges in this path/cycle. A
negative (positive) cycle is a cycle with negative (positive) weight.

These concepts of residual graphs and augmenting paths, central in flow
theory, lead to very important results, which are the basis of the following
section:

Theorem 1 [4] A flow f is maximal between two nodes t and s if and only if
there is no augmenting path in RG(f) from s to t.

Theorem 2 [5] A flow between two nodes t and s is of minimum cost if and
only if there is no (strictly) negative cycle in RG(f) . It is of maximum cost
if and only if there is no (strictly) positive cycle in RG(f).

These two theorems allow to compute maximum flows and min-cost flows
easily, by iteratively finding augmenting paths from s to t (to find a maximum
flow) or by iteratively finding negatively weighted cycles, and canceling them
(i.e. maximizing the flow along the cycle to reduce the overall cost). See [4]
and [5] for more details about the algorithms used.

3.3 Representation of the problem

Régin [15] shows that a GCC can be represented as a flow network with a one-
to-one correspondence between feasible flows and feasible solutions. A bipartite
graph of values (that we call bins in a bin-packing problem) and variables (that
we call items), with an edge linking item i and bin j iff j ∈ dom(Xi) is first
created. Then a source s and a sink t are added, such that the source is linked
to each item i with an edge low(s, i) = up(s, i) = 1, and each bin j is linked
to the sink with an edge of capacity bounds low(j, t) = Cj and up(j, t) = Cj .

All edges from items to bins have low(i, j) = 0 and up(i, j) = 1

Example 2 Given a bin-packing problem, with four items that can be assigned
respectively to bins {a, b}, {a, c}, {b, c} and {a, b, c}, such that: Ca = 0, Ca = 1,

Cb = 2, Cb = 2, Cc = 1, Cc = 2. We obtain the network flow represented in
Figure 2a. A valid flow is represented in Figure 2b.

Régin then uses this representation to reach Global Arc Consistency. Typ-
ical implementations of the propagators extend the results of Régin by adding

8 Guillaume Derval et al.

items bins

s t

a

b

c

1

1

1

1

[0, 1]

[0, 1]

[0, 1
]

[0, 1]

[0, 1]

[0, 1]

[0
, 1

]

[0,
1]

[0, 1]

[0, 1]

2

[1
, 2

]
(a) Flow network

items bins

s t

a

b

c

1

1

1

1

1

1

1

1

1

2

1

(b) An example of valid flow

Fig. 2: Example 2

a shaving on the bin cardinality bounds, by computing a minimum and maxi-
mum flow on each edge from bins to the sink, reaching Bound Consistency on
C.

We propose to reuse this representation (called the assignation model) for
the bin-packing problem, by transforming it into a max-flow max-cost problem.
More precisely, for each bin j, we create a weighted flow network Gj such that:

– The edges from G (the previously described graph for the equivalent GCC)
are conserved, including their lower and upper capacity;

– Each edge between an item i and the targeted bin j has a cost p(i, j) = wi;
– All the other edges have a cost of zero.

By construction, at most one edge for each item has a non-zero cost, and all
non-zero cost edges are linked to bin j.

Example 3 Reusing the Example 2, such that items have respectively weights
10, 5, 12 and 2, the Figure 3 represents the graph Gb. The total cost of the
flow represented in Figure 2b is 14.

Similarly as for GCC, every solution to the IsolatedBPC constraint for bin
j can be converted into a valid flow of cost Lj in Gj and vice-versa.

In the following subsections, we introduce a new propagator based on this
representation that we call BPCFlow. For the sake of readability, any flow that
appears in the following section is considered valid. Such flows have f(t, s) = n
(every item is assigned to exactly one bin) by construction of Gj .

3.4 Computing bounds for the loads

This representation Gi allows us to bound Lj , by computing a maximum-cost
flow fj,M and a minimum-cost flow fj,m (between t and s). The filtering rule
is thus:

Lj ← max(Lj , cost(fj,m)) Lj ← min(Lj , cost(fj,M))

Improved Filtering for the Bin-Packing with Cardinality Constraint 9

items (weights) bins

s t

10

5

12

2

a

b

c

1,
0

1, 0

1, 0

1, 0

[0, 1], 0

[0, 1
], 0

[0, 1], 0

[0, 1], 0

[0
, 1

],
0

[0, 1]

[0, 1], 0

2, 0

[1,
2],

0

[0, 1], 10

[0, 1], 12

[0,
1], 2

Fig. 3: Weighted flow network for example 3 and bin 1. The notation
”[low, up], p” on an edge indicates both its capacity bounds and its cost p.
Non-zero cost edges are in gray. Items weights are represented into the items
respective nodes.

This is similar to the bounds in Pessler’s propagator but with the definition
of Ej and Fj based on the edges used in the minimum and maximum flows:

Ej = {i | fj,m(i, j) = 1∧ i 6∈ packed j} Fj = {i | fj,M (i, j) = 1∧ i 6∈ packed j}

For convenience, we compute the max-cost max-flow between bin j and
the sink rather than between the sink and the source. Let us proof that this
is indeed equivalent:

Theorem 3 In Gj, any maximum-cost maximum-flow fj,MM between j and
t is also a maximum-cost flow from t to s.

Proof Since fj,MM is valid, is it maximal from t to s with f(t, s) = n. As the
only edges that have a non-zero cost are the edges linked to bin j, optimizing
the cost between t and s, or between bin j and t is equivalent. Finally, we note
that fj,MM is not only a maximum flow with the maximum cost between j
and t, but also a maximum-cost flow among all the valid flows in Gj , as, by
construction of Gj , there is no positive cycle allowing to increase the cost by
diminishing the flow. ut

Algorithm 1 describes how to compute a maximum-cost flow in Gj starting
from any valid flow. For a given bin j, each item is considered in decreasing
weight order, and tentatively assigned to bin j, with the restriction that unas-
signing heavier items is forbidden. In case it is not possible, this item is not
assigned to bin j. In Algorithm 1, when item i is assigned to bin j, the flow in
this edge cannot be canceled in next iterations. This is achieved by removing
those edges from the residual graph (RGj

(f) − S) when looking for the next
simple path.

The justification of why the Algorithm 1 works is given in the following
theorem:

10 Guillaume Derval et al.

Algorithm 1 ComputeMaxCostFlow

Require: f , a valid flow for Gj ,
X0, ..., Xn−1, C0, ..., Cm−1, Lj , j the parameters of the IsolatedBPC constraint.
S ← ∅
for all item i s.t. j ∈ Xi in decreasing order of weight do

if i is not assigned to j and ∃ a simple path p from bin j to item i in RGj
(f)−S then

for all edge (item u, bin v) in p do
Unassign item u from its previously assigned bin
Assign item u to bin v

end for
end if
S ← S ∪ {(j, i)}

end for
f is now a maximum-cost flow

Theorem 4 Given a valid flow f in network Gj, let the cycle p be the pos-
itively weighted cycle in RGj (f) that contains the heaviest possible item i0
(among all the available cycles) such that the edge (i0, j) is part of the cycle4.
Then, after cancellation, no positively weighted cycle contains an edge (k, j)
such that wk > wi0 .

Proof Without loss of generality, let us consider only cycles that starts and
ends at node j, without visiting it during the cycle. Let us consider, by con-
tradiction, that there exists a positively weighted cycle p0 in RGj (f) such that
its cancellation assigns item i0 to bin j and creates a cycle p1 such that its
cancellation assigns item i1 to bin j, with wi1 > wi0 .

Each of these two cycles either unassigns an item, or makes use of the
edge (j, t), increasing the overall cardinality of bin j. We name the (single)
item unassigned or, in the other case, the node t, as k0 for p0 and k1 for p1.
For simplicity, we pose that wt = 0. Since the cycles are positively weighted,
wi0 > wk0 and wi1 > wk1 .

By construction, there exists two nodes u and v (which can be either bins or
items) such that p0 is in the form (j, k0, · · · , u, · · · , v, · · · , i0, j) and p1 is in the
form (j, k1, · · · , v, · · · , u, · · · , i1, j)5. Then, the cycle p2 = (j, k0, u, · · · , i1, j)
already exists in RGj

(f) and is positively weighted since wi1 > wi0 > wk0
.

Thus i0 is not the maximal item available to create a cycle, leading to a
contradiction. See Figure 4 for a visual explanation. ut

Said differently, once the maximum weighted available item is assigned to
the bin by cycle cancellation, no further iteration of the cycle-finding algorithm
will unassign this item for a heavier one. Finding a cycle consists of running a
Depth-First-Search inO(nm) 6. Thus, the complexity of ComputeMaxCostFlow
is O(nm2), which is strongly polynomial in the size of the input. We can define

4 i. e. item i0 will be assigned to bin j after cancellation of the cycle
5 Note that u and v can be confounded with i0, k0, i1 or k1, which does not change the

proof.
6 the worst case being a complete graph

Improved Filtering for the Bin-Packing with Cardinality Constraint 11

j

i1k1 k0i0

uv

p1

p0

p2

Fig. 4: If inverting (/canceling) the cycle p0 creates a new cycle p1, then there
was previously an existing cycle p2 containing the end of p1 and the beginning
of p0 (from j).

items (weights) bins

La = [4, 10], Ca = [1, 2]

Lb = [5, 7], Cb = 1

Lc = [4, 11], Cc = [1, 2]

5

5

4

7

a

b

c

Fig. 5: BPC instance for example 4

ComputeMinCostFlow similarly, by searching only negative cycles, with items
ordered by increasing weight.

Algorithm 2 describes how to compute the bounds for Lj . As [15] proves,
the complexity to find the maximum (/minimum) flow in this representation
is O(m3). The complexity of Algorithm 2 is then O(m3 +m2n).

Algorithm 2 Compute bounds for Lj

f ← valid flow in Gj

Lj = max(Lj , cost(ComputeMinCostFlow(f)))

Lj = min(Lj , cost(ComputeMaxCostFlow(f)))

Example 4 Figure 5 shows an instance where Pelsser’s propagator does not
improve bounds on bin loads, although BPCFlow does: for bin a, the minimum-
cost flow (which is a lower bound for La) is 5, as the item 4 cannot be taken
alone.

12 Guillaume Derval et al.

3.5 Computing bounds for the cardinalities

Similarly to Pessler’s propagator, an upper bound for C is the value of the
maximum-valued minimum-cost flow whose cost is lesser than L. A lower
bound for C can be defined similarly using L.

Algorithm 3 finds the minimum cardinality for bin j such that the (max-
imum) cost of the flow (the load) is above the minimum load, Lj , using a

dichotomic search. The algorithm can, of course, be modified to compute Cj

instead of Cj , simply by starting from a minimum-cost minimum flow and
searching the cardinality for which the minimum cost flow value is directly
below the maximum Lj .

The algorithm modifies the minimum/maximal cardinality of bin j dynam-
ically, via up(j, t) and low(j, t), in order to modify the value of the flow. The
function FixFlow corrects the flow accordingly. If ∆ is the absolute difference
between the values of up(j, t) or low(j, t) compared to their old values, its
complexity is O(∆nm) as at most ∆ augmenting paths are needed to correct
the flow. FixFlow returns false when it is impossible to recreate a valid flow.
The algorithm uses:

– one initial call to the max-flow algorithm, in O(m3);
– O(log(Cj − Cj)) ∈ O(log n) calls to ComputeMaxCostFlow(j), leading to a

complexity of O(m2n log(n));
– the sum of the modification between calls of FixFlow(j) is dominated by∑

i=1
n
2i ∈ O(n), thus the calls have a total complexity of O(n2m).

The complexity of Algorithm 3 is then O(m3 +m2n log(n) + n2m)7.

4 Filtering candidates using load and cardinality information

The filtering introduced in [13,18] only tightens the bounds of the cardinality
and load variables relying on the GCC to filter the domain of item variables
Xi. This section introduces a filtering on the domains of variables Xi using a
too-big/too-small reasoning: an item i cannot be assigned to a bin j if it is
too big (resp. too small), i.e. there does not exist a set of items including i
such that the load is lighter than Lj (resp. heavier than Lj). We propose three
variations of this method, based on the techniques presented in the previous
sections. We denote by lightest(k, S) (resp. heaviest(k, S)) the subset of S
composed of the k lightest (resp. heaviest) items in S.

– SimpleBPC+. For item i we can determine if it is too big by selecting the
Cj − 1 lightest items (different from i). If the weight of the item plus the

selected items is greater than the upper load bound Lj , the item cannot
be assigned to bin j.

7 A small variation of this algorithm, where the dichotomic search is replaced by a linear
one, leading to a complexity of O(m3 +m2n2), was also implemented. Its performances are
very close to its dichotomic counterpart.

Improved Filtering for the Bin-Packing with Cardinality Constraint 13

Algorithm 3 Compute bounds for Cj

up(j, t)← Cj , low(j, t)← Cj .Start from a maximum-cost maximum flow

curLoad ← ComputeMaxCostFlow(j) .The current flow is maximum in j

dichoMaxCard ← Cj .Minimum ”valid” card. at any point of the dichotomic search

dichoMaxCardLoad ← curLoad .Store the best (lower) reached load

dichoMinCard ← Cj − 1 .Not reached

while dichoMinCard + 1 6= dichoMaxCard do
attempt ← dichoMinCard+dichoMaxCard

2
.Flow value to be tested

up(j, t)← attempt, low(j, t)← attempt

if FixFlow(j) then .Flow is valid, check cost

curLoad ← ComputeMaxCostFlow(j)
if curLoad ≥ Lj then .Load is above minimum

dichoMaxCard ← attempt
dichoMaxCardLoad ← curLoad

else .Load breaks the requirement

dichoMinCard ← attempt
end if

else .A valid flow was not found

dichoMinCard ← attempt
end if

end while

Cj ← dichoMaxCard .Update with the newly computed bound

up(j, t)← Cj , low(j, t)← Cj .Restore bounds on the bin

FixFlow(j) .Ensure we have a valid flow at the end

The detection of too small items is done similarly, by finding the Cj − 1
heaviest items and verifying that the sum of weights is not below Lj . Taking

packed j into account the too-big/too-small filtering rules are:

wi + sum(lightest(Cj − |packed j | − 1, cand j \ {i}))

> Lj − sum(packed j) =⇒ Xi 6= j (too big)

wi + sum(heaviest(Cj − |packed j | − 1, cand j \ {i}))
< Lj − sum(packed j) =⇒ Xi 6= j (too small)

Example 5 Figure 6 presents a BPC instance which is consistent with re-
spect to BPCFlow. Bin a must have a cardinality of two; applying the ”too
big” rule above, we find the lightest set of cardinality Ca − 1 = 1, which
is the set containing only the item 3. We then conclude that the item 9
cannot be assigned to bin a, as the minimum cardinality requirement im-
poses to take two items, and that item 9 cannot fit with 3, the lightest item
(3 + 9 > La). Propagating this modification to the other constraints leads
to the assignation of item 6 to bin a.
Figure 7 shows the instance, now consistent with both SimpleBPC+ and
BPCFlow.

14 Guillaume Derval et al.

items (weights) bins

La = [9, 10], Ca = 2

Lb = [18, 20], Cb = 2

Lc = [24, 26], Cc = 3

16

9

8

8

6

4

3

a

b

c

Fig. 6: BPC instance for example 5, consistent with BPCFlow

items (weights) bins

La = [9, 10], Ca = 2

Lb = [18, 20], Cb = 2

Lc = [24, 26], Cc = 3

16

9

8

8

6

4

3

a

b

c

Fig. 7: BPC instance presented in Figure 6, further pruned with SimpleBPC+.
Removed edges are represented as dotted lines.

items (weights) bins

La = [9, 10], Ca = 2

Lb = [19, 20], Cb = 2

Lc = 25, Cc = 3

16

9

8

8

6

4

3

a

b

c

Fig. 8: BPC instance presented in figure 6, further pruned with Pelsser+.
Removed edges are represented as dotted lines.

– Pelsser+. Similarly, we can determine the set of the Cj − 1 lightest items

using the Pelsser’s method from section 2.2 (and similarly for the Cj − 1
heaviest items).

Improved Filtering for the Bin-Packing with Cardinality Constraint 15

Example 6 From instance presented in Figure 6, Pelsser+ firstly prunes
item 9 from bin a, similarly to SimpleBPC+, and the propagation assigns
item 6 to bin a.
From there, we can use the ”too big” rule on bin c. Let us compute the
minimum weighted assignable set of size Cc−1 = 2 using the Pelsser’s rule.
Item 3 can be taken, but item 4 cannot, as it would forbid bin a to fullfill
its cardinality requirement (item 3 has been taken, item 4 and 6 are then
needed for bin a). Item 8 is the next assignable item. The weight of the
minimum weighted set is then 11. According to the ”too big” rule, items
with weight greater than Lc − 11 = 15 cannot be assigned to bin c, which
leads to the exclusion of item 16.
Now, with the ”too small” rule, again for bin c, we compute a maximum
weighted set of weight 17 (with items 9 and 8), excluding all items with
weight lesser than Lc − 17 = 7, namely items 3, 4 and 6. Items 9, 8 and 8
must then be assigned to bin c to fulfill its cardinality requirements.
Figure 8 shows the instance, now consistent with both Pelsser+ and BPCFlow.

– BPCFlow+. The flow network presented in the previous section can also
be extended to verify if the min-weighted set of cardinality Cj and con-

taining a specific item i has a lesser weight than Lj , and conversely for the
max-weighted case.

This last point requires a specific algorithm on the network flow. Given a
flow f that is of min-cost on Gj , we can check if an item can be taken (i.e. the
min-cost flow containing the item is of cost lesser than Lj) iff:

1. the item (the edge (i, j)) is already used in flow f ;
2. there exists a cycle in RGj

(f) which contains edge (i, j) and whose cost is

lesser than Lj − cost(f), i.e. canceling this cycle will not produce a flow
with cost greater than Lj .

A simple way to check this last property is to start a DFS from node j,
and to find a path to node i that uses only edges whose costs are lesser than
Lj − cost(f)− wi.

Example 7 Figure 9 shows the residual graph of a minimum-cost minimum-
flow of a sample BPC problem, for bin j. Let us define that this bin has
Lj = 6. In this context, the items 1 and 2 are not too big as they are already
in the min-cost flow. Item 3 can be taken, because there exists a cycle (namely
3→ j → 2→ b→ 3) whose cost is 1, and canceling it would create a new flow
of cost 3 ≤ Lj . Item 4 cannot be taken into bin j has there is no cycle that
includes edge (4, j). There exists a cycle for item 8, but it cannot be used as
the cycle total weight is 6, leading to a cost of 9 > Lj .

Figure 10 shows the subsuming relations between all the propagators. The
too-big/too-small reasoning brings additional filtering without impacting the
asymptotic complexity:

16 Guillaume Derval et al.

items bins

s t

4

1

8

3

2

a

j

b

1, 0

1, 0

1, 0

1,
0

1, 0

1,−1

1,−21, 3

1, 4

1, 81, 8

1, 0

1, 0
1, 0

1, 0

1, 0

2,
0

2, 0

Fig. 9: Residual graph RGj
for example 7

SimpleBPC

SimpleBPC+

Pelsser

Pelsser+

BPCFlow

BPCFlow+

GCC[15]

Fig. 10: Relations between propagator implementations. a → b means that b
subsumes a (the relation obviously holds transitively).

– for SimpleBPC+ and Pelsser+, it only adds anO(nm) operation (for check-
ing each item for each bin) on the already O(nm) pruning of SimpleBPC
and O(nm2) of Pelsser’s propagator;

– for BPCFlow+, the additional DFS and checks needed also add O(nm) to
the already O(m3 +m2n log(n) + n2m) pruning of BPCFlow.

5 Experiments

We focus the experiments on two problems: the Balanced Academic Curricu-
lum Problem (BACP)[11] and the Tank Allocation Problem (TAP)[17]. Schaus
et al.[17] only provided a single instance of TAP; a new set of 2592 instances
has been generated for this research, with various parameters. While the BACP
involves a direct bin-packing with cardinality constraint, the one used in TAP
is redundant.

All experiments use the search tree-replay mechanism proposed in [20],
which allows to compare propagators strengths without most of the search
heuristic influence.

When SimpleBPC(+) and Pelsser(+) are used, an additional GCC con-
straint is also added, in order to be able to compare results with BPCFlow(+)
that includes a similar GCC propagator.

The propagators have been implemented using the OscaR-CP solver, and
the source codes are available on the repository of OscaR[12] .

Improved Filtering for the Bin-Packing with Cardinality Constraint 17

(a) Nodes / TAP (b) Time / TAP

(c) Nodes / BACP (d) Time / BACP

Fig. 11: Performance profiles of presented propagators. Represents the per-
centage of instances solved depending on the ratio of time taken (in seconds)
or of nodes visited, versus the best method. See [20] for details. Instances that
never take more than 10 seconds of computation time are not represented.

5.1 BPCFlow versus Pelsser’s propagator and SimpleBPC

Figure 11 shows various performance profiles for instances of BACP and TAP.
A point (x, y) indicates the percentage of instances for which an instance is
solved within a time limit of at most y times the best approach on this instance.
As shown, on most problems, BPCFlow does not prune significantly more than
Pelsser, while consuming roughly the same amount of computation time. With-
out considering the too-big/too-small methods, using Pelsser is then, most of
the time, the best choice. However, this is not true for all instances: BPCFlow
can give appreciable speedups compared to Pelsser’s propagator on some in-
stances, particularly on instances where relations between items and bins are
complex. See Table 1 for a selection of TAP instances where this behavior
occurs.

18 Guillaume Derval et al.

Table 1: Three best results in number of node visited and in computation time
for Pelsser vs BPCFlow, for the instances of TAP that visited more than 100k
nodes.

TAP inst. n
Nodes visited Computation time (ms)

Pelsser BPCFlow Gain Pelsser BPCFlow Gain

1757 2418k 769k 68.2% 554.5 309.4 44.2%
919 372k 139k 62.7% 35.6 20.4 42.7%
895 1651k 937k 43.3% 122.9 70.8 42.4%
917 10417k 6483k 37.8% 865.1 513.0 40.7%
1558 423k 299k 29.2% 96.4 59.6 38.2%

1757 2418k 769k 68.2% 554.5 309.4 44.2%
919 372k 139k 62.7% 35.6 20.4 42.7%
2305 1481k 1455k 1.7% 546.4 313.1 42.7%
895 1651k 937k 43.3% 122.9 70.8 42.4%
917 10417k 6483k 37.8% 865.1 513.0 40.7%

5.2 Too-big/too-small reasoning

Figure 11 shows that the addition of the too-big/too-small reasoning outper-
forms the previous propagators, with SimpleBPC+ giving the best speedups,
despite being very simple. SimpleBPC+ is the best choice for 91% of BAPC
instances, and for 78% of TAP instances. Overall, using too-big/too-small rea-
soning provides speedups for 98% of BAPC instances, and 87% for TAP ones.

The differences in the amount of visited nodes between SimpleBPC+,
Pelsser+ and BPCFlow+ are small but not nonexistent. This shows that even
if SimpleBPC+ is the best choice for most BPC instances, other methods
are still useful, particularly on very difficult instances, where they drastically
reduce computation time. Table 2 shows selected results for each propagator,
showing that Pelsser+ and BPCFlow+ still can bring significant gains on some
instances.

6 Conclusion

We introduced four new propagators for the Bin-Packing (with cardinality)
problem, namely BPCFlow, SimpleBPC+, Pelsser+ and BPCFlow+, based on
the assignation model. BPCFlow is based on the usage of weighted flow, and we
have shown that previous work, SimpleBPC[18] and Pelsser’s propagator[13]
are relaxations of this model. Experiments on BPCFlow show that while it
allows to improve solving time on very difficult instances, Pelsser is still the
best approach for most problems (when not considering the too-big/too-small
methods), as it provides a better pruning/computation time compromise.

SimpleBPC+, Pelsser+, and BPCFlow+ are variation based on the too-
big/too-small reasoning, which attempts to remove items that are either too
heavy, or too light, to be assigned to specific bins. We have shown that this

Improved Filtering for the Bin-Packing with Cardinality Constraint 19

Table 2: Selected results, showing that none of the proposed propagators su-
persedes all the others. Time is in seconds, means over three runs.

TAP Node Time Node (gain) Time (gain)

inst n SimpleBPC SimpleBPC+

381 11013k 1172.8 29 (100.0%) 0.006 (100.0%)
2332 5864k 1097.6 10 (100.0%) 0.02 (100.0%)
1675 4118k 1100.7 56 (100.0%) 0.036 (100.0%)
1563 172k 32.5 172k (0.19%) 40.0 (-23.4%)

Pelsser Pelsser+

2324 724k 240.8 17 (100.0%) 0.026 (100.0%)
2003 953k 98.6 61 (100.0%) 0.02 (100.0%)
1062 4552k 768.3 3540 (99.9%) 0.246 (100.0%)
2402 7577k 2142.9 7171k (5.4%) 2822.0 (-31.7%)

BPCFlow BPCFlow+

1727 8768k 3314.3 0 (100.0%) 0.0 (100.0%)
2324 724k 324.9 17 (100.0%) 0.043 (100.0%)
2003 934k 95.3 61 (100.0%) 0.036 (100.0%)
1905 6285k 1063.8 6285k (0.0%) 2982.9 (-180.4%)

SimpleBPC+ Pelsser+

2197 137k 15.8 44k (68.2%) 6.3 (60.1%)
919 275k 22.1 114k (58.5%) 10.0 (54.9%)
918 260k 32.3 161k (37.9%) 15.3 (52.6%)
2402 7234k 1315.7 7171k (0.87%) 2822.0 (-114.5%)

SimpleBPC+ BPCFlow+

2033 6801k 1240.5 0 (100.0%) 0.0 (100.0%)
2197 137k 15.8 9927 (92.7%) 0.793 (95.0%)
1756 58k 12.6 3436 (94.1%) 0.883 (93.0%)
2194 7844k 941.7 7844k (0.0%) 4914.2 (-421.8%)

Pelsser+ BPCFlow+

2042 9632k 2439.1 0 (100.0%) 0.0 (100.0%)
1756 57k 13.6 3436 (94.0%) 0.883 (93.5%)
2081 75k 10.2 19k (74.9%) 1.2 (88.2%)
2194 7844k 1526.0 7844k (0.0%) 4914.2 (-222.0%)

approach outperforms previous works in nearly 88% of the tested instances,
notably with the SimpleBPC+ propagator.

Acknowledgements We thank the anonymous reviewer for suggesting the idea of using a
dichotomic search in Algorithm 3.

References

1. Cambazard, H., O’Sullivan, B.: Propagating the Bin Packing Constraint Using Linear
Programming, pp. 129–136. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

20 Guillaume Derval et al.

2. Dupuis, J., Schaus, P., Deville, Y.: Consistency check for the bin packing constraint
revisited. In: International Conference on Integration of Artificial Intelligence (AI)
and Operations Research (OR) Techniques in Constraint Programming, pp. 117–122.
Springer (2010)

3. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for net-
work flow problems. Journal of the ACM (JACM) 19(2), 248–264 (1972)

4. Ford Jr, L.R., Fulkerson, D.R.: A simple algorithm for finding maximal network flows
and an application to the hitchcock problem. Tech. rep., DTIC Document (1955)

5. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by canceling negative
cycles. J. ACM 36(4), 873–886 (1989)

6. Labb, M., Laporte, G., Martello, S.: An exact algorithm for the dual bin
packing problem. Operations Research Letters 17(1), 9 – 18 (1995). URL
http://www.sciencedirect.com/science/article/pii/016763779400060J

7. Labb, M., Laporte, G., Martello, S.: Upper bounds and algorithms
for the maximum cardinality bin packing problem. European Jour-
nal of Operational Research 149(3), 490 – 498 (2003). URL
http://www.sciencedirect.com/science/article/pii/S0377221702004666

8. Lodi, A., Martello, S., Vigo, D.: Recent advances on two-dimensional bin pack-
ing problems. Discrete Applied Mathematics 123(1), 379 – 396 (2002). URL
http://www.sciencedirect.com/science/article/pii/S0166218X0100347X

9. Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin pack-
ing problem. Discrete Applied Mathematics 28(1), 59 – 70 (1990). URL
http://www.sciencedirect.com/science/article/pii/0166218X9090094S

10. Martello, S., Vigo, D.: Exact solution of the two-dimensional finite bin packing problem.
Management science 44(3), 388–399 (1998)

11. Monette, J.N., Schaus, P., Zampelli, S., Deville, Y., Dupont, P.: A CP approach to
the balanced academic curriculum problem. In: Seventh International Workshop on
Symmetry and Constraint Satisfaction Problems, vol. 7 (2007)

12. OscaR Team: OscaR: Scala in OR (2012). Available from
https://bitbucket.org/oscarlib/oscar

13. Pelsser, F., Schaus, P., Régin, J.C.: Revisiting the cardinality reasoning for binpack-
ing constraint. In: International Conference on Principles and Practice of Constraint
Programming, pp. 578–586. Springer (2013)

14. Régin, J., Rezgui, M.: Discussion about constraint programming bin packing mod-
els. In: AI for Data Center Management and Cloud Computing, Papers from the
2011 AAAI Workshop, San Francisco, California, USA, August 7, 2011 (2011). URL
http://www.aaai.org/ocs/index.php/WS/AAAIW11/paper/view/3817

15. Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: Proceed-
ings of the thirteenth national conference on Artificial intelligence-Volume 1, pp. 209–
215. AAAI Press (1996)

16. Schaus, P.: Solving balancing and bin-packing problems with constraint programming.
These de doctorat, Université catholique de Louvain (2009)

17. Schaus, P., Régin, J.C., Schaeren, R.V., Dullaert, W., Raa, B.: Cardinality reasoning for
bin-packing constraint. application to a tank allocation problem. In: CP2012: 18th In-
ternational Conference on Principles and Practice of Constraint Programming, Québec
City, Canada (2012)

18. Schaus, P., Régin, J.C., Van Schaeren, R., Dullaert, W., Raa, B.: Cardinality reasoning
for bin-packing constraint: application to a tank allocation problem. In: Principles and
Practice of Constraint Programming, pp. 815–822. Springer (2012)

19. Shaw, P.: A constraint for bin packing. In: International Conference on Principles and
Practice of Constraint Programming, pp. 648–662. Springer (2004)

20. Van Cauwelaert, S., Lombardi, M., Schaus, P.: Understanding the potential of propaga-
tors. In: International Conference on Integration of Artificial Intelligence and Operations
Research Techniques in Constraint Programming, pp. 427–436. Springer (2015)

