
Noname manuscript No.
(will be inserted by the editor)

Efficient Filtering for the Resource-Cost AllDifferent
Constraint

Sascha Van Cauwelaert · Pierre Schaus

Received: date / Accepted: date

Abstract This paper studies a family of optimization problems where a set
of items, each requiring a possibly different amount of resource, must be as-
signed to different slots for which the price of the resource can vary. The ob-
jective is then to assign items such that the overall resource cost is minimized.
Such problems arise commonly in domains such as production scheduling in
the presence of fluctuating renewable energy costs or variants of the Travelling
Salesman Problem. In Constraint Programming, this can be naturally modeled
in two ways: (a) with a sum of element constraints; (b) with a MinimumAs-
signment constraint. Unfortunately the sum of element constraints obtains
a weak filtering and the MinimumAssignment constraint does not scale well
on large instances. This work proposes a third approach by introducing the
ResourceCostAllDifferent constraint and an associated incremental and
scalable filtering algorithm, running in O(n ·m), where n is the number of un-
bound variables and m is the maximum domain size of unbound variables. Its
goal is to compute the total cost in a scalable manner by dealing with the
fact that all assignments must be different. We first evaluate the efficiency of
the new filtering on a real industrial problem and then on the Product Ma-
trix Travelling Salesman Problem, a special case of the Asymmetric Travelling
Salesman Problem. The study shows experimentally that our approach gener-
ally outperforms the decomposition and the MinimumAssignment ones for
the problems we considered.

Keywords AllDifferent · Assignment Cost · Filtering · Scalability ·
Scheduling · Energy · Resource · Product Matrix Travelling Salesman
Problem

Sascha Van Cauwelaert
Place Sainte Barbe 2 bte L5.02.01 1348 Louvain-la-Neuve
E-mail: sascha.vancauwelaert@uclouvain.be

Pierre Schaus
Place Sainte Barbe 2 bte L5.02.01 1348 Louvain-la-Neuve
E-mail: pierre.schaus@uclouvain.be

2 Sascha Van Cauwelaert, Pierre Schaus

1 Introduction

In this work, we consider a family of optimization problems where a set of
items, each requiring a possibly different amount of resource, must be assigned
to different slots for which the price of the resource can vary. In particular, we
first consider the domain of production scheduling in the presence of fluctuat-
ing renewable energy costs. Indeed, some countries tend to decrease the use of
fossil and nuclear energies and to replace them with renewable energies [33].
For instance in Europe, Germany has started a nuclear phase-out that should
be completed by 2022. A consequence of the adoption of renewable energy is
the larger fluctuation of energy prices. At the same time, the Electricity Price
Forecast (EPF) at the daily base becomes more and more accurate [32]. This
high volatility of the prices combined with EPF tools opens new perspectives
and challenges for production scheduling optimization. A producer can get a
competitive advantage if he is able to schedule his most energy consuming
processes when the prices are low. The production planning should therefore
leverage as much as possible the flexibility in the production process to trans-
late it into energy cost savings.

In the setting we consider, the energy cost is assumed to be known at each
future time slot (provided by an EPF module). The goal is then to schedule
each item over the time slots such that the overall energy bill is minimized.
For each item, its contribution to the cost is the energy required to produce it
multiplied by the energy cost forecast at the time slot it is produced.

Example 1. Let us illustrate this situation with the example given in Figure 1.
3 items a, b and c have to be produced and their consumption are C(a) = 2,
C(b) = 4 and C(c) = 3 (see left plot). There are 9 time slots where these
items can be produced, each one being associated with an energy price P (s).
For instance, the slot 3 has a price of P (3) = 15. In the given schedule, a, b
and c are produced at slot 1, 3 and 5, respectively. Hence, the total cost is
T = 2 · 20 + 4 · 15 + 3 · 15 = 145.

Consumption

0 1 2 3 4 5 6
0

1

2

3

4

5

a

b
c

Period

Price

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

Fig. 1 Energy Consumption of items (left) and energy prices (right).

Efficient Filtering for the Resource-Cost AllDifferent Constraint 3

For a given set of items I, we can formally define the total cost as:

T =

|I|∑
i=1

C(Ii) · P (s(Ii)) (1)

where s(Ii) is the time slot assigned to the item Ii.
In Constraint Programming (CP), one can model this cost in two ways:

1. with a sum of element [27] constraints.
2. with a MinimumAssignment constraint that has a filtering based on re-

duced costs (referred to IlcAllDiffCost in [9] and MinWeightAllD-
iff in [22]). In this case, the cost of an edge linking a variable (i.e., an
item) to a value (i.e., a time slot) is the product of the item consumption
with the energy price of the time slot.

Unfortunately, both approaches have limitations. Modeling with a sum
of element constraints does not take into account the fact that the items
must all be assigned to different time slots. For instance, in Figure 1, if all
items could be assigned to any time slot, this approach would consider that all
items can be assigned to the slots 2 or 7. The computed minimum cost would
therefore be 5 · (2 + 4 + 3) = 45, which is clearly impossible since only 2 items
can be produced at an energy price of 5.

The MinimumAssignment incorporates the all-different constraint, but
the algorithm has a quite high time complexity ofO(n3), where n is the number
of items1.

Contribution This paper proposes a third approach by introducing the Re-
sourceCostAllDifferent constraint and an associated scalable filtering
algorithm. In the particular case where the total cost is computed with Equa-
tion 1, the constraint fills a gap between using a sum of individual element
constraints and solving the general matching problem with cost computed by
MinimumAssignment. Its goal is to compute the total cost in a scalable and
incremental manner, while considering the fact that all assignments must be
different. Furthermore, efficient domain filtering can be performed in O(n ·m),
where n is the number of unbound variables and m is the maximum domain
size of unbound variables. While this is a better time complexity than O(n3)
required by MinimumAssignment, it comes at the price of a weaker infer-
ence. However, this trade-off pays off in practice for the two problems we
considered, namely the Continuous Casting Steel Production with Electricity
Bill Minimization and the Product Matrix Travelling Salesman Problem. The
latter problem illustrates that the ResourceCostAllDifferent constraint
can be used in other domains than production scheduling.

The results on the first problem demonstrate that MinimumAssignment
is always slower than our approach. In addition, ResourceCostAllDif-
ferent is often faster than the decomposition, sometimes with an important

1 Although in practice the computation in a search tree is incremental.

4 Sascha Van Cauwelaert, Pierre Schaus

speed-up. This is especially true for large instances, for which an order of
magnitude is gained in ∼ 20% of the cases, while ∼ 75% of them are solved
faster. Moreover, our algorithm is robust, in the sense that when it is slower,
it is by a small factor (3.2 at the very most). Results also illustrate that for a
non-negligible number of the large instances, we can get an important gain in
terms of number of backtracks as compared with a decomposition: a reduction
of at least one order of magnitude is obtained for 30% of the instances.

For the second problem, the results show that our approach is the fastest
in CP. Moreover, it outperforms the Concorde solver[2,3], a custom state-of-
the-art Branch-and-Cut Mixed Integer Programming solver, for 90% of the
instances, sometimes by an important factor (some instances could not be
solved in a factor 32 as compared with our constraint).

Related Work The need to compute the total cost related to some assignments
in CP is not rare. It is for instance used to solve the Travelling Salesman Prob-
lem and the Travelling Salesman Problem with Time Windows. Focacci et al.
proposed a global optimization constraint [9,10] (they call it IlcAllDiff-
Cost) to compute a lower bound on the total cost when all assignments must
be different and to filter the domains based on reduced costs. However, they use
a linear formulation to compute the reduced costs, and therefore do not obtain
arc-consistency. In [22], Sellmann calls this constraint MinWeightAllDiff
and proposes an arc-consistent filtering algorithm in which exact reduced costs
are used. More recently [8], Ducomman et al. came up with a different com-
putation of the exact reduced costs, by making use of an all pairs of shortest
paths algorithm. In this paper, we denote by MinimumAssignment these
equivalent constraints and use the algorithm from [10] in particular for our
experiments.2 Finally, Régin introduced the more general GCCCost global
constraint [20] for which several variables can be assigned to the same value
as long as cardinality constraints are respected.

For all those constraints, there is no assumptions on the costs associated to
the different variable-assignment pairs. The ResourceCostAllDifferent
constraint we introduce is actually a particular case of a MinimumAssign-
ment constraint for which the cost of assigning a variable Xi to a value s
amounts to the product of a given consumption of Xi with the fixed price of
assigning the value s to a variable. This particularity allows getting a more
efficient filtering, as we shall see in the results.

For Scheduling problems, global constraints that consider (electricity) costs
have been defined recently [23,24]. The particular case of the disjunctive-
cost constraint was then further studied when activities have variable dura-
tions [30]. Finally, a recent application of CP was successfully used to optimize
a tissue manufacturing planning problem from an energy viewpoint [6].

2 We also experimented with the version from [8] to get exact reduced costs, but it ap-
peared to be very slow for the instances we considered, so we do not report any results
regarding that implementation.

Efficient Filtering for the Resource-Cost AllDifferent Constraint 5

Paper Outline We first formally define the constraint and provide related ter-
minologies. We then describe an algorithm that checks feasibility, based on
the computation of a lower bound for the total cost. Next, we present our
filtering algorithm to prune unfeasible values of all variables. Before we con-
clude, we evaluate our work on two problems: the Continuous Casting Steel
Production with Electricity Bill Minimization that is an industrial use case,
and the Product Matrix Travelling Salesman Problem that is more academic.

2 Constraint Definition

Notation We write D(Xi) to denote the domain of a variable Xi of a sequence
of variables X. The minimum and maximum of the domain of a variable Xi

are written Xi and Xi, respectively.

Definition 1. Let

– X be a sequence of integer variables that are the production time slots for
each item to produce,

– C be a sequence of integer constants of length |X| that are the amount of
resource required to produce each item,

– H be an integer constant, that is the number of time slots (horizon),
– P be a sequence of H integer constants giving the price of the resource at

each time slot, and
– T be an integer variable that is the total resource cost of the scheduling,

the constraint ResourceCostAllDifferent(X, C, P, T) ensures that

∧
{
allDifferent(X)

T =
∑|X|

i=1 C(Xi) · P (Xi)
(2)

with D(Xi) ⊆ [0..H[,∀Xi ∈ X.

Intuitively, all variables Xi must be assigned to a different value. Moreover,
they all have a fixed consumption given by C(Xi). Any variable Xi assigned to
a value s then implies a resource price of P (s) multiplied by the consumption
C(Xi). The total cost T amounts to the sum, over all the variables, of the
product of their consumption with the price of their assignment.

2.1 Lower Bound Computation and Feasibility Check

The constraint can be separated in two parts: all assignments must be differ-
ent, and the assignments must respect the total cost constraint. For the first
part, we rely on well-known propagators (see [28,19]) devised for the allD-
ifferent constraint. For the second part, we propose to compute a lower
bound for the minimum total cost T , written Tlb . In the following, for a given
sequence of variables X and a sequence of assignments A, we denote the total
production cost of mapping the ith element of X to the ith element of A, by

Prodcost(X,A) =
∑min(|X|,|A|)

i=1 C(Xi) · P (Ai).

6 Sascha Van Cauwelaert, Pierre Schaus

Lower-Bound for the cost There is an inherent matching problem involved in
the filtering of allDifferent, as the domains of the variables can be different.
To compute our lower bound efficiently, we relax the domain of the variables
by assuming that all variables can be assigned to any value of any current
domain, that is, any s ∈

⋃
Xi∈X D(Xi). But we do not relax the all-different

constraint. The matching problem can then be solved greedily on the relaxed
problem.

Example 2. Let us reconsider the example of Figure 1, and let us assume there
are 6 more items d to i to be scheduled for production, with a consumption
of C(d) = 2, C(e) = 3, C(f) = 4, C(g) = 3, C(h) = 5 and C(i) = 6.
Moreover, D(d) = D(f) = D(g) = {2, 4, 6, 7, 8, 9}, D(e) = {2, 4, 8} and
D(h) = D(i) = {2, 7}. To compute our lower bound, we first compute the
exact cost Cassigned that has to be paid due to already assigned items. In
our example a, b and c are assigned and Cassigned = 145. Secondly, one must
compute the cost due to the set UV of unbound variables, Cunbound . We ease
the matching of those items by assuming that they can be assigned to any
slot s ∈

⋃
Xi∈UV D(Xi) = {2, 4, 6, 7, 8, 9}. To compute Cunbound , we map the

item with the largest consumption with the lowest resource price slot, so i
is matched with slot 2. We then proceed similarly for all remaining unbound
items: h, f , e, g and d are respectively mapped with slot 7, 6, 9, 8 and 4.
This computation can be done by sorting unbound variables and time slots
by non-increasing order of consumption and non-decreasing order of price, re-
spectively. In the end, Cunbound = 6 ·5+5 ·5+4 ·10+3 ·10+3 ·15+2 ·25 = 220.
This is a lower bound since item e is matched with slot 9 so as to minimize
the total cost, but this value is actually not in its domain. A lower bound for
the total cost is then Tlb = 145 + 220 = 365.

In the general case, Tlb can be computed as follows:

1. Compute the exact cost Cassigned due to the set of assigned variables
Xassigned .

2. Sort the unbound variables UV = X\Xassigned by non-increasing order of

C, UV sorted .
3. Compute the set of unmapped values that are still part of the domains of

the unbound variables, i.e., UA =
⋃

Xi∈UV D(Xi).

4. Sort UA by non-decreasing order of P , UAsorted .
5. Compute the minimal cost mapping of variables of UV sorted to the val-

ues of UAsorted , i.e., Cunbound = Prodcost(UV sorted ,UAsorted). Notice that
Cunbound is a lower bound for the cost due to the unbound variables, as a
variable might be mapped to a value that is not in its domain.

6. The lower bound is then Tlb = Cassigned + Cunbound .

As described in Section 3, one can achieve this computation efficiently.
First, the sorts of variable and value sequences can be done once and for all, as
they remain correct for the whole search process. Incremental and reversible
data structures allow keeping the use of those sorts at any time. Moreover,
the cost Cassigned due to bound variables and the set

⋃
Xi∈UV D(Xi) can

Efficient Filtering for the Resource-Cost AllDifferent Constraint 7

Xi

s
...

UV by non-increasing C

UA by non-decreasing P

Unchanged UnchangedLeft Shifted

Fig. 2 Optimal mapping of variables if the variable Xi = s.

be computed incrementally. Once we have computed Tlb , a first constraint
inference is the feasibility check:

Tlb > T =⇒ Fail (FC)

2.2 Domain Filtering

In order to filter a value s of the domain of a variable Xi, one needs to compute
the reduced cost (value of Tlb if Xi = s), written TXi=s

lb . One can then use
the inference rule:

∀Xi ∈ X ∀s ∈ D(Xi) : TXi=s
lb > T =⇒ Xi 6= s (DF)

To compute TXi=s
lb , one has to compute the value Cunbound under the con-

straint Xi = s, i.e.:

CXi=s
unbound = C(Xi) · P (s) + Prodcost(UV sorted\{Xi},UAsorted\{s}) (3)

TXi=s
lb is then defined as Cassigned + CXi=s

unbound .

We are interested in computing Equation 3 for all variables Xi ∈ UV and
all values s ∈ D(Xi). An inefficient way would be to recompute the second term
for each pair (Xi, s). However, one can notice that when a variable is assigned
to a given value of its domain, to compute the optimal mapping for the other
variables by means of UV sorted and UAsorted , some variables are mapped to
the same assignment as in the original optimal assignment (see Figure 2).
Moreover, the variables that must be mapped to other assignments must all
be mapped to the predecessor/successor of the value they were mapped with
in the original matching (see Figure 2).

This observation allows us to compute the second term of Equation 3 in
O(1), provided we have precomputed the 3 arrays CS , CS left and CS right , for
which the ith element is defined as:

CS i = Prodcost(UV sorted
1..i ,UAsorted)

CS left
i = Prodcost(UV sorted

2..i ,UAsorted)

CS right
i = Prodcost(UV sorted

1..i ,UAsorted
2..|UA|)

8 Sascha Van Cauwelaert, Pierre Schaus

Let us call Xi
pos and spos the positions of Xi in UV sorted and s in UAsorted ,

respectively. Let us assume spos > Xi
pos as in Figure 2 (there is symmetric

reasoning for the case spos < Xi
pos , and the case spos = Xi

pos is already
managed by the feasibility checker). Then, computing the optimal mapping
can simply be done with:

CSXi
pos−1︸ ︷︷ ︸

Unchanged

+

Assignment︷ ︸︸ ︷
C(Xi) · P (s) + CS left

spos−1 − CS left
Xi

pos−1︸ ︷︷ ︸
LeftShifted

+

Unchanged︷ ︸︸ ︷
CS |UV | − CS spos

Example 3. Let us reconsider values from Example 2 and let us assume T =
380. Prior to filtering, we can precompute CS = (30, 55, 95, 125, 170, 220),
CS left = (25, 45, 75, 105, 135) and CS right = (30, 80, 120, 165, 240). We now

wish to compute Cf=4
unbound . Since fpos = 3 and 4pos = 6, we have, in O(1),

Cf=4
unbound = CS 2+C(f)·P (4)+CS left

5 −CS left
2 +CS 6−CS 6 = 55+100+90+0 =

245. If we add Cassigned , we finally have a cost of 390 > T and therefore
4 /∈ D(f).

Time Complexity Computing CS , CS left and CS right is O(n) in time, where
n = |UV |. Then one must compute CXi=s

unbound for each pair (Xi, s) : Xi ∈
UV , s ∈ D(Xi) and perform a feasibility check in O(1). The time complex-
ity for checking all pairs variable-value is therefore O(n · m), where m =
maxXi∈UV |D(Xi)|.

3 Algorithms

The implementation relies on several incremental and reversible data struc-
tures. First, we use reversible doubly-linked lists to maintain the sequences
UV and UA, ordered by non-increasing C and non-decreasing P , respectively.
They are maintained during search and their state is retrieved upon back-
tracking thanks to trailing (see [31,1]). Second, we use an array of reversible
sparse sets [5], XwithValue , keeping track of the variables whose domain contain
a given value s. This is useful to maintain UA efficiently. We also make use
of delta sets. For a variable Xi, the set ∆Xi

contains all the values that were
removed from the domain of Xi since the last call to the algorithm. This is
done in an efficient manner, described in [5]. For instance, retrieving the set
∆Xi or its size is O(1). Finally, we maintain the total cost due to assigned
variables Cassigned as a reversible integer.

Feasibility Checker Algorithm 1 allows computing Tlb and to perform the fea-
sibility check. Lines 1-11 update the state by means of the freshly bound
variables (i.e., not bound in the previous call): the variable is removed from
the sequence of unbound variables UV , its exact contribution is added to
Cassigned , and its assignment is removed from the possible assignments UA.
Moreover, for each value removed from its domain, the variable is removed

Efficient Filtering for the Resource-Cost AllDifferent Constraint 9

from the set of variables that could be assigned to this value. If this set gets
empty, no variable can be assigned to the value and this time slot is therefore
removed from the sequence of possible assignments. A first check is done with
Cassigned . Lines 15-22 update the set of remaining available assignments, i.e.,
they remove from UA the values that are no more contained in any domain. To
do so, the sequence UV is traversed and for each variable, if its delta set is not
empty, we update the corresponding sparse sets of values present in the delta
set. Line 23 computes a lower bound for the cost due to unbound variables,
by traversing UV and UA. The feasibility check is done in lines 24-26 and the
total cost is lower bounded in line 27.

Algorithm 1: Incremental Computation of Tlb . The algorithm also
serves as a feasibility checker with inference rule FC.

1 forall the Xi ∈ UV : |D(Xi)| = 1 do
2 UV ← UV \{Xi}
3 Cassigned ← Cassigned + C(Xi) · P (Xi)
4 UA← UA\{Xi.value()}
5 forall the s ∈ ∆Xi

do
6 XwithValue(s)← XwithValue(s)\{Xi}
7 if XwithValue(s) = ∅ then
8 UA← UA\{s}
9 end

10 end

11 end

12 if Cassigned > T then
13 return Fail
14 end
15 forall the Xi ∈ UV do
16 forall the s ∈ ∆Xi

do
17 XwithValue(s)← XwithValue(s)\{Xi}
18 if XwithValue(s) = ∅ then
19 UA← UA\{s}
20 end

21 end

22 end
23 Cunbound ← Prodcost (UV ,UA)

24 if Cassigned + Cunbound > T then
25 return Fail
26 end
27 post(T ≥ Cassigned + Cunbound)

Domain Filtering Algorithm 2 achieves domain filtering. We assume CS , CS left

and CS right are computed according to current state. It can be done by sim-
ply traversing the UV and UA sequences. Line 1 computes Passignment that
maps unbound assignments to their position in UA. The loops in lines 2-18
apply the domain filtering rule for each pair (Xi ∈ UV , s ∈ D(Xi)). Depend-
ing on the relative positions of Xi and s, CXi=s

unbound is computed. At line 10,

10 Sascha Van Cauwelaert, Pierre Schaus

a feasibility check for this particular assignment is performed. If it is unfea-
sible, we remove the time slot of the domain of the variable and update the
corresponding sparse set (and possibly UA if it is emptied).

Algorithm 2: Filter the domains by means of the inference rule DF.

1 Passignment ← mapa→p /* Map from assignments to position in UA */

2 forall the Xi ∈ UV do
3 forall the s ∈ D(Xi) do
4 spos ← Passignment (s)
5 if Xi

pos < spos then

6
C

Xi=s
unbound ← CSXi

pos−1 + C(Xi) · P (s) + CS left
spos−1 − CS left

Xi
pos−1

+CS |UV | − CSspos

7 else if Xi
pos > spos then

8
C

Xi=s
unbound ← CSspos−1 + C(Xi) · P (s) + CS right

Xi
pos−1 − CS right

spos−1

+CS |UV | − CSXi
pos

9 end

10 if C
Xi=s
unbound + Cassigned > T then

11 D(Xi)← D(Xi)\s
12 XwithValue(s)← XwithValue(s)\{Xi}
13 if XwithValue(s) = ∅ then
14 UA← UA\{s}
15 end

16 end

17 end

18 end

4 Continuous Casting Steel Production with Electricity Bill
Minimization

To evaluate the ResourceCostAllDifferent (RCAD) constraint in prac-
tice, we first considered a real-life industrial problem, the Continuous Casting
Steel Production with Electricity Bill Minimization (CCSPEBM). We com-
pared the performances of our filtering algorithm with those of existing ap-
proaches. All experiments were performed with the OscaR solver [16], AMD
Opteron processors (2.7 GHz), the Java Runtime Environment 8, and a mem-
ory consumption limit of 4Gb.

We first experimented with small-scale instances: RCAD provides generally
additional pruning as compared with a decomposition in a sum of element
constraints, sometimes by one order of magnitude. This is reflected from a
time perspective: one order of magnitude can be gained and RCAD is at the
very most 3 times slower. MinimumAssignment is always slower than RCAD
and almost only brings overhead if they are used together. Moreover, since the
exact reduced costs are not computed in MinimumAssignment as it is too

Efficient Filtering for the Resource-Cost AllDifferent Constraint 11

expensive3, it appears RCAD prunes generally more than MinimumAssign-
ment.

To challenge the scalability of our approach, we also considered larger in-
stances. We discovered that RCAD is faster than the decomposition in a sum
of element constraints for ∼ 75% of the instances and that at least one or-
der of magnitude is gained for ∼ 20% of the instances. From a number of
backtracks point of view, an order of magnitude is gained for ∼ 30% of the
instances. Finally, RCAD is slower by a maximum factor of 3.2, showing our
approach is not only efficient but also robust.

Before providing the different results in detail, this section gives the defi-
nition of the problem, a CP model to solve it, and describes the comparison
methodology we used.

4.1 Problem Definition

A Continuous Casting Steel Production Problem is a scheduling problem, for
which a CP approach has been proposed in [12]. The main difference in our
problem is that steel is produced by melting scrap in an Electric Arc Fur-
nace (EAF) instead of a blast furnace. The total electricity cost minimization
becomes the objective of the problem.

The CCSPEBM consists in scheduling a set of programs P. A program p
is made of a sequence Bp of batches. Each batch must be processed by a given
sequence of machines: the EAF, the Ladle Furnace (LF), the Argon Oxygen
Decarburization (AOD), and finally the Caster (CAS). For a given program,
the AOD might actually not be used (this is known a priori). A machine can
process at most one batch at any time. An illustration of a CCSPEBM schedule
is given in Figure 3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

CAS

AOD

LF

EAF

b1 b2 b1

b1 b2

b1 S b2 b1

b1 b2 b1

Fig. 3 Example of a CCSPEBM schedule with two programs, respectively with two batches
and one batch. Activities of the first/second program are in light/dark gray. Only the first
program makes use of the AOD and its first batch is stocked by the LF during one time slot
(represented by the S square).

In the process, a batch is first melt using the EAF. Because the steel
must be kept at a high temperature, the subsequent machines must process
the batch as soon as the previous machine has finished. In addition, a batch

3 According to preliminary experiments we conducted. We do not report any results when
exact reduced costs are used.

12 Sascha Van Cauwelaert, Pierre Schaus

cannot stay too long in the whole process, that is, there is a maximum span
between the EAF and the CAS. The CAS must process all batches of a given
program without interruption (see for instance the first program in Figure 3).
The processing time of a batch by a machine is known a priori and cannot be
modified. However, the LF/AOD might stock a batch during a small amount
of time (see Figure 3).

The two electric machines requiring a significant amount of electrical en-
ergy are the EAF and the LF. A consumption profile is associated to the pro-
cessing of a batch by a machine, that is, a function that provides the (non-null)
consumption of each time period of the processing time. The profiles follow
bounded ramp functions: the first slot requires a given amount and then stays
constant with another higher consumption for the remaining duration. The
profile can be different for each batch when processed by the EAF but it is the
same for all batches processed by the LF. It is assumed that the LF does not
consume energy while it stocks a batch since the consumption is negligible,
i.e., the consumption required to stock a batch is 0. Finally, the electricity
prices can vary at each time slot of the whole horizon.

4.2 CP Model

A standard CP scheduling approach is used for solving this problem. The
processing of a batch by a machine is represented by an activity. Each activity
is modeled with three integer variables used to represent its start, duration
and end: s, d and e, such that s + d = e. For a machine m, sm denotes the
array of starting times of all activities executed on m, and sbm the starting time
of the processing of the batch b by machine m (similar notations are used for
duration and ending time). We allow dlf and daod to vary since the LF/AOD
may stock a batch for a moment (see the S square in Figure 3). For every
batch b, the different activities must be scheduled continuously:

∀p ∈ P,∀b ∈ Bp : ebeaf = sblf ∧ eblf = sbaod ∧ ebaod = sbcas

All batches of a given program must be processed in sequence by the caster
and without any interruption:

∀p ∈ P,∀i ∈ 1..|Bp| − 1 : ebicas = sbi+1
cas

A machine can only process one batch at a time. This is modeled with unary
resource constraints [29]:

unary(seaf , deaf , eeaf) ∧ unary(slf , dlf , elf)∧
unary(saod , daod , eaod) ∧ unary(scas , dcas , ecas)

Finally, a batch can not stay too long in the whole process:

∀b ∈ B : sbcas − ebeaf ≤ max span

where max span is the maximum duration a batch can stay after the EAF and
before the CAS.

Efficient Filtering for the Resource-Cost AllDifferent Constraint 13

Electricity Bill Minimization To model the objective, we split a given activity
on the EAF/LF that must be processed during d time slots into d consecutive
chunks with a duration of 1 time slot. Each of these chunks is then an item to
be produced and has a consumption given by the batch consumption profile on
the machine. The objective is modeled with Equation 1 and is to be minimized.
We compare the following modelings of Equation 1:

– SumElements, using a sum of element constraints. In this case, we do
not split activities into chunks. We precompute the total cost of starting
an activity at a given time and use this cost in the element constraint.

– SumElements∪MinAssignment , using a MinimumAssignment constraint
[10] additionally for each consuming machine. The cost of assigning a chunk
at a time slot s is simply its consumption in the profile of the activity
multiplied by the price at slot s. We do not use the exact reduced costs [8]
that appeared to require a prohibitive computation time for the size of the
considered instances.

– SumElements∪RCAD , using our constraint additionally, since RCAD and
SumElements actually do not subsume each other. RCAD alone can miss
some filtering as compared to SumElements because of the union of do-
mains relaxation in our procedure.

– SumElements ∪RCAD ∪MinAssignment , using all constraints altogether.

4.3 Comparison Methodology

Replay Evaluation To compare the different models, we use the Replay Eval-
uation framework introduced in [25]. It allows assessing the benefit of us-
ing stronger propagation while removing the unpredictable effects of dynamic
search heuristics. The general idea is to generate a search tree using the base-
line model, i.e., the one with the weakest pruning (in our case, SumElements)
and save it in memory. The saved tree is then traversed with the different
models in order to get metrics such as solving time and number of backtracks.
This evaluation allows ensuring that any gain in time/number of backtracks
can be attributed to additional propagation solely, and not to the dynamic
search heuristic.

To generate the search tree, we use a simple first-fail search heuristic,
the focus of this work being on propagation: we first branch on the variable
with the smallest domain. For the value heuristic, prior to search and for
each consuming activity, we order the time slots by non-decreasing order of
total processing cost of starting the activity at the time slot. Let s be the
available slot minimizing cost of batch b on machine m, we then branch in a
ternary fashion in this order: sbm = s, sbm < s and sbm > s. For non-consuming
activities, we assign the activity to its minimum starting time on the left
branch, and remove this assignment on the right branch.

14 Sascha Van Cauwelaert, Pierre Schaus

Instance Generation This work being part of an industrial project, we dis-
cussed with consultants of the N-side company4 in order to generate realistic
instances, and we use real historical electricity prices on the EU market. Our
instances have between 2 and 15 batches per program, and their duration is
between 3 and 4 slots at the EAF, exactly 4 slots at the AOD/LF, and between
4 and 5 slots at the CAS. 80% of the programs do use an AOD and possible
consumptions vary between 1 and 100. We ensure that there are enough pro-
grams so that the caster is used between 60% and 80% of the horizon. Finally,
max span amounts to 150% of the sum of processing times of a batch by the
LF and the AOD.

4.4 Small Instances

We first consider 158 small instances (96 time slots). Search trees were gen-
erated with a time limit of 30 s. and a backtrack limit of 500000. The results
are given in Figures 4, 5, 6.

In Figure 4, one can see that SumElements ∪ RCAD is sometimes faster
than SumElements, but not always. However, the factor is generally not large
when it is slower (at most ∼ 3). The number of backtracks is almost always
reduced, sometimes significantly. For only a few instances there is no addi-
tional pruning, which explains the slowest execution times due to the over-
head induced by our constraint. We perform an extended comparison of those
approaches for larger instances in the next section.

●●●●● ●●
●●● ●●● ●● ●●● ●● ●●

●●●● ●●
● ●● ●● ●

●●
●●● ● ● ●● ●● ●● ●●

● ●● ●● ●● ● ●●● ●● ●●● ●● ●● ●● ●● ● ●● ● ●● ●●● ●

0

25

50

75

0 25 50 75
SumElements ∪ RCAD

S
um

E
le

m
en

ts

Time (s.)

●●●

●●
●

●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
● ●● ●● ●● ●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0

1

2

3

4

5

0 1 2 3 4 5
SumElements ∪ RCAD

S
um

E
le

m
en

ts

Backtracks (105)

Fig. 4 Comparison of SumElements and SumElements ∪ RCAD on small instances.

Comparisons of SumElements∪MinAssignment and SumElements∪RCAD
are reported in Figure 5. An important observation is that SumElements ∪

4 http://www.n-side.com/

Efficient Filtering for the Resource-Cost AllDifferent Constraint 15

MinAssignment is always slower than SumElements∪RCAD . Interestingly, one
can see that SumElements∪RCAD prunes generally more than SumElements∪
MinAssignment : the reason is that RCAD is not subsumed by MinAssignment
since we use the version from Focacci et al. [9] that uses the linear program-
ming reduced costs and not the exact ones. It would be subsumed using the
exact reduced costs as in [8] but unfortunately computing them was too costly
according to first preliminary experiments we conducted.

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

0

25

50

75

0 25 50 75
SumElements ∪ RCAD

S
um

E
le

m
en

ts
 ∪

 M
in

A
ss

ig
nm

en
t

Time (s.)

●●●●

●

●
●

●●
●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

0

1

2

3

4

5

0 1 2 3 4 5
SumElements ∪ RCAD

S
um

E
le

m
en

ts
 ∪

 M
in

A
ss

ig
nm

en
t

Backtracks (105)

Fig. 5 Comparison of SumElements∪MinAssignment and SumElements∪RCAD on small
instances.

We therefore make a last comparison, between SumElements∪MinAssignment
∪RCAD and SumElements∪RCAD (see Figure 6). One can observe that Min-
imumAssignment often only brings overhead: the data points are generally
close to the equality line for the number of backtracks, while the search times
are slower. As a conclusion, MinimumAssignment does not scale well and we
will not use it for our comparison on larger instances.

4.5 Large Instances

To challenge the scalability of our approach, we generated 227 larger instances
with 480 time slots. We generated search trees using a time limit of 300 s., in
order to grasp more information about the performances of both approaches
during search. Results are given in Figure 7. As for small instances, one can
see that there is often an important gain in terms of number of backtracks.
There is no additional pruning only for a few instances. From an execution time
perspective, one can observe the replays for SumElements all takes around 300
s., which is expected since it is the model used to generate the search trees.
Moreover, SumElements ∪ RCAD is faster for most of the instances.

16 Sascha Van Cauwelaert, Pierre Schaus

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

25

50

75

0 25 50 75
SumElements ∪ RCAD

S
um

E
le

m
en

ts
 ∪

 R
C

A
D

 ∪
 M

in
A

ss
ig

nm
en

t

Time (s.)

●●●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

0

1

2

3

4

5

0 1 2 3 4 5
SumElements ∪ RCAD

S
um

E
le

m
en

ts
 ∪

 R
C

A
D

 ∪
 M

in
A

ss
ig

nm
en

t

Backtracks (105)

Fig. 6 Comparison of SumElements∪MinAssignment∪RCAD and SumElements∪RCAD
on small instances.

●●● ● ●● ●●●● ●●● ●●● ● ●●●● ●●● ● ●●●● ● ●● ●● ● ●●● ● ●● ●● ●● ● ●●● ● ●● ●●● ●● ●●●● ● ●● ●●● ●● ●● ●● ●● ● ●●● ● ●● ●● ● ● ●●● ●● ●● ● ●● ● ●●● ●● ● ●● ● ●●●●● ●● ●●●● ● ●● ●● ● ●● ●●● ● ●●● ●● ● ●●● ● ● ●●●● ●● ●● ●● ●●● ●● ● ●● ●● ●● ●● ●● ● ●● ●● ●● ●● ●● ●●● ●●●●●● ● ●●●● ●● ● ●● ●●● ●●● ●● ●● ●●● ● ●● ●●● ●● ● ●● ●●●● ● ●●

0

250

500

750

0 250 500 750
SumElements ∪ RCAD

S
um

E
le

m
en

ts

Time (s.)

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0

2.5

5

7.5

10

0 2.5 5 7.5 10
SumElements ∪ RCAD

S
um

E
le

m
en

ts

Backtracks (105)

Fig. 7 Comparison of SumElements and SumElements ∪ RCAD on large instances.

In order to quantify and better visualize the gain obtained by our approach,
we constructed so-called performance profiles [7], that we built with a public
web tool [26] made available to the community.5 Performance profiles are cu-
mulative distribution functions of a performance metric ratio τ . In our case, τ
is a ratio of time or of number of backtracks. For time, the function is defined
as in [25] with (it is similar for backtracks):

Fm(τ) =
1

|I|

∣∣∣∣{i ∈ I :
timereplay(m, i)

timereplay(b, i)
≤ τ

}∣∣∣∣
where I is the set of considered instances, m is a model and b is the baseline
model (in our case SumElements).

5 Accessible at http://performance-profile.info.ucl.ac.be/.

Efficient Filtering for the Resource-Cost AllDifferent Constraint 17

Figures 8 and 9 respectively provide the profiles for the number of back-
tracks and the time metrics. Let us first read the profiles for the number back-
tracks: FSumElements∪RCAD(1) ' 95%, so we achieve more pruning for ∼ 95%
of the instances. Furthermore, FSumElements∪RCAD(0.1) ' 30%, which means
that we gain at least one order of magnitude on the number of backtracks for
∼ 30% of the instances.

24/02/2017 performance-profile (43).svg

file:///Users/saschavancauwelaert/Downloads/performance-profile%20(43).svg 1/1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
τ (backtracks)

0.0 1.0

10

20

30

40

50

60

70

80

90

%
 in
st
an
ce

0

100
SumElements SumElements U RCAD

Fig. 8 Backtracks performance profile on large instances of the CCSPEBM.

From an execution time perspective, FSumElements∪RCAD(1) ' 75%, so our
approach is faster for ∼ 75% of the instances. One can also observe that at
least one order of magnitude is gained for ∼ 20% of the instances. Finally,
notice that FSumElements∪RCAD reaches 100% at τ = 3.2 This means that if
SumElements∪RCAD is slower than SumElements, it is at most by a factor of
3.2. This illustrates that our approach is also robust as it does not deteriorate
much the execution time in case it does not bring any additional filtering.

5 The Product Matrix Travelling Salesman Problem

In order to evaluate our constraint on a second problem, let us consider
a particular case of the well-known Asymmetric Travelling Salesman Prob-
lem (ATSP), the Product Matrix Travelling Salesman Problem (PMTSP),
that was first formally described in [18]. We recently added this problem to
the CSPLib [4]. We consider this problem because it is more academic than
the previous one. The experiments show that our approach is the fastest for
∼ 90% of the considered instances, even if we also experimented with the

18 Sascha Van Cauwelaert, Pierre Schaus

24/02/2017 performance-profile (42).svg

file:///Users/saschavancauwelaert/Downloads/performance-profile%20(42).svg 1/1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0
τ (time)

0.0 3.2

10

20

30

40

50

60

70

80

90

%
 in
st
an
ce

0

100
SumElements SumElements U RCAD

Fig. 9 Time performance profile on large instances of the CCSPEBM.

a

b c

C(a) · P (b)

C(b) · P (a)

C(a) · P (c)

C(c) · P (a)

C(b) · P (c)

C(c) · P (b)

Fig. 10 Instance of the Product Matrix Travelling Salesman Problem.

Concorde solver[2,3], a custom state-of-the-art Branch-and-Cut Mixed Inte-
ger Programming solver for the Travelling Salesman Problem (TSP).

Definition Given two vectors of n elements C and P , one can construct a
simple graph G with n vertices, such that the directed edge from the vertex
i to the vertex j 6= i has a cost equal to C(i) · P (j). The distance matrix is
therefore the matrix product between the vectors C and P , hence the name
of the problem. An instance of the PMTSP is illustrated in Figure 10. The
problem consists in finding an Hamiltonian circuit of minimum total cost in
the graph G. The problem was proven to be NP-hard in [21,13].

Solving In CP, the ATSP is usually solved with a successor model (see [17]):
an array of n variables succ is used to represent the successors for each vertex.

Efficient Filtering for the Resource-Cost AllDifferent Constraint 19

One then impose that the array is a Hamiltonian circuit (filtering from [17]) :

circuit(succ)

One can model the objective with either: 1) a sum of element constraints,
2) a MinimumAssignment constraint, or 3) the ResourceCostAllDif-
ferent constraint. The sum of element constraints misses a lot of pruning
in this case, so we will not consider it here. Let us respectively call RCAD ,
MinAssignment and MinAssignment ∪ RCAD the models with Resource-
CostAllDifferent, MinimumAssignment, and both algorithms.

Results We generated 50 instances with 200 vertices. We compared the per-
formances of the different CP models and those of the Concorde solver[2,3],
a custom state-of-the-art Branch-and-Cut Mixed Integer Programming solver
for the TSP. Since Concorde does not solve ATSPs, we used the standard
reduction from ATSPs to TSP given in [15] to solve our instances with this
solver. We used the Conflict Ordering Search heuristic [11] to solve the prob-
lems in CP. For all approaches, the instances were solved to optimality. All
experiments were performed on a machine with an Intel Core i7 (2,2 GHz) pro-
cessor. The results are given in Figure 11, as a standard performance profile
as defined in [7].

24/02/2017 performance-profile (41).svg

file:///Users/saschavancauwelaert/Downloads/performance-profile%20(41).svg 1/1

2.0 4.0 8.0 16
τ (time)

1.0 32

10

20

30

40

50

60

70

80

90

%
 in
st
an
ce

0

100
RCAD MinAssignment RCAD U MinAssignment Concorde

Fig. 11 Performance profile for the different CP models and the Concorde solver on the 50
generated instances of the PMTSP.

First, one can observe that MinAssignment is the slowest of the CP ap-
proaches, which is a conclusion already done in the last section. Using our
propagator additionnaly provides some speed-up since it can provide more
pruning or detect a failure faster at a given node since it has a higher priority

20 Sascha Van Cauwelaert, Pierre Schaus

in the propagation queue. Yet, only using our algorithm is the best option,
since it is always faster than the other CP models. The overhead of using
MinimumAssignment to possibly get more pruning simply does not pay off
in this case.

An interesting observation is that Concorde is only the fastest solver for
∼ 10% of the instances, while RCAD is the fastest for the remaining ∼ 90%
instances. Moreover, the solving time ratio for Concorde, as compared with
RCAD , is often large: 5% of the instances are even not solved in a factor 32 of
the time required by RCAD . At the same time, when RCAD is not the fastest,
it requires at the very most a factor of 12 as compared with Concorde. This
indicates that even when RCAD is not the fastest, it is more robust. From this
experiment, one can conclude that the CP technology should be the preferred
one to solve this problem.

6 Conclusion

In this work, we considered problems where a set of items, each requiring a
different amount of resource, must be assigned to different slots, and where the
price for a unit of resource can vary at each slot. In this class of problems, the
objective is to assign items such that the overall resource cost is minimized.
We showed two ways of modeling such an objective in CP and their limitations
(limited inference or scalability). To cope with those limitations, we introduced
a new filtering algorithm, that we evaluate on a real and large-scale industrial
problem, the CCSPEBM. The results demonstrate that, especially for large
instances, our approach is often faster, sometimes with an important speed-up:
an order of magnitude is gained for ∼ 20% of the large instances and ∼ 75%
of them are solved faster. Moreover, our algorithm is robust, in the sense
that when it is slower, it is by a small factor (3.2 at the very most). Results
also illustrate that for a non-negligible number of the large instances, we can
get an important gain in terms of number of backtracks as compared with
a decomposition: a reduction of at least one order of magnitude is obtained
for 30% of the instances. We also considered a more academic problem, the
PMTSP. We compared our approach with existing ones in CP, as well as with
Concorde, a custom TSP solver. The results show that our approach is the
fastest in CP, and that it outperforms Concorde for 90% of the instances,
sometimes by an important factor (some instances could not be solved in a
factor 32 as compared with our approach).

Future Work We would like to extend our algorithm to handle the production
of several items at the same time slot. This would therefore be a particular
case of GccCost for cardinalities larger than 1. Moreover, we would like to
study the performances of our algorithm on other kinds of problems such as
discrete lot sizing problems [14]. Finally, in the case of the CCSPEBM, an
important future work is the evaluation of the robustness of the approach in

Efficient Filtering for the Resource-Cost AllDifferent Constraint 21

function of errors in prices prediction, as there is a certain level of uncertainty
in prices forecasts.

Acknowledgements This Research has been supported by the “Service Publique de Wal-
lonie Direction générale opérationnelle de l’Economie, de l’Emploi & de la Recherche” under
the scope of the InduStore project.

References

1. Hassan Aı̈t-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press,
1991.

2. David L. Applegate, Robert E. Bixby, Vašek Chvátal, and William J. Cook. Concorde
TSP solver, 2006.

3. David L. Applegate, Robert E. Bixby, Vašek Chvátal, and William J. Cook. The trav-
eling salesman problem: a computational study. Princeton university press, 2011.

4. Sascha Van Cauwelaert and Pierre Schaus. CSPLib problem 075: Product matrix trav-
elling salesman problem. http://www.csplib.org/Problems/prob075.

5. Vianney le Clément de Saint-Marcq, Pierre Schaus, Christine Solnon, and Christophe
Lecoutre. Sparse-sets for domain implementation. In International workshop on Tech-
niques foR Implementing Constraint programming Systems, pages 1–10, 2013.

6. Cyrille Dejemeppe, Olivier Devolder, Victor Lecomte, and Pierre Schaus. Forward-
checking filtering for nested cardinality constraints: Application to an energy cost-aware
production planning problem for tissue manufacturing. In International Conference on
Integration of Artificial Intelligence and Operations Research Techniques in Constraint
Programming, pages 108–124. Springer, 2016.

7. Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with per-
formance profiles. Mathematical programming, 91(2):201–213, 2002.

8. Sylvain Ducomman, Hadrien Cambazard, and Bernard Penz. Alternative filtering for the
weighted circuit constraint: Comparing lower bounds for the TSP and solving TSPTW.
In AAAI Conference on Artificial Intelligence, 2016.

9. Filippo Focacci, Andrea Lodi, and Michela Milano. Integration of CP and OR methods
for matching problems. In International Workshop on Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Problems, 1999.

10. Filippo Focacci, Andrea Lodi, Michela Milano, and Daniele Vigo. Solving TSP through
the integration of OR and CP techniques. Electronic notes in discrete mathematics,
1:13–25, 1999.

11. Steven Gay, Renaud Hartert, Christophe Lecoutre, and Pierre Schaus. Conflict ordering
search for scheduling problems. In International Conference on Principles and Practice
of Constraint Programming, pages 140–148. Springer, 2015.

12. Steven Gay, Pierre Schaus, and Vivian De Smedt. Continuous casting scheduling with
constraint programming. In International Conference on Principles and Practice of
Constraint Programming, pages 831–845. Springer, 2014.

13. Paul C. Gilmore, Eugene L. Lawler, and David Shmoys. Well-solved special cases of
the traveling salesman problem. In John Wiley & Sons, editor, The Traveling Salesman
Problem. 1985.

14. Vinasétan Ratheil Houndji, Pierre Schaus, Laurence Wolsey, and Yves Deville. The
stockingcost constraint. In International Conference on Principles and Practice of
Constraint Programming, pages 382–397. Springer, 2014.

15. Roy Jonker and Ton Volgenant. Transforming asymmetric into symmetric traveling
salesman problems. Operations Research Letters, 2(4):161–163, 1983.

16. OscaR Team. OscaR: Scala in OR, 2012. Available from
https://bitbucket.org/oscarlib/oscar.

17. Gilles Pesant, Michel Gendreau, Jean-Yves Potvin, and Jean-Marc Rousseau. An exact
constraint logic programming algorithm for the traveling salesman problem with time
windows. Transportation Science, 32(1):12–29, 1998.

22 Sascha Van Cauwelaert, Pierre Schaus

18. Robert D. Plante, Timothy J. Lowe, and R. Chandrasekaran. The product matrix
traveling salesman problem: an application and solution heuristic. Operations Research,
35(5):772–783, 1987.

19. Jean-Charles Régin. A filtering algorithm for constraints of difference in CSPs. In AAAI
Conference on Artificial Intelligence, volume 94, pages 362–367, 1994.

20. Jean-Charles Régin. Cost-based arc consistency for global cardinality constraints. Con-
straints, 7(3-4):387–405, 2002.

21. V. I. Sarvanov. On the complexity of minimizing a linear form on a set of cyclic
permutations. In Dokl. Akad. Nauk SSSR, volume 253, pages 533–535, 1980.

22. Meinolf Sellmann. An arc-consistency algorithm for the minimum weight all differ-
ent constraint. In International Conference on Principles and Practice of Constraint
Programming, pages 744–749. Springer, 2002.

23. Helmut Simonis and Tarik Hadzic. A family of resource constraints for energy cost
aware scheduling. In Third International Workshop on Constraint Reasoning and Op-
timization for Computational Sustainability, St. Andrews, Scotland, UK, 2010.

24. Helmut Simonis and Tarik Hadzic. A resource cost aware cumulative. In Recent Ad-
vances in Constraints: 14th Annual ERCIM International Workshop on Constraint
Solving and Constraint Logic Programming, CSCLP 2009, Barcelona, Spain, June 15-
17, 2009, Revised Selected Papers, pages 76–89. Springer, 2011.

25. Sascha Van Cauwelaert, Michele Lombardi, and Pierre Schaus. Understanding the po-
tential of propagators. In International Conference on Integration of Artificial Intelli-
gence and Operations Research Techniques in Constraint Programming, pages 427–436.
Springer, 2015.

26. Sascha Van Cauwelaert, Michele Lombardi, and Pierre Schaus. A visual web tool to
perform what-if analysis of optimization approaches. arXiv preprint arXiv:1703.06042,
2017.

27. Pascal Van Hentenryck and Jean-Philippe Carillon. Generality versus specificity: An
experience with AI and OR techniques. In AAAI Conference on Artificial Intelligence,
pages 660–664, 1988.

28. Willem-Jan van Hoeve. The alldifferent constraint: A survey. CoRR, cs.PL/0105015,
2001.

29. Petr Viĺım. O(n.log(n)) filtering algorithms for unary resource constraint. In Jean-
Charles Régin and Michel Rueher, editors, International Conference on Integration of
Artificial Intelligence and Operations Research Techniques in Constraint Programming,
pages 335–347. Springer, 2004.

30. Gilles Madi Wamba and Nicolas Beldiceanu. The taskintersection constraint. In Inter-
national Conference on Integration of Artificial Intelligence and Operations Research
Techniques in Constraint Programming, pages 246–261. Springer, 2016.

31. David H. D. Warren. An abstract Prolog instruction set, volume 309. Artificial Intelli-
gence Center, SRI International Menlo Park, California, 1983.

32. Rafa l Weron. Electricity price forecasting: A review of the state-of-the-art with a look
into the future. International Journal of Forecasting, 30(4):1030–1081, 2014.

33. Rolf Wüstenhagen and Michael Bilharz. Green energy market development in germany:
effective public policy and emerging customer demand. Energy policy, 34(13):1681–1696,
2006.

