
Cardinality Reasoning for bin-packing
constraint. Application to a tank allocation

problem

Pierre Schaus1, Jean-Charles Régin2, Rowan Van Schaeren3, Wout Dullaert4,
and Birger Raa5

1 ICTEAM, Université catholique de Louvain, Belgium, pschaus@gmail.com
2 University of Nice, gcregin@gmail.com

3 Antwerp Maritime Academy, rowan.van.schaeren@hzs.be
4 VU University Amsterdam and University of Antwerp, wout.dullaert@vu.nl

5 University of Gent, birger.raa@ugent.be

Abstract. Flow reasoning has been successfully used in CP for more
than a decade. It was originally introduced by Régin in the well-known
Alldifferent and Global Cardinality Constraint (GCC) available in most
of the CP solvers. The BinPacking constraint was introduced by Shaw
and mainly uses an independent knapsack reasoning in each bin to filter
the possible bins for each item. This paper considers the use of a cardinal-
ity/flow reasoning for improving the filtering of a bin-packing constraint.
The idea is to use a GCC as a redundant constraint to the BinPacking
that will count the number of items placed in each bin. The cardinality
variables of the GCC are then dynamically updated during the propaga-
tion. The cardinality reasoning of the redundant GCC makes deductions
that the bin-packing constraint cannot see since the placement of all
items into every bin is considered at once rather than for each bin in-
dividually. This is particularly well suited when a minimum loading in
each bin is specified in advance. We apply this idea on a Tank Allocation
Problem (TAP). We detail our CP model and give experimental results
on a real-life instance demonstrating the added value of the cardinality
reasoning for the bin-packing constraint.
Keywords: Tank Allocation, Constraint Programming, Load Planning

1 Bin-Packing Constraint

The BinPacking constraint was introduced in [1]:

BinPacking([X1, . . . , Xn], [w1, . . . , wn], [L1, . . . , Lm]).

This constraint enforces the relation Lj =
∑

i(Xi = j) · wi,∀j. It makes
the link between n weighted items (item i has a weight wi) and the m dif-
ferent capacitated bins in which they are to be put. Only the weights of the
items are integers, the other arguments of the constraints are finite domain
(f.d.) variables. Note that in this formulation, Lj is a variable which is bounded
by the maximal capacity of the bin j. Without loss of generality we assume
the item variables and their weights are sorted such that wi ≤ wi+1. Example:
BinPacking([1, 4, 1, 2, 2], [2, 3, 3, 3, 4], [5, 7, 0, 3]).

Classical formulation The traditional way to model a BinPacking constraint is
to introduce a binary variable Bi,j for each pair (item, bin) which is 1 (true) if
item i is placed into bin j, 0 (false) otherwise. Then for each bin j, we add the
constraint Lj =

∑
i Bi,j ·wi. As noted in [1] one important redundant constraint

to add is
∑

j Lj =
∑

i wi allowing a better communication between the other
constraints.

Existing Filtering Algorithms A specific filtering algorithm for the BinPacking
constraint in addition to its classical formulation has been first proposed in [1].
This algorithm essentially filters the domains of the Xi’s using a knapsack-like
reasoning to detect if forcing an item into a particular bin j would make it
impossible to reach a load Lj for that bin. This procedure is very efficient but
can return false positive saying that an item is OK for a particular bin while
it is not. Shaw [1] also introduced a failure detection algorithm computing a
lower bound on the number of bins necessary to complete the partial solution.
This last consistency check has been extended by [2]. Finally, Cambazard and
O’Sullivan [3] propose to filter the domains using an LP arc-flow formulation.

The existing filtering algorithms use the upper bounds of the loading variables
max(Lj) (i.e. capacity of the bins). They do not focus much on the lower bounds
of these variables min(Lj). In classical bin-packing problems, the capacity of the
bins max(Lj) are constrained while the lower bounds min(Lj) are usually set to
0 in the model. The additional cardinality/flow based filtering we introduce is
well suited when those lower bounds are also constrained initially min(Lj) > 0.

2 Cardinality reasoning for bin-packing

Existing filtering algorithms for the BinPacking constraint do not make use of
the cardinality information inside each bin (i.e.. the number of items packed
inside each bin). However this information can be very valuable in some situa-
tions. Consider the extreme case where every item has an equal weight (assume
a weight of 1) such that the BinPacking constraint reduces to a GCC. It is
clear that the filtering algorithms for the BinPacking are very weak compared
to the global arc consistent filtering for the GCC in such a situation. Of course
this situation rarely happens in practice but in many applications the weights of
the items to place are not so different and it is preferable not to lose completely
the reasoning offered by a cardinality constraint (the flow reasoning). Our idea
is to introduce one redundant GCC in the modelling of the BinPacking:

GCC([X1, . . . , Xn], [C1, . . . , Cm])

with Cj a variable that represents the number of items placed into bin j. Initially
Dom(Cj) = {0, . . . , n}. The cardinality variables are pruned dynamically during
the search as the bounds of the Lj ’s and the domains of the Xi’s change. Let
bound(Xi, j) be equal to true if the variable Xi is instantiated to value j (i.e.
item i is placed into bin j), false otherwise. Let lj be the load of the packed items
into bin j: lj =

∑
i:bound(Xi,j) wi and cj be the number of packed items into bin

j: cj =
∑

i:bound(Xi,j) 1. Note that it is possible that min(Lj) ≥ lj because of the

filtering from [1]. Furthermore let possj be the set of possible items into bin j:
possj = {i | |Dom(Xi)| > 1 ∧ j ∈ Dom(Xi)}. Given a subset of items S , let
sum(S) =

∑
i∈S wi. The rules to update the lower and upper bounds of Cj are

obtained by combining cardinalities and capacity information:

min(Cj)← max(min(Cj), cj + |Aj |) (1)

max(Cj)← min(max(Cj), cj + |Bj |) (2)

where Aj ⊆ possj is the minimum cardinality set of items such that lj +
sum(Aj) ≥ min(Lj) and Bj ⊆ possj is the maximum cardinality set of items
such that lj + sum(Bj) ≤ max(Lj). Since items w1, . . . , wn are sorted increas-
ingly, both rules (1) and (2) can be implemented in O(n) by scanning the items
from right to left for rule (1) and from left to right for rule (2).

Example 1. Five items with weights 3,3,4,5,7 can be placed into bin 1 having
a possible load L1 ∈ [20..22]. Two other items are already packed into that
bin with weights 3 and 7 (c1 = 2 and l1 = 10). Clearly we have that |A1| = 2
obtained with weights 5,7 and |B1| = 3 obtained with weights 3,3,4. The domain
of the cardinality variable C1 is thus set to [4..5].

3 Tank allocation for liquid bulk vessels

The tank allocation problem involves the assignment of different cargoes (vol-
umes of chemical products to be shipped by the vessel) to the available tanks of
the vessel. The loading plans of bulk vessels are generally generated manually
by the vessel planners although it is difficult to generate high quality solutions.
The constraints to satisfy are mainly segregation constraints:

1. prevent chemicals from being loaded into certain types of tanks because

– the chemical may need to have its temperature managed and the tank
needs to be equipped with a heating system,

– the tank must be resistant to the chemical,

– a tank may still be contaminated by previous cargoes incompatible with
the chemical.

2. prevent some pairs of cargoes to be placed next to each other: not only the
chemical interactions between the different cargoes need to be considered
but also the temperature at which they need to be transported. Too different
temperature requirements for adjacent tanks cause the second one to solidify
due to cooling off by the first cargo or the first may become chemically
unstable due to heating up of the second cargo.

In order to minimize the costs and inconvenience of tank cleaning, an ideal
loading plan should maximize the total volume of unused tanks (i.e. free space).

Instance The characteristics of the real instance1 that we received from a major
chemical tanker company:

– 20 cargoes with volumes ranging from 381 to 1527 tons.

– The vessel has 34 tanks with capacities from 316 to 1017 tons.

– There are 5 pairs of cargoes that cannot be placed into adjacent tanks.

– Each tank has between 1 to 3 cargoes that cannot be assigned to it.

Fig. 1. Layout of the vessel.

4 A CP Model

The whole tank allocation problem is a mixed integer programming problem
since the decision of which cargo is assigned to each tank is discrete but the
exact volume to assign to each tank is a continuous decision. This paper only
deals with the discrete problem by assigning each cargo to a set of tanks having
a total capacity large enough to accommodate the whole cargo volume. The
subsequent decision of the distribution of the cargo volume among those tanks
must take the stability constraints into account and is beyond the scope of this
paper. We just assume here that all cargo must be completely loaded. The Scala
model of the problem implemented in OscaR [4] is given in Listing 1.1. In this
model, two sets of variables are introduced:

– cargot: represents the type of cargo assigned to cargo tank t (type 0 repre-
sents the empty cargo). The domain of cargot only contains cargo identifiers
that can be placed into that specific cargo tank (remember that not every
tank can accommodate every cargo).

– loadc: represents the total tank capacity available for shipping cargo c. The
minimum value of loadc is set to the total volume of cargo c: volumec. For
load0 the minimum is set to 0 since there is no need to have empty cargo
tanks.

1 available upon request

Listing 1.1. Scala/OscaR CP Model

class Cargo(val volume: Int)
class Tank(val id: Int , val capa: Int , val neighbors: Set[Int], val possibleCargos: Set[Int])
val cargos: Array[Cargo] // all the cargo data
val tanks: Array[Tanks] // all the tanks data
val compatibles: Set[(Int , Int)] // compatibles neighbor cargos

val cp = CPSolver()
// the cargo type for each tank (dummy if empty tank)
val cargo = Array.tabulate(tanks.length)(t => CPVarInt(cp, tanks(t).possibleCargos))
// the total capacity allocated to cargo (at least the volume to place)
val load = Array.tabulate(cargos.size)(c => CPVarInt(cp, cargos(c).volume to totCapa))
// objective = the total empty space = volume allocated to dummy
val freeSpace = load(0)
// tanks allocated to cargo c in current partial solution
def tanksAllocated(c: Int) =

(0 until tanks. size) . filter (t => (cargo(t).isBound && cargo(t).getValue == c))
// volume allocated to cargo c in current partial solution
def volumeAllocated(c: Int) = tanksAllocated(c).map(tanks().capa).sum
// the objective , the constraints and the search
cp.maximize(freeSpace) subjectTo {

// links cargo and load vars with binpacking constraint
cp.add(binpacking(cargo, tanks.map(.capa), load), Strong)
// new cardinality redundant constraints
cp.add(binpackingCardinality(cargo, tanks.map(.capa), load))
// dominance rules constraints
for (i <− 1 until cargos.size) {

cp.add(new DominanceRules(cargos(i),tanks,cargo))
}
// two neighbor tanks, must contain compatible cargo types
for (t <− tanks; t2 <− t.neighbors; if (t2 > t.id)) {

cp.add(table(cargo(t.id−1),cargo(t2−1),compatibles))
}

} exploration {
while(!allBounds(cargo)) {

val volumeLeft = Array.tabulate(cargos.size) (c => cargos(c).volume −
volumeAllocated(c))

// unbounds cargo with their index
val unboundTanks = cargo.zipWithIndex.filter{case (x,c) => !x.isBound}
// unbound cargo (and its index) with the largest capa, tie break on domain size
val (tankVar,tank) = unboundTanks.maxBy{case (x,c) => (tanks(c).capa,−x.getSize)}
// cargo with largest volume still to place that can be used in the selected tank
val cargoToPlace = (0 until

cargos. size) . filter (tankVar.hasValue()).maxBy(volumeLeft())
cp.branch(cp.post(tankVar == cargoToPlace)) // left branch

(cp.post(tankVar != cargoToPlace)) // right branch
}
}
}

Example 2. Consider the Figure 2. The vessel is divided into four different tanks
with capacities 500, 400, 640, 330. There are two cargoes to load (A and B). The
quantity of cargo A to load is 1000 and of cargo B is 790. One bin is introduced
for each of them with lower bounds min(loadA) = 1000 and min(loadB) = 790.
The objective is to assign the tanks (items) to them such that this minimum
load is met meaning that all the cargo volumes can be loaded into the tanks.
An assignment of the tanks to the cargoes satisfying this requirement is given
on the picture: 1040 ≥ 1000 and 830 ≥ 790.

500	 400	

330	 640	

Cargo	 A:	 1000	 Cargo	 B:	 790	

500	
	

640	

400	

330	

Fig. 2. Tank assignment.

Assigning cargo to tanks (or tanks to cargoes in our model), is handled with
the BinPacking constraint to express the volume requirements of each cargo.
This global constraint enforces the following relation:

loadc =

nbTanks∑
t=1

capat · (cargot = c) ,∀c

linking the two sets of variables cargot, loadc and the tank capacities capat.
The segregation constraints require the layout of the cargo vessels: which cargo
tanks are considered adjacent and which are not. Let A ⊂ [1..nbTanks] ×
[1..nbTanks] be the set of pairs of adjacent tanks and let C ⊂ [1..nbCargoes]×
[1..nbCargoes] be the set of pairs of cargoes which are compatible. We must
have that

(cargoti , cargotj) ∈ C, ∀(ti, tj) ∈ A.

These constraints are enforced with classical table constraints. The objective
function of the problem is the maximization total capacity in the unused tanks:
maximize(load0).

Dominance rules Let Tc be the set of tanks allocated to a cargo c in a solution.
If there exists a subset of those tanks having enough capacity to accommodate
the cargo volume, then the solution is not optimal since it can be improved by
allocating the subset of tanks to the cargo. More formally, a solution is not dom-
inated if for every cargo c ∈ {1, . . . , nbCargoes}, ∀ t′ ∈ Tc :

∑
t∈(Tc−t′) capat <

volumec. Avoiding to generate dominated solutions can easily be achieved by
implementing a dedicated propagator. As soon as the propagator realizes there

is enough capacity to accommodate a cargo, this cargo value is removed from
the domain of every unbound tank variable.

Heuristic Let us define as leftc = volumec −
∑

t:bound(cargot)∧cargot=c capat the
difference between the volume of a cargo c and the current total tank volume
allocated to it. If it is positive it means that the cargo does not have enough
tank volume to transport it on the vessel. If it is negative it means there is a
surplus of volume for that cargo.

The variable heuristic selects the unbound variable cargot corresponding to
the tank with the largest capacity breaking ties by preferring the variable with
smallest domain size.

The value heuristic tries on the left branch to assign to cargot, the cargo
c ∈ Dom(cargot) having the largest leftc value. On the right branch, this value
is removed. The idea is to use first the tanks with large capacities for the large
cargo volumes, finishing down a branch with a finer granularity of tank capacities
allowing more flexibility to find good feasible solutions.

Strengthening the model with lower bounds (preliminary ideas) For every cargo
c, a set of tanks is allocated to it in the final solution. Let us define as surplusc =∑

t:cargot=c capat − volumec the difference between the final total tank volume
allocated to a cargo c and the volume of this cargo. An interesting question is
the possibility to compute a lower bound on surplusc in the final solution. A
lower bound for surplusc can be found for every cargo c by solving the following
sub-problem:

surplus
c

= min (
∑
t

Xt · capat)− volumec (3)

s.t. :
∑
t

Xt · capat ≥ volumec (4)

Xt ∈ {0, 1} (5)

The summations in the above model are done only on the tanks that can ac-
commodate the cargo c i.e. {t : c ∈ Dom(cargot)}. This is indeed a relaxation
since a same tank can be selected for different cargo and the segregation con-
straints are not considered. These sub-problems can be solved with dynamic
programming in pseudo-polynomial time. The resulting values can be used to
strengthen the model by adding the constraints: ∀c : loadc−volumec ≥ surplus

c
and also to compute an upper bound on the empty tanks volume: load0 ≤∑

t capat −
∑

c(volumec + surplus
c
).

5 Experimental Results

With the new redundant bin-packing cardinality constraint 2, the first feasible
solution is easily found with just 28 backtracks (this solution uses all the tanks).

2 The flow based propagator for the GCC should be used. A forward checking propa-
gation for the GCC does not help on this problem.

Without these redundant constraints, we were not able to find any feasible so-
lution in one hour of computation.

The best solution using the Depth First Search (DFS) branch and bound
(empty space = 1811) was found after 5 minutes and 1,594,159 backtracks but
it was not possible to prove its optimality.

Using a Large Neighbourhood Search (LNS) on top of our model fixing 50%
of the tanks randomly from the current best solution and restarting every 1000
backtracks, we were able to find a solution with an empty space of 2296 within
3 seconds and after a dozen of restarts.

We also experimented with two MIP solvers to solve this problem:

– lp solve was not able to find any feasible solution.
– CPLEX could find and prove the optimum after 3 seconds confirming that

the solution found with CP+LNS is optimal.

We plan to extend the TAP problem and also to consider (i) the maximization
of the total volume to place in the case it exceeds the capacity of the vessel (ii)
the integrated routing problem of a single vessel servicing multiple ports, and
(iii) the stability constraints of the vessel which are non linear. We believe that
those last two constraints will make it more difficult to build a MIP model. This
is the reason why we developed a CP approach.

6 Conclusion

We introduced a new additional filtering algorithm for BinPacking constraint
based on cardinality reasoning to count the number of items placed in each bin.
This new filtering is particularly useful when a lower bound on the capacity is
specified in the bins as in the TAP problem since it can immediately deduce
a minimum number of items to place inside each bin. This new filtering was
experimented and showed to be crucial to solve a real-life instance of a tank
allocation problem with CP.

References

1. Paul Shaw A Constraint for Bin Packing CP 2004: 648-662
2. Julien Dupuis, Pierre Schaus, Yves Deville Consistency Check for the Bin Packing

Constraint Revisited CPAIOR 2010: 117-122
3. Hadrien Cambazard, Barry O’Sullivan Propagating the Bin Packing Constraint

Using Linear Programming. CP 2010: 129-136
4. OscaR (Scala in OR) Solver: https://bitbucket.org/oscarlib/oscar

	Cardinality Reasoning for bin-packing constraint. Application to a tank allocation problem

