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Abstract. Large neighborhood search (LNS) [25] is a framework that combines
the expressiveness of constraint programming with the efficiency of local search
to solve combinatorial optimization problems. This paper introduces an extension
of LNS, called multi-objective LNS (MO-LNS), to solve multi-objective combi-
natorial optimization problems ubiquitous in practice. The idea of MO-LNS is
to maintain a set of nondominated solutions rather than just one best-so-far solu-
tion. At each iteration, one of these solutions is selected, relaxed and optimized
in order to strictly improve the hypervolume of the maintained set of nondom-
inated solutions. We introduce modeling abstractions into the OscaR solver for
MO-LNS and show experimentally the efficiency of this approach on various
multi-objective combinatorial optimization problems.

Keywords: Constraint Programming, Multi-Objective Combinatorial Optimiza-
tion, Large Neighborhood Search.

Multi-Objective Combinatorial Optimization (MOCO) problems are ubiquitous in
real-world applications. Decision makers often face the problem of dealing with several
objectives e.g. the cost and the risk. In this situation, people are mostly interested to see
a set of solutions representing the optimal compromises between objectives instead of
one solution resulting from an a priori preference between these objectives.

Not surprisingly, the last decades have seen a growth of interest in the theory and
the methodology for MOCO problems (see [7, 26] for a review). Currently, hybridized-
meta-heuristics between Evolutionary Algorithm (EA) and Local Search (LS) obtain
state-of-the-art results' on most standard MOCO problems such as the traveling sales-
man, the binary knapsack, and the quadratic assignment problems (see [1] for a review
of these methods). However — despite the implementation facilities offered by libraries
such as ParadisEO [4] and jMetal [6] — these approaches are quite far from “model and
run” ones. Indeed, users still have to provide several implementation blocks (for cross-
over, mutations, moves and neighborhood, etc.) requiring a great knowledge and exper-
tise on the problems and the used algorithms. Furthermore, meta-heuristic methods for
MOCO problems are more and more specific and strongly related to the optimization
problem to solve [8]. This tendency increases the difficulty to design a single universal
method or solver.

"' The LS and EA communities are probably the most active ones on the domain of MOCO.
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Conversely, Constraint Programming (CP) offers a high level declarative language
and has shown to be a competitive approach for solving single-objective constrained
optimization problems (COP). In particular, the LNS (Large Neighborhood Search)
framework [25] — which combines the efficiency of LS with the expressiveness of CP
— allowed to solve large scale problems such as vehicle routing [3, 25], scheduling [14,
21], and assignment/bin-packing problems [18, 23] successfully.

We believe that the expressiveness of CP can have a real added value to tackle some
MOCO problems by reducing the amount of work required from the modeler.” This
work is one step in the direction of extending the LNS framework in the multi-objective
context (MO-LNS). The goal of MO-LNS is to quickly discover good nondominated
sets of solutions for large scale MOCO problems while keeping a declarative CP model.

This paper introduces the MO-LNS framework. We demonstrate experimentally its
flexibility on standard MOCO problems as well as on a real-world bi-objective version
of the Tank Allocation Problem (TAP) [24]. We also introduce modeling abstractions,
explaining in depth an MO-LNS model implemented with the OscaR open source li-
brary [20].

Outline. Section 1 gives definitions related to constraint programming and multi-
objective optimization. Section 2 reviews the related work of existing CP approaches to
solve MOCO problems. Section 3 introduces MO-LNS. Section 4 details an MO-LNS
model for the quadratic assignment problem in the OscaR [20] solver. Section 5 experi-
ments the MO-LNS approach on various MOCO problems. Section 6 gives perspectives
and concludes.

1 Definitions

The typical MOCO problem we want to solve has m integer objective variables to
minimize while satisfying some constraints:

Minimize o0bj = (obj1, 0bja, ..., 0bjm) )

Subjectto  constraints

Solutions of this problem are defined as follows:

Definition 1 (Solution). Let P be a MOCO problem, a solution of the problem P is an
assignment of the decision variables and objective variables of P that satisfies all the
constraint of this problem. In the following, sol(x) denotes the value assigned to the
variable x in the solution sol.

The conflicting nature of the objectives usually prevents the existence of a unique
solution sol* that is optimal in all objectives. Hence, one is usually interested in the set
of all the optimal compromises known as Pareto optimal solutions.

% The lack of hybridization with CP approaches for solving MOCO problems was recently un-
derlined by Ehrgott in [8].
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Definition 2 (Pareto dominance). Let sol and sol’ be two solutions of a MOCO prob-
lem P. We say that sol dominates sol’, denoted sol < sol’, if and only if:
Vg € [1..m] : sol(obj;) < sol’(obj;) 2
A 3j € [1.m] : sol(obj;) < sol'(obj;)
Besides, we say that sol weakly-dominates sol’, denoted sol =< sol’, if and only if the
first part of Equation 2 holds.?

Definition 3 (Pareto optimality). Let sols(P) denotes all the feasible solutions of a
MOCO problem P. A solution sol* is Pareto optimal if and only if there is no solution
sol in sols(P) that dominates sol*:

Psol’ € sols(P) : sol' < sol* 3)

In other words, a solution is said to be Pareto optimal if it is impossible to improve the
value of one objective without degrading the value of at least one other objective.

The set of all the Pareto optimal solutions is known as the Pareto set and is defined
as follows:

Definition 4 (Pareto set). The Pareto set of a MOCO problem P is the set of all the
Pareto optimal solutions of this problem:

{sol € sols(P) | #sol’ € sols(P) : sol' < sol} “4)

Definition 5 (Pareto front). The Pareto front of a MOCO problem P is the projection
of its Pareto set in the objective space.

Unfortunately, discovering the exact Pareto set may be impracticable on difficult
MOCO problems. We are thus interested in finding an approximation of this set, also
known as the archive.

Definition 6 (Archive). An archive A is a set of solutions such that there is no solution
in the archive that dominates an other solution in the archive. This property is known
as the domination-free property:

Vsol € A, Bsol’ € A: sol’ < sol (5)

As illustrated in Fig. 1, an archive can be used to partition the objective space into
three subspaces:

— The dominated subspace consists of all the solutions that are dominated by at least
one solution in the archive (see Fig. 1a);

— The diversification subspace consists of all the solutions that neither dominate nor
are dominated by any solution in the archive (see Fig. 1b);

— The intensification subspace consists of all the solutions that dominate at least one
solution in the archive (see Fig. 1c¢).

Clearly the archive quality can only be improved by adding new solutions from:

3 In the remainder of this paper, we abuse of these notations to compare solutions with vectors.
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Fig. 1. An archive partitions the objective space into three subspaces: (a) the dominated subspace,
(b) the diversification subspace, and (c) the intensification subspace.

— the intensification subspace where a new solution replaces at least one solution in
the archive;

— the diversification subspace where a new solution is added into the archive without
replacing any other solutions.

In the following, we suppose that an archive maintains its domination-free property
by removing the solutions that are dominated by a new solution from the intensifica-
tion space. Therefore, adding new solutions into the archive increases the size of the
dominated subspace. The size of the dominated subspace is a common indicator used
to measure the quality of an archive known as the hypervolume indicator H [30]:

Definition 7 (Hyper-volume indicator). The hypervolume H is an unary quality in-
dicator (to be maximized) which measures the volume of the objective subspace domi-
nated by a given archive.

The hypervolume indicator is mostly used for bi-objective problems since its computa-
tion increases exponentially with the number of objectives.

Every solution of the Pareto front is not equally difficult to discover. Supported so-
lutions can be discovered using a single objective optimization approach by minimizing
a linear aggregation of the objectives while non supported ones cannot [7]:

Definition 8 (Supported Pareto optimal solutions). A supported Pareto optimal so-
lution is an extreme point on the convex hull of the Pareto front.

The Pareto front has no guarantee to be convex, justifying the need for more advanced
techniques to tackle MOCO problems.

2 Related work

While multi-objective combinatorial optimization problems have gained a lot of trac-
tion over last decade in the Local Search and Evolutionary Search communities (with
algorithms such as NSGA-II [5] and SPEA-II [29]), not so many methods have been
proposed for CP.

One approach detailed in Section 2.1 has been initially proposed to solve bi-objective
problems by solving a sequence of problems. Another approach detailed in Section 2.2
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allows to solve arbitrary multi-objective problems in one search using an adaptation of
Branch and Bound (BnB) search with a special global constraint to filter the objective
variables.

2.1 Bi-Objective Optimization

In bi-objective optimization problems, improving the value of the first objective of a
Pareto optimal solution cannot be done without degrading the value of the second ob-
jective. The approach proposed by van Wassenhove and Gelders [27] exploits this prop-
erty in order to find the exact Pareto optimal set of solutions of bi-objective optimization
problems. The idea is as follows:*

1. Find the Pareto optimal solution with the best value for the first objective;

2. If this solution exists, the search is restarted with an additional constraint enforcing
the value of the second objective to be strictly better than its value in the previous
solution.

2.2 Multiple-Objective Optimization with CP (MO-CP)

In [9], Gavanelli suggested a framework to solve multi-objective optimization with CP
allowing to find all the Pareto optimal solutions in a single search. This framework is
presented as a specialized BnB search making use of no-goods recording, correspond-
ing to nondominated solutions. Although not presented this way in [9], we view this
approach as the introduction of a new global constraint defined on the objective vari-
ables and an archive A that is domination-free:

Pareto(obji,...,0bjm, A = {soli,...,sol,}) (6)

where sol; is a solution to Problem (1). The Pareto constraint ensures that the next
discovered solution is nondominated w.r.t. A:

Asol € A : sol < (obju,...,0bjm) @)

Let 0bj™™ and 0bj™** denote the lower and upper bounds of the objective variable
obj;. The filtering of obj"®* achieved in [9] considers first the dominated point D P;
that is defined as follows:

DP; = (obji™, ..., 0bj™}, 0bj™™, objiyT, . . ., objm™) 8)

Then it finds a solution sol* € A dominating the dominated point i.e. such that sol* =<
DP;. If such a solution exists, sol*(obj;) — 1 is an upper bound for obj; that can be
used to filter its domain:

obj "™ « sol” (obj;) — 1. 9

Since we are interested in finding the tightest upper bound for objective 7, the idem-
potent filtering rule is:

obj ™ < min({obj;***} U {sol(obj;) — 1| sol € A A sol < DP;}) (10)

K3

* The approach of van Wassenhove and Gelders can be seen as a particular instance of the e-
constraint method [10].
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In this scheme, each time a new solution is found, it is added into .4 possibly filtering
out dominated solutions to maintain its domination-free property.

It has been demonstrated in [9] that MO-CP, although more general, is also more ef-
ficient than the approach of van Wassenhove and Gelders to solve bi-objective knapsack
problems.’

Example 1. Consider Pareto(obji, 0bja, objs, A) with domains D(obj1) = [3..5],
D(objs) = [2..5], D(objs) = [2..5] and A = {(1,4,2),(4,2,3),(2,3,1),(2,1,4)}.
No filtering for 0bji"®* is possible because (0bji®* = 5 0bjit™ = 2, obji™ = 2) is
not dominated by any point in A. For obj, some filtering is possible since (objii" =
3,0bj38% = 5_objMin = 2) is dominated by (1,4, 2) and (2, 3, 1). We can set obj5®* <
min(4 — 1,3 — 1) = 2. The domain of objs can also be filtered since (obj"® =
2, 0bjin = 2 obja* = 5) is dominated by (2,1,4). We can thus set obj** <

4—-1=3.

3 Multi-Objective LNS

Large Neighborhood Search (LNS) [25] is an hybridization between CP and LS. At
each iteration (called restart in the LNS context), a best-so-far solution is considered for
improvement by exploration of a neighborhood using CP. This solution is relaxed and
optimized again with CP, replacing the best-so-far solution on each improvement. This
process is repeated until a stopping criterion is met (for instance a maximum number of
restarts). LNS has the main advantage that the neighborhood to explore at each restart
is potentially very large, permitting to escape local minima most of the time. Every
CP optimization model can be turned easily into an LNS by providing the following
information/implementation to the solver:

— A relaxation procedure. This procedure (also called fragment selection) defines the
neighborhood to explore. It adds some constraints to the problem coming from
the structure of the best-so-far solution while allowing some flexibility for re-
optimization. This relaxation procedure generally includes some randomness.

— A search limit. This limit, although optional, prevents the search from spending too
much time in the exploration of the neighborhood. It can for instance be a time
limit, or a limit on the number of backtracks.

Finding the right relaxation procedure, relaxation size and search limit is a chal-
lenging problem (see [15, 16,22] for attempts to automatize LNS parameters). This
work proposes to adapt the LNS scheme in a multi-objective context.

3.1 Restarting from a nondominated solution

Instead of a unique best-so-far solution, the MO-LNS framework maintains a best-so-
far approximation A of the Pareto set i.e. an archive. The Pareto constraint (using the

3 This is probably due to the fact that the approach of Gavanelli does not need to restart the
search at each discovered solution. Besides, the already discovered solutions provide some
supports to prune dominated branches of the search tree.
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set \A) is added to the model ensuring that only new nondominated solutions w.r.t. A
can be discovered.

Any solution in A can be used as restarting point. We distinguish two kinds of
improvements of the archive:

- finding a new point in the diversification subspace. We call this a diversification of
the archive. The resulting archive has one more element;

— finding a new point in the intensification subspace. We call this an intensification of
the archive. The resulting archive is not larger after this insertion since some points
may disappear from A.

Notice that both improvements strictly increase the hypervolume (see Definition 7) and
both improvements are allowed by the Pareto constraint which guarantees that only
nondominated solutions w.r.t. the archive can be discovered.

3.2 Guiding Diversification-Intensification

The discovery of a new solution may contribute to diversify the archive, or it may im-
prove existing solutions. A good strategy in terms of filtering for the Paret o constraint
could consist in finding quickly a limited number of solutions very close to the Pareto
set. On the contrary, it would be less efficient to quickly discover a large number of
nondominated solutions while being far from the Pareto set. Those two situations are
illustrated in Fig. 2.

Good trade-off Bad trade-off

AN

obj,
obj,

obj, obj,

Fig. 2. Situations resulting from (left) a good diversification/intensification trade-off (right) too
much diversification at the early MO-LNS iterations. The exact Pareto front is represented with
the plain curve.

An archive with many solutions quite far from the Pareto set is the consequence of a
too large number of diversification at the early iterations of MO-LNS. It is thus impor-
tant to have a good trade-off between the number of diversification and intensification®.
A first idea to control the ratio of diversification/intensification is to adapt the search

6 Beck [2] also proposes to control diversification and intensification of a pool of elite solutions
for single objective problems. We owe this observation to an anonymous referee. Thanks!



8 Pierre Schaus and Renaud Hartert

heuristic dynamically. One could for instance have two different search heuristics e.g.
one that favors intensification and the other one favoring diversification. This approach
has the main disadvantage of requiring a good knowledge of the problem and an ad-
ditional implementation work by the modeler. A better approach forces diversification
or intensification at each restart, based on a dynamic change of the filtering behavior
of the different objectives. Each objective can be set into three different filtering modes
during the BnB search:

1. No-Filtering: it means that the filtering of the objective is deactivated, having no
impact at all.

2. Weak-Filtering: each time a new solution is discovered during the search, the upper
bound of the objective is updated such that the next discovered solution has a lower
or equal upper bound for this objective.

3. Strong-Filtering: each time a new solution is discovered during the search, the up-
per bound of the objective is updated such that the next discovered solution strictly
improves the upper bound of this objective.

We propose to use this idea to control the diversification/intensification rates along the
restarts.

Intensification The goal of intensification restarting from a solution sol is to discover
new solutions dominating it. We propose two different ways to guarantee that the next
discovered solution dominates sol by adjusting all the objective’s upper bounds to their
value in sol and setting the objectives in one of both following configurations:

— Strong Intensification. All the objectives are set in Strong-Filtering mode;
— Driven Intensification. All the objectives are set in Weak-Filtering mode except one
that is set into Strong-Filtering mode. This objective drives the intensification.

Both configuration are illustrated in Fig. 3 where a possible sequence of successive
discovered solutions is given.

Driven Intensification Strong Intensification

obj,

obj,
|
I
I
1
————0----

obj, obj,

Fig. 3. Intensification. (left) obj is set in Strong-Filtering mode and objs is set in Weak-Filtering
mode. (right) obj1 and obj2 are both set in Strong-Filtering mode. For both configurations, a
possible sequence of successive discovered solutions is given.
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Diversification The diversification mode attempts to find new nondominated solutions
without necessarily trying to dominate existing ones. To achieve this, we set all the
objectives in No-Filtering mode and we let the Pareto constraint force the discovery
of new nondominated solutions.

Fig. 4 illustrates the benefit of including intensification along the restarts on a bi-
objective knapsack (maximization) problem with 100 items from MOCOLIib [28]. In
the first setting, only diversification restarts are used. In the second setting, 50% are
diversification, the others are intensification restarts. One can see on the left, that after 5
seconds, the quality of the nondominated solutions is clearly superior when using inten-
sification restarts. On the right the evolution of the hypervolume (averaged on 10 runs)
is depicted. As expected, the hypervolume grows faster when including intensification
restarts.

3331 ,o Doy
® 958.21

%R 923.69

o 50% diversification
© 100% diversification

obj,
[¢]

Hypervolume

o 50% diversification
© 100% diversification

O
e
.

1]
%
————

2638

2246 2931 0 5 10 15 20 25 30
obj, Time (s)

Fig. 4. Impact of the diversification/intensification ratio on a 100 items bi-objective knapsack
problem. (left) Nondominated solutions obtained after 5 seconds. (right) Evolution of the hyper-
volume.

To summarize, the actions that must be taken at each MO-LNS restart are:

— select a solution sol from the set of nondominated solutions;
— relax sol;
— configure all objectives either in intensification or in diversification mode.

The question of selecting the nondominated solution sol is addressed next.

3.3 Selection of the restarting solution

Choosing the next solution to restart from can have a strong impact on the quality of
the archive. Intuitively, a relaxed solution has a higher chance to generate new solutions
close to this one in the objective space when doing diversification. We call this the lo-
cality effect. Having a final set of nondominated solutions spreading over the frontier
is a desired property supported by many researchers [17]. A very simple idea, quite
effective in practice, is to select randomly and uniformly the solution to restart from.
Unfortunately, this strategy might have negative side effects caused by the locality ef-
fect. If at some point, clusters of solutions in the archive appear in the objective space,
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those clusters have high chances to be reinforced. We would prefer a selection strategy
helping to fill in the gaps between those clusters. We imagined another strategy, also
randomized (to ensure diversification), but tending to fill in the gaps more quickly. The
idea is to select an uniform random point on the hyperplane formed by the extremities
of the archive (i.e. on a line for a bi-objective problem). The solution selected to relax
is then the nearest (according to an Euclidean distance metric) one from this random
point. This nearest neighbor strategy is illustrated in Fig. 5.

obj,

obj,

Fig. 5. Selection of solutions according to the nearest neighbor strategy. The straight line repre-
sents the hyperplane defined by the extremities of the archive. The stars a, b, ¢, d, and e corre-
spond to possible points randomly generated on the hyperplane. The solutions a’, V', ¢/, d’, and
€’ are the solutions that would be selected for each of the random points.

Fig. 6 presents the benefits of the nearest neighbor strategy over the purely random-
ized selection strategy on a 200 items bi-objective knapsack problem from MOCOLib
[28]. We have initially added 6 Pareto optimal solutions in the archive, then 20 diversi-
fication restarts were executed with both strategies. While the pure randomized strategy
(right) quickly focuses on a particular region of the objective space, the nearest neighbor
strategy (left) diversifies better the objective space trying to discover solutions between
the gaps on the frontier. The reason is that with the randomized nearest neighbor strat-
egy, solutions close to the gaps are selected more frequently.

4 Modeling an MO-Quadratic Assignment Problem with MO-LNS

This section introduces the MO-LNS modeling of the Multi-Objective Quadratic As-
signment Problem (MOQAP) in OscaR [20] and provides some implementation details.

In this problem a set of n facilities must be assigned to n different locations. For
each pair of locations, a distance is specified and for each pair of facilities a weight or
flow is specified (e.g. , the amount of supplies transported between the two facilities).
The problem is to assign all facilities to different locations with the goal of minimizing
the sum of the distances multiplied by the corresponding weights. More formally, if (%)
represents the location assigned to facility ¢, the objective is to minimize the weighted
sum Zi)je[l_n] w(,j)-d(x(i), z(j)) with w and d respectively the weight and distance
matrices.



Multi-Objective Large Neighborhood Search 11

& ey | @
T e e,
~ & .
'~ \
~,
§ 5 & -
S © S &
. A
® MO-LNS solutions b ® MO-LNS solutions
< Initial optimal solutions ~® < Initial optimal solutions °
obj, obj,

Fig. 6. Impact of selection strategy after 20 restarts on a 200 items bi-objective knapsack problem
using 100% of diversification starting from 6 initial Pareto optimal solutions. (left) Using the
randomized nearest neighbor strategy. (right) Using a pure randomized strategy.

The multi-objective QAP with multiple weight matrices naturally models any facil-
ity layout problem where we are concerned with the flow of more than one type of item
or agent [12]. The OscaR model for a bi-objective QAP is given in Statement 1.1.

The data declaration is specified in lines 1 - 6 and should be self-explanatory. The
distance matrix and the two weight matrices are declared. Then comes the CP model. A
solver object is created in line 8. An array x of n decision variables is created at line 10
representing the location of each facility. The distance variables between any two facil-
ity are initialized at line 11 using 2D element constraints. The two objective functions
are initialized in lines 12 - 13 multiplying each distance entry by the corresponding
weight and summing them all.

Notice that paretoMinimize, subjectTo and exploration are methods
of the CPSolver class each returning the CPSolver caller instance. This allows to
chain directly the calls. The paretoMinimize method call at line 15 implicitly adds
the Pareto global constraint (6) to the model. The search in the exploration block is
a nondeterministic search [11]. Although hidden from the user point of view, all the
discovered solutions are added into the archive .4 used by the Pareto constraint. The
run method takes two optional arguments: a limit on the number of solutions and a
limit on the number of backtracks. Both are set to infinity by default. The search to find
the first feasible solution is started at line 23.

Lines 20 and 21 are iterated until all variables are bound and each iteration nonde-
terministically assigns a facility x (i) to a location v computed by the variable value
heuristic introduced in [19]. Notice that this heuristic receives a weight matrix in ar-
gument. In the non-deterministic search exploration block, the weight matrix is
randomly chosen between w1l and w2 at line 20.

The MO-LNS procedure is implemented at lines 30 - 40, after that the first feasi-
ble solution is found. The search executes 1000 LNS restarts. Each restart has a limit
of 200 failures and use the search defined in the exploration block. On each restart a
solution is selected from the current archive according to the nearest neighbor strat-
egy (line 32). Then, the objectives are configured into intensification or diversification
mode w.r.t. to a user defined probability. The runSub ject To method is similar to the
run method except that all the constraints added in its block are temporary constraints
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that will be removed before the next restart. Some constraints are added through the
relaxRandomly at line 38 to restore the assignments on x from the selected solution
sol except for 5 randomly chosen variables.

// DATA AND CONSTANTS

ocations

val N = 0 until n // T

var wl: Array[Array[Int]] = // ix 1
var w2: Array[Array[Int]] = / rix 2
[Int]] = // e matrix
val rand = Random (0) // n number generator

// CP MODEI
val cp = CPSolver ()

1

2

3

4

5 wvar d: Array[Array
6

7

8

9

the t n fc
10 wval x = Array.fill(n) {CPVarInt (cp, N)}

11 val dist = Array.tabulate(n, n){(i, j) => d(x(i)) (x(j))}
12 val objl = sum(n, n){ (i, J) => dist (i) (J) = wl(i) (J)}

13 val obj2 = sum(n, n){ (i, J) => dist (i) (J) * w2(i) (J)}

ation chosen for each facility

14 // CONSTRAINT AND EXPLORATION
15 cp.paretoMinimize (objl, obj2) subjectTo {
16 cp.add(allbifferent (x), Strong)

17 } exploration {

compute variable, value heuristic randomly on wl or w2

19 while ('allBounds(x)) {

20 val (i, v) = heuristic(if (rand.nextBoolean) wl else w2)

21 cp.branch (cp.post (x (i) == v)) (cp.post (x(i) != v))

22 }

23 } run(nbSolution = 1) // only s ch for an initial solution
24 // MO LNS PARAMETERS

25 val maxRestarts = 1000 //

26 val maxFailures = 200 //

27 val relaxSize =5 /7

28 val probalntensify = 30 //

29 // MO LNS FRAL K

30 for (restart <- 1 to maxRestarts) {

31 // next solution to restart from

32 val sol = nearestNeibhborSol ()

33 // random selection be n intensification or diversification
34 if (rand.nextInt (100) < probalIntensify) cp.objective.intensify (sol)
35 else cp.objective.diversify ()

36 // searcn

37 cp.runSubjectTo (failureLimit = maxFailures) {

38 relaxRandomly (x, sol, relaxSize)

39 }

40 )

Statement 1.1: Model of the multi-objective QAP in OscaR/Scala.
S Experiments

This section compares the performances of MO-LNS over MO-CP on bi-objective prob-
lems.” The tested problems are: 1) the multi-objective QAP, 2) the multi-objective bi-
nary knapsack and 3) a bi-objective tank allocation problem. Although multi-objective
heuristics are the methods of choice to tackle the two first problems, those are interest-
ing standard benchmarks to study, with known exact Pareto front. Problem 3 however,

" Instances and optimal fronts available at http://becool.info.ucl.ac.be/
resources/mo-1ns
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is more constrained and probably more suited for constraint programming. All experi-
ments were conducted with the OscaR open-source solver [20] on an Intel® Core i7 ™
2.6GHz CPU.

5.1 Multi-Objective Quadratic Assignment Problem

We experiment the MO-LNS model introduced in Section 4 on instances.® with 10 facil-
ities from [13] Table 1 reports the results obtained with a 30 seconds timeout, averaged
over 10 runs for MO-LNS. The size and the hypervolume of the exact Pareto fronts
are given in columns 2 and 3. The hypervolumes obtained with MO-LNS and MO-CP
(H ) are given in columns 4 and 5. The sizes of the archives obtained with MO-LNS
and MO-CP (|S]) are given in columns 6 and 7. The number of optimal solutions ob-
tained with each approach (]S N S*|) is presented in columns 8 and 9.

As can be seen, 3 instances are optimally solved with MO-CP. MO-LNS is also
able to solve these instances optimally and obtain strictly better results on the other
instances. The hypervolume values reached by MO-LNS are very close to the optimal
ones.

Table 1. Results on MO-QAP instances from [13] with MO-LNS and MO-CP.

Hs(105) Ef [SA S
Instance |S*| Hs+(10%) MO-LNS MO-CP  MO-LNS MO-CP  MO-LNS  MO-CP
KC10-2fl-1uni 13 117.38 115.43 99.09 9 15 6.6 0
KC10-2f-2uni 1 91.56 87.11 76.99 1.4 2 0.6 0
KC10-2f1-3uni 130 90.50 87.42 78.79 84.4 65 30.6 0
KC10-2f1-1rl 58 606005.79 604932.58 598146.60 54 41 50.4 13
KC10-21-2r1 15 604864.40 604864.40 604864.40 15 15 15 15
KC10-2f1-3r1 55 623898.50 623076.50 565772.58 47 37 43 0
KC10-2f1-4rl 53 732716.05 732716.05 732716.05 53 53 53 53
KC10-2f1-5r1 49  1819669.88 1819669.88 1819669.88 49 49 49 49

5.2 Multi-Objective 0/1 Knapsack Problem

The multi-objective 0/1 knapsack problem is defined as follows:

Maximize obj = (obj1,...,0bjm) with obj; = ZJC, - Dij
i=1

. (11
Subject to Z ;i -w; < C
i1

with p;; the profit of item ¢ according to objective j, w; the weight of item ¢, and C'
the capacity of the knapsack. The binary variables x; represent the selection status of
each item 1.

MO-LNS settings The next solution sol to restart from is chosen in the archive with
the nearest neighbor strategy. The idea of the relaxation procedure is to keep fixed some
good items (w.r.t. to one objective) already selected in sol :

8 Only the ones for which the optimal Pareto front is available.
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1. select randomly one objective index j € [1..m],

2. select randomly 90% of the items in the set {i € [1..n] | sol(x;) = 1} according to
a probability function proportional to p;; /w;,

3. keep fixed the items selected at step 2. i.e. force them to be in the knapsack,

4. chose randomly to diversify or intensify with equal probability.

The variable-value heuristic used when re-optimizing after the relaxation is depen-
dent of the selected objective j in the relaxation. The heuristic selects first the unbound
variable x (1) with the largest ratio p;; /w;, selecting this item on the left and removing
it on the right branch. Each restart is given a limit of 1000 backtracks.

Results We compare the MO-CP and MO-LNS approaches on instances from MO-
COLib [28] ranging from 50 to 250 items. Table 2 reports the results obtained with a
60 seconds timeout, averaged over 10 runs for MO-LNS. The size and the hypervolume
of the exact Pareto fronts’ are given in columns 2 and 3. The hypervolumes obtained
with MO-LNS and MO-CP (Hg) are given in columns 4 - 5. The sizes of the archives
obtained with MO-LNS and MO-CP (|.S]) are given in columns 6 - 7. The number of
optimal solutions obtained with each approach (|.S N S*|) is presented in columns 8 - 9.
As can be seen, MO-LNS consistently obtains better or equivalent results compared to
the MO-CP approach. The hypervolume values reached by MO-LNS are very close to
the optimal ones.

Table 2. Comparison of MO-CP and MO-LNS on standard instances of the Bi-Objective Knap-
sack Problem.

Hs(10%) [S] [S'N S
Instance [S*|  Hs+(10%) MO-LNS MO-CP  MO-LNS MO-CP MO-LNS MO-CP
2KP100A 172 15,59 15,59 15,05 172 128 172 112
2KP100B 174 15,12 15,12 14,62 170,6 124 164,7 93
2KP100C 64 16,68 16,68 16,68 64 64 64 64
2KP100D 76 16.31 16.31 16.28 76 73 76 73
2KP150A 244 39.66 39.66 3542 226.2 88 187 31
2KP150B 348 41.46 4146 36.31 303.3 91 192.4 51
2KP150C 166 34.17 34.17 33.15 155.6 83 127 34
2KP150D 207 36.04 36.04 32.88 199.8 88 155.6 62
2KP200A 439 64.34 6434 5743 361 86 178.2 34
2KP200B 397 65.78 65.77 58.82 345.2 108 232.8 54
2KP200C 328 57.48 5746  48.30 297.8 60 187.1 18
2KP200D 361 73.42 7340 62.71 304.1 64 176.9 29
2KP250A 629 94.37 9434 78.68 433.5 70 95.5 12
2KP250B 629 89.67 89.65 74.81 410.9 90 107.9 44
2KP250C 528 91.25 91.24 75.30 383.3 72 108.9 22
2KP250D 424 66.56 66.55 56.98 303.4 51 142.8 26

5.3 Tank Allocation Problem

The tank allocation problem involves the assignment of different cargoes (volumes of
chemical products to be shipped by the vessel) to the available tanks of the vessel [24]

° The optimal fronts were provided by the creator of MOCOLib [28]
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while satisfying hard segregation constraints e.g. to avoid placing dangerous cargoes
in adjacent tanks. An ideal loading plan should maximize the total volume of unused
tanks (i.e. free space) to minimize cleaning costs (objective 1). Minimizing the number
of used tanks (objective 2) is also desirable in order to maximize the chances of accom-
modating other cargoes in next visited ports. The LNS model used in our experiment is
the same as the one introduced in [24] except that it is now bi-objective. The MO-LNS
parameters are:

— The relaxed solution is chosen randomly from the current archive.'”
— Chose randomly to diversify or intensify with equal probability.

Results are given in Table 5.3. The columns have the same meaning as in previous
result tables. The exact Pareto fronts were generated with the van Wassenhove and
Gelders Algorithm using a MIP solver (Gurobi 5.02) that took about 3 minutes to run
on each instance. The MO-LNS framework finds the exact Pareto front of each instance
within a timeout of 60 seconds. We also indicate for the same model the results obtained
for a MO-CP approach with a timeout of 300 seconds. This MO-CP approach is only
able to discover one solution of the exact Pareto front of the first instance (chemicalA).
The hypervolume indicator shows that other nondominated solutions discovered with
MO-CP remain quite far from optimal ones.

Table 3. Comparison of MO-CP and MO-LNS on real-life instances of the Bi-Objective Tank
Allocation Problem. MO-LNS finds all the exact Pareto fronts.

Hs(10%) 1S] 1S NS
Instance |S*|  Hs+(10%) MOLINS MO-CP MO-LNS MO-CP MO-LNS MO-CP
chemical A 6 1848 1848 1022 6 4 6 1
chemicalB 7 2976 2976 1010 7 3 7 0
chemicalC 8 3597 3597 852 8 2 8 0
chemicalD 8 5358 5358 555 8 1 8 0

6 Future works and Conclusion

This paper introduced the MO-LNS framework; an extension of LNS to efficiently solve
MOCO problems with CP. MO-LNS uses the Pareto constraint to maintain a best-so-
far archive that is iteratively improved by diversification and intensification. Modeling
abstractions were presented into the OscaR solver to select at each restart a solution
in the archive, and to diversify or intensify the front MO-LNS was experimented on
various MOCO problems showing its superiority over MO-CP to get close to optimal
hypervolumes. The Scala source-code of our implementation as well as some complete
MO-LNS examples are available on OscaR repository [20].

As future work, we plan to study adaptive diversification/intensification strategies.
We would like to explore the parallelization of MO-LNS. Finally we want to tackle
more complex problems with MO-LNS, such as multi-objective scheduling or vehicle
routing problems.

10 No real impact since the optimal front is very small.
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