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Abstract. Every Constraint Programming (CP) solver exposes a library
of constraints for solving combinatorial problems. In order to be useful,
CP solvers need to be bug-free. Therefore the testing of the solver is
crucial to make developers and users confident. We present a Java library
allowing any JVM based solver to test that the implementations of the
individual constraints are correct. The library can be used in a test suite
executed in a continuous integration tool or it can also be used to discover
minimalist instances violating some properties (arc-consistency, etc) in
order to help the developer to identify the origin of the problem using
standard debuggers.
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1 Introduction

The filtering algorithms inside constraint programming solvers ([1,2,3,4] etc.) are
mainly tested using test suites implemented manually. Creating such unit tests
is a significant workload for the developers and is also error prone.

The most elementary yet important test to achieve for a constraint is that
no feasible solution is removed. One can always implement a checker verifying
the feasibility of the constraint when all the variables are bound. By comparing
the number of solutions generated with both the checker and the tested filtering
algorithm, one can be confident that no solution is removed. This procedure can
be repeated for many (small) instances (possibly randomly generated). Alter-
natively, one can compare with a decomposition of the constraint into (more)
elementary ones. This latter approach can improve the coverage of the test suite.

Those unit tests verifying the non removal of feasible solutions do not verify
other properties of constraints generally more difficult to test. For instance, the
domain-consistency property is rarely tested outside some hard-coded small test
examples.

We introduce CPChecker as a tool to ease the solver developer’s life by
automating the testing of properties of filtering algorithms. For instance, algo-
rithm A should filter more than algorithm B or Algorithm A should achieve arc
or bound-consistency, etc. The tool does not ensure that the tested filtering does
not contain any bug - as it is impossible to test all possible input domains - but it
can reveal the presence of one, if a test fails. The large variety of input domains
pseudo-randomly generated should make the user confident that the tool would
allow to detect most of the bugs.



2 Testing and debugging filtering of global constraints

Many constraint implementations are stateful and maintain some reversible
data structures. Indeed, global constraints’ filtering algorithms often maintain
an internal state in order to be more efficient than their decomposition. This
reversible state is also a frequent source of bugs. CPChecker includes the trail-
based operations when testing constraints such that any bug due to the state
management of the constraint also has a high chance to be detected. CPChecker
is generic and can be interfaced with any JVM trailed based solvers. CPChecker
is able to generate detailed explanations by generating minimal domain exam-
ples on which the user’s filtering has failed, if any.

Related work In [5,6,7], the authors introduce tools to debug models. Some
researches have also been done to help programmers while debugging codes for
constraint programming [8]. To the best of our knowledge, these tools, unlike
CPChecker, do not focus on the filtering properties of individual constraints.

In the next sections, we first detail how to test static filtering algorithms
before explaining the testing of stateful filtering algorithms for trailed based
solvers. Finally we introduce how CPChecker can be integrated into a test suite.

2 Testing Static Filtering Algorithms

CPChecker is able to test any static filtering algorithm acting over integer do-
mains. Therefore, the user needs to implement a function taking some domains
(array of set of ints) as input and returning the filtered domains1:

1 abs t r a c t c l a s s F i l t e r {
2 de f f i l t e r ( v a r i a b l e s : Array [ Set [ Int ] ] ) : Array [ Set [ Int ] ]
3 }

CPChecker also needs a trusted filtering algorithm serving as reference with
the same signature. The least effort for a user is to implement a checker for
the constraint under the form of a predicate that specifies the semantic of the
constraint. For instance a checker for the constraint

∑
i xi = 15 can be defined

as

1 de f sumChecker ( x : Array [ Int ] ) : Boolean = x . sum == 15

One can create with CPChecker an Arc/Bound-Z/Bound-D/Range Consis-
tent filtering algorithm by providing in argument to the corresponding construc-
tor the implementation of the checker. For instance

1 c l a s s A r c F i l t e r i n g ( checker : Array [ Int ] => Boolean ) extends
F i l t e r

2 va l t rustedArcSumFi l te r ing = new A r c F i l t e r i n g ( sumChecker )

1 Most of the code fragments presented are in Scala for the sake of conciseness but
the library is compatible with any JVM-based language.



Testing Global Constraints 3

This class implements the filter function as a trusted filtering algorithm
reaching the arc consistency by 1) computing the Cartesian product of the do-
mains, 2) filtering with the checker the non solutions and 3) creating the filtered
domains as the the union of the values. Similar filtering algorithms’ (Bound-Z,
Bound-D and Range) have been implemented from a checker.

Finally the check and stronger functions permit to respectively check that
two compared filtering algorithms are the same or that the tested filtering is
stronger than the trusted one.

1 de f check / s t r onge r ( t r u s t e d F i l t e r i n g : F i l t e r , t e s t e d F i l t e r i n g :
F i l t e r ) : Boolean

The testing involves the following steps:
1. Random Domains generation 2.
2. Execution of the tested and trusted filtering algorithms (from CPChecker’s

filterings or another trusted one) to these random domains.
3. Comparison of the domains returned by the two filtering algorithms.

This process is repeated by default 100 times although all the parameters can
be overridden for the creation of random domains, number of tests, etc.

2.1 Generation of Random Test Instances

In order to test a filtering implementation, CPChecker relies on a property based
testing library called ScalaCheck [9]3. This library includes support for the cre-
ation of random generators and for launching multiple test cases given those.
CPChecker also relies on the ability of ScalaCheck of reducing the instance to
discover a smaller test instance over which the error occurs.

2.2 Example

Here is an example for testing with CPChecker the arc-consistent AllDifferent
constraint’s in OscaR [2] solver :

1 ob j e c t ACAllDif fTest extends App {
2 de f a l l D i f f C h e c k e r ( x : Array [ Int ] ) : Boolean = x . toSet . s i z e ==

x . l ength
3 va l t rustedACAl lDi f f : F i l t e r = new A r c F i l t e r i n g (

a l l D i f f C h e c k e r )
4 va l oscarACAl lDi f f : F i l t e r = new F i l t e r {
5 o v e r r i d e de f f i l t e r ( v a r i a b l e s : Array [ Set [ Int ] ] ) : Array [ Set

[ Int ] ] = {
6 va l cp : CPSolver = CPSolver ( )
7 va l vars = v a r i a b l e s . map( x => CPIntVar ( x ) ( cp ) )
8 va l c o n s t r a i n t = new AllDiffAC ( vars )
9 t ry {

2 A seed can be set to reproduce the same tests.
3 Similar libraries exist for most programming languages, all inspired by QuickCheck

for Haskell.
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10 cp . post ( c o n s t r a i n t )
11 } catch {
12 case : I n c o n s i s t e n c y => throw new NoSolut ionException
13 }
14 vars . map( x => x . toArray . toSet )
15 }
16 }
17 check ( trustedACAllDi f f , oscarACAl lDi f f )
18 }

The trusted filtering algorithm is created thanks to the ArcFiltering class at
line 3. The checker for AllDifferent simply verifies that the union of the values
in the array has a cardinality equal to the size of the array, as defined at line
2. The tested filtering implements the filter function using OscaR’s filtering.
It first transforms the variables into OscaR’s variables (line 7) then creates the
constraint over them (line 8). It is then posted to the solver which filters the
domains until fix-point before returning them.

3 Testing stateful constraints

Incremental Filtering Algorithms usually maintain some form of state in the
constraints. It can for instance be reversible data-structures for trailed-based
solvers. CPChecker allows to test a stateful filtering algorithm by testing it dur-
ing a search while checking the state restoration. In terms of implementation, the
incremental check and stronger functions compare FilterWithState objects
that must implement two functions. The setup function reaches the fix-point
while setting up the solver used for the search. The branchAndFilter function
applies a branching operation on the current state of the solver and reaches a
new fix-point for the constraint. The branching operations represent standard
branching constraints such as =, 6=, <,> and the push/pop operations on the
trail allowing to implement the backtracking mechanism (see [10] for further
details on this mechanism).

1 abs t r a c t c l a s s F i l t e rWithState {
2 de f setup ( v a r i a b l e s : Array [ Set [ Int ] ] ) : Array [ Set [ Int ] ]
3

4 de f branchAndFilter ( branching : BranchOp ) : Array [ Set [ Int ] ]
5 }

The process of testing an incremental/stateful filtering algorithm is divided
into four consecutive steps :
1. Domains generation
2. Application of the setup function of the tested and trusted filtering algo-

rithms.
3. Comparing the filtered domains returned at step 2.
4. Execution of a number of fixed number dives as explained next based on the

application of branchAndFilter function.
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3.1 Dives

A dive is performed by successively interleaving a push of the state and a domain
restriction operation. When a leaf is reached (no or one solution remaining) the
dive is finished and a random number of states are popped to start a new dive
as detailed in the algorithm 1.

Algorithm 1: Algorithm performing dives

Dives (root, trail, nbDives)
dives ← 0
currentDomains ← root
while dives < nbDives do

while !currentDomains.isLeaf do
trail.push(currentDomains)
restriction ← new RandomRestrictDomain(currentDomains)
currentDomains ← branchAndFilter(currentDomains, restriction)

dives ← dives + 1
for i ← 1 to Random(1,trail.size-1) do

trail.pop()
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3.2 Illustration over an Example

The next example illustrates CPChecker to test the OscaR[2]’s filtering for the
constraint

∑
i xi = 15. It should reach Bound-Z consistency.

1 ob j e c t SumBCIncrTest extends App {
2

3 de f sumChecker ( x : Array [ Int ] ) : Boolean = x . sum == 15
4 va l t ru s t ed = new I n c r e m e n t a l F i l t e r i n g (new BoundZFi lter ing (

sumChecker ) )
5 va l t e s t e d = new Fi l t e rWithState {
6 va l cp : CPSolver = CPSolver ( )
7 var currentVars : Array [ CPIntVar ] =
8

9 o v e r r i d e de f branchAndFilter ( branching : BranchOp ) : Array [
Set [ Int ] ] ={

10 branching match {
11 case : Push => cp . pushState ( )
12 case : Pop => cp . pop ( )
13 case r : RestrictDomain => t ry {
14 r . op match {
15 case ”=” => cp . post ( currentVars ( r . index ) === r .

constant )
16 . . . }
17 } catch {
18 case : Exception => throw new NoSolut ionException
19 }
20 }
21 currentVars . map( x => x . toArray . toSet )
22 }
23

24 o v e r r i d e de f setup ( v a r i a b l e s : Array [ Set [ Int ] ] ) : Array [ Set [
Int ] ] = {

25 currentVars = v a r i a b l e s .map( x => CPIntVar ( x ) )
26 t ry {
27 s o l v e r . post (sum( currentVars ) === 15)
28 } catch {
29 case : Exception => throw new NoSolut ionException
30 }
31 currentVars . map( x => x . toArray . toSet )
32 }
33 }
34 check ( trusted , t e s t e d )
35 }

In this example, two FilterWithState are compared with the check function.
In CPChecker, the IncrementalFiltering class implements the

FilterWithState abstract class for any Filter object. Therefore, the
IncrementalFiltering created with a BoundZFiltering object is used as the
trusted filtering (line 4) which it-self relies on the very simple sumChecker func-
tion provided by the user and assumed to be bug-free.
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4 Custom Assertions

To ease the integration into a JUnit like test suite, CPChecker has custom as-
sertions extending the AssertJ [11] library. The classes FilterAssert and
FilterWithStateAssert follow the conventions of the library with the filterAs
and weakerThan functions to respectively test a filtering algorithm, as in the
check and stronger functions. An example of assertion is:

1 assertThat ( t e s t e d ) . f i l t e r A s ( t rus t ed1 ) . weakerThan ( t rus t ed2 )

5 Code Source

CPChecker’s code source is publicly available in the Github repository4. This
repository also contains several examples of usage of CPChecker with both Scala
solver and Java solvers, namely OscaR[2], Choco[1] and Jacop[3]. From those
examples, CPChecker detected that the arc consistent filtering of the Global
Cardinality constraint of OscaR was not arc consistent for all the variables (the
cardinality variables). This shows the genericity of CPChecker and that it can
be useful to test and debug filtering algorithms with only a small workload for
the user. Further details on the architecture and implementation of CPChecker
can be found in the Master Thesis document available at the github repository4.

6 Conclusion and Future Work

This article presented CPChecker, a tool to test filtering algorithms implemented
in any JVM-based programming language based on the JVM. Filtering algo-
rithms are tested over domains randomly generated which is efficient to find un-
expected bugs. Principally written in Scala, CPChecker can be used to test sim-
ple and stateful filtering algorithms. It also contains its own assertions system to
be directly integrated into test suites. As future work, we would like to integrate
into CPChecker properties of scheduling filtering algorithms [12] such as edge-
finder, not-first not-last, time-table consistency, energy filtering, etc. for testing
the most recent implementation of scheduling algorithms [13,14,15,16,17,18].

4 https://github.com/vrombouts/Generic-checker-for-CP-Solver-s-constraints
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