
Continuous Casting Scheduling
with Constraint Programming

Steven Gay1, Pierre Schaus1, and Vivian De Smedt2

1 Université Catholique de Louvain, Belgium
2 PSI Metals, Belgium

Abstract. Although the Steel Mill Slab problem (prob 38 of CSPLib)
has already been studied by the CP community, this approach is unfor-
tunately not used anymore by steel producers since last century. Contin-
uous casting is preferred instead, allowing higher throughput and better
steel quality. This paper presents a CP model related to scheduling of op-
erations for steel making with continuous casting. Activities considered
range from the extraction of iron in the furnace to its casting in con-
tinuous casters. We describe the problem, detail a CP scheduling model
that is finally used to solve real-life instances of some of the PSI Metals’
customers.

Keywords: Continuous Casting, Steel Production, Scheduling, Constraint Pro-
gramming

1 Introduction

Steel Production problems have already been tackled with CP. In particular
the Steel Mill Slab problem (prob 38 of CSPLib) has been studied in [4, 5, 14,
7]. Although interesting from a theoretical point of view, this problem is of
limited practical interest since this technique has been replaced since 1950’s by
continuous casting.

A schematic representation of continuous casting is given on Fig. 1. A ladle
is poured into the tundish, a reservoir of hot metal, to feed the casting machine.
The strand (solidifying metal, output of the casting machine) passes through
straightening rolls before being cut into predetermined lengths by mechanical
shears. We refer to [16] for more information related to steel production in gen-
eral.

The continuous casting depicted on Fig. 1 is the last of a three step process,
the first two steps being the carbon removal and the steel refining. The goal of
the continuous casting scheduling problem (CCSP) is to determine the timing of
operations on molten steel at the three steps of production and the device/facility
where they happen, when some flexibility is allowed.

There are two reasons for using computer optimization for scheduling oper-
ations related to continuous casting. The first one is the cost of the machines
involved in the process. They are so costly that they should effectively be used



Fig. 1. 1: Ladle. 2: Tundish. 3: Mold. 4: Plasma torch. 5: Stopper. 6: Straight zone
(Image from [19]).

24 hours per day. The cost of a modern steel making facility is on the order of 10
billion euros. A single continuous caster costs on the order of half a billion euros.
Since the lifetime of a caster is around 30 years of lifetime, which is around 45
thousand euros per day. Thus, one of the main objective is to ensure continuity
of the production process at the caster. The second reason is satisfiability. Many
instances are very constrained, some constraints compete and make it difficult to
solve the problem manually or using heuristics. The problem requires typically
to plan operations up to 36 hours which means about 500 activities to schedule.

PSI Metals develops software for decision making in steel production. This
work aims at developping flexible and maintainable tools to deal with continuous
casting in the software suite of PSI Metals.

Outline. Section 2 describes the CCSP problem in detail. Section 3 motivates
the usage of CP for solving the problem. Section 4 details the CP model, before
experimenting the model in Section 5 on real-life instances.

2 Description of the problem

The problem is a scheduling problem presenting some similarities with the job-
shop problem in the sense that some activities must be processed sequentially
by different machines. Each job is a heat, which is a pocket of molten metal,
that undergoes several transformations ; each transformation may be modeled
as an activity with start date, duration and end. However, application-specific
requirements makes this problem different from a pure job-shop problem.

Continuous Casting as a Scheduling problem. A heat job is composed of activities
that must take place in a fixed order, as represented in Fig. 2.



{Re ning steps 

(Degasser, etc)

Converter

Caster

time

Fig. 2. A heat job: the converter activity must happen first, then the refining activities
(degasser, stew, transports, etc), and finally the caster activity.

The first activity of a heat is its creation in a converter, either a blast oxygen
furnace that processes iron ore or an electric furnace that melts recycled scrap.
At this end of this activity, metal is tapped in liquid state into a ladle. The metal
contents of a ladle is a heat, it embodies a discrete unit of molten metal. Note
that this discretization into heat/ladles comes from a physical reality.

Then the heat is treated in various facilities, to undergo treatments that
will modify the metal’s final properties. These treatments and the transports
between the facilities can be described as activities of the heat, with start date,
duration, end date, and associated resource. For the plant considered in our
experiments, there are two intermediate treatments, alloying (addition of exter-
nal components) and vacuum degassing (removal of excess oxygen blown by the
conversion process).

Finally a heat is tapped into a continuous caster, to be transformed into
solid metal. This is the last activity of a heat and the end of the problem under
consideration.

Application-Specific requirements. Although the problem presents some simi-
larities with the job-shop problem, there are some constraints specific to the
CCSP. The first is the temperature requirement, depicted in Fig. 3. From its
generation in the converter facility to its final transformation in the caster, a
heat has to remain in liquid state. Even though there are no release times nor
deadlines specified, there is a maximum time a heat can spend in the relatively
cold atmosphere before solidifying. To avoid this situation, a maximum duration
is specified between the exit of the converter and the entry in the caster. Note
that it is not possible to raise the initial temperature at the converter artificially
to ensure arrival at the caster in liquid state, since the metal could boil away
and the containing equipment could be damaged. Moreover, heating metal has
an energy cost.

The second is the continuity requirement, also depicted in Fig. 3. Continuous
casting is a technique where to make n shapes that are effectively truncated



time

time

liquid
level

at caster

temperature
of heat’s steel

solidi�cation

time

Converter Transport Degasser Caster

Fig. 3. As a heat undergoes treatments in different facilities, it cools down and the
level of the molten metal in the caster waiting for it decreases.

cylinders (such as I-beams, sheets . . . ), a single cylinder is cast in a continuous
process in a first stage, and cut into the required lengths in the following stage,
on-the-fly. The advantages are better metal quality and cheaper processing costs,
but the drawback is that during the first stage, the caster can not be stopped.
This translates into additional constraints for the scheduling: a program is a set
of heats that will be used for the continuous casting of one object. The heats of
a program have thus to be treated consecutively at the caster (without any gap
between corresponding activities). This is shown in the bottom part of Fig. 3
Adjacent heats may arrive on-time, early, but not late. Typically, the allocation
of programs to the casters and the order of programs at each caster is received
from a previous computation in the planning and must remain unchanged.

Example 1. A heat has to undergo several transformations before being cast in a
solid shape, as shown in Fig. 3. The top part of this diagram shows a heat going
through different facilities along the timeline, from conversion to casting. The
middle part shows the temperature of the metal inside the heat, which starts
decreasing as soon as the heat leaves the converter. Then, the temperature starts
decreasing, and the heat must undergo all its treatments and arrive at the caster
before it turns solid. Temperature is only relevant between these two events. The
bottom part shows the level of the liquid metal at the caster as it is waiting for
the heat to arrive: if the caster is in the middle of a program, then the heat must
arrive before the liquid level reaches 0.



The last typical variation on job-shop is the running time production, where
some activities have already been scheduled. Keeping in mind that steel making
is a 24 hours per day operation, in practice, there are always fixed activities in
the schedule: when adding activities required by a command from a customer,
the schedule is not remade from scratch ; instead, some activities that may be
happening while the algorithm is re-computing a new schedule are fixed.

Example 2. This example is depicted on Fig. 4. There are two programs repre-
sented with gray and white activities. There are two casters, the gray program
must be scheduled on caster 1 and the white program on caster 2. The converter
and the degasser can each process two heats in parallel. Each activity has du-
ration 1 to simplify the example. There is a maximum delay of 2 from exit of
converter to entry into caster to avoid solidifying metal. Notice how heat number
3 of the gray program is scheduled at the last possible moment to avoid solidi-
fying. On the right, an unexpected event occurred: heat 2 of the white program
took more time than expected at caster. Unfortunately, heat 3 of the white pro-
gram was started at the converter and heat 1 is already being treated at caster
1, so no matter the schedule, heat 3 of the gray program can never arrive on
time at the caster.

1

2
1

3
4

2 3 4

1 2 3 4

1 3
2

1

1 2 3

2 3

Converter

Degasser

Caster 1

Caster 2

1

2
1

2

1

1 3
2

1

Converter

Degasser

Caster 1

Caster 2

?

?

?

?

time time

Fig. 4. Representation of Example 2.

Instance-Specific requirements There may be additional constraints depending
on the plant and its casting facilities (converter, degasser, etc).

Although facilities may be cumulative (able to treat several heats in parallel)
with fixed capacity, some might require that sub-parts of the activities do not
overlap. In particular, referring to Fig. 5, the converter activity of a heat is
made of three internal continuous parts: Loading, Converting and Tapping. The
converter has two chambers and can be seen as a resource with capacity 2.



However, there is only one oxygen blower, so that the actual conversion part can
not overlap the conversion part of another. While the loading and tapping parts
may still overlap with the same conditions as a resource of capacity 2, the non
overlapping constraint induced by the oxygen blower prevents the two activities
of chamber 2 to be scheduled consecutively: some gap must be introduced to
prevent conversion parts from overlapping.

L C T

L C T L C T

time

Chamber

2

1

Fig. 5. Illustration of the disjunctive aspect for sub-part of the converter activities.

Generally a program can be treated only in a specific caster, but some activ-
ities might have alternatives, i.e. they can be treated indifferently in one facility
or another (say they might use vacuum degasser number 1 or 2 indifferently).
However, another activity may require vacuum degasser number 1 only, dis-
tinguishing the two facilities and preventing us from using a single cumulative
constraint for both degassers.

Some facilities might be unavailable for a fixed interval of time for mainte-
nance ; in flexible cases, the maintenance activity may be schedulable. Further-
more, casters require a setup time in-between programs.

An incident may force an activity to take longer than scheduled, or may break
down some facility. In such an event, activities that have not yet happened have
to be re-scheduled just for feasibility, since temperature and continuous casting
constraints may become violated, see Example 2. In the event where a schedule
is infeasible due to a continuity violation at a caster, a program may be split in
two parts, even though it will probably interfere with the subsequent operations
on the slab (typically the subsequent cutting will not be able to stop at a whole
number of smaller cylinders). If the temperature constraint of a heat will be
violated, the liquid metal can be re-heated in some facilities or even recycled in
the converter. In these exceptional cases, the schedule has to be heavily penalized
; we do not take the possibility of splitting programs into account here.



3 Using CP for caster scheduling

In order to satisfy clients at reasonable development costs, PSI needs a frame-
work that enables the coding of algorithms that yield good feasible solutions at
industrial scales while requiring little tuning to minimize the development time.
The framework should also be expressive enough to allow direct encoding of
side constraints. We believe CP offers these advantages thanks to its high level
declarative modeling. Furthermore, CP has proved competitive for scheduling
applications, mainly due to effective filtering algorithms for global scheduling
constraints [18, 10] ; Large Neighborhood Search (LNS) [15] makes it scalable [8,
12, 3, 11]. Consequently, we believe CP is a good candidate for solving the CCSP.

3.1 Two sources of difficulty

Two other problem-specific arguments support the choice for CP on this prob-
lem:

1. The continuous casting problem is very constrained, making it sometimes
difficult to find a feasible solution.

2. Bottleneck resources are instance dependent, making it difficult to build
generic heuristics.

These two points are discussed next.

A very constrained problem. There is a basic strategy to ensure continuity of
heats of a same program at the caster: make heats ahead of time, then deliver
stored heats at the caster. The major obstacle to this strategy is the temperature
constraint, that prevents us from creating heats too long in advance. Recall that
the temperature constraint is ensured by allowing a maximum delay from the
exit of the converter to the entry at the caster, representing a maximum initial
temperature. This tension between the desire to produce in advance to ensure
continuity and the just-in time aspect induced by the temperature constraint
may cause some instances to be unsatisfiable or at best difficult to solve.

Instance-dependent bottlenecks. As in most scheduling problems, some resources
behave more or less like a bottleneck in the schedule. An interesting aspect of
the continuous casting scheduling problem is that the bottleneck resource(s) are
very instance-dependent. Let us approximate the metal as a continuous flow go-
ing through facilities instead of being discretized in heats. Then one can think of
facilities as having a continuous throughput, say in tonne/minute; each step of
the transformation process is taken care of by one or several facilities, amount-
ing to a total throughput of the step. The step with the smallest throughput is
a bottleneck that limits the maximum throughput of the whole factory. From
experience, this approximation still holds when the liquid metal is discretized
as heats (remind that this is a physical constraint due to the metal being con-
tained, moved and treated in ladles). Identifying the bottleneck facility/resource



is a valuable indicator in order to construct good feasible solutions. Indeed, those
resources will be used at maximal throughput in a good solution, and a partial
instantiation that satisfies the resource constraint of the bottleneck facility can
most likely be extended into a complete feasible schedule. The key factors im-
pacting bottleneck resources are the wide range of parameters possible in each
step of the process. For instance, a customer may want a cylinder of small di-
ameter, and thus the throughput at the corresponding caster will be decreased
enough to move the bottleneck from another step to the casting step. If the
customer wants a higher quality metal, a step corresponding to some secondary
treatment will take longer and have a smaller throughput, making it the new
bottleneck.

3.2 Alternative/Existing approaches

Although we were not able to find exactly the same problem description in
the literature, the problem described in [1] presents many similarities with our
CCSP: although the central problem is similar, the objective function and the
modeling of facilities are different.

The authors decompose the resolution in two phases. First an Ant Colony
Optimization (ACO) metaheuristic is used to sequence the jobs using MATLAB.
Then a second phase assigns starting time with CONOPT non-linear optimiza-
tion solver. In [17], the authors describe a decomposition approach for solving
a similar problem combining Lagrangian relaxation, dynamic programming and
heuristics.

Although similar local search, decomposition and heuristics have been engi-
neered in the past for other problems, PSI finds it requires much manpower for
tuning heuristics and designing moves. Recall that the CCSP problem is strongly
constrained, it is thus difficult to design efficient feasible moves manually. LS was
also evaluated as a difficult approach to maintain on this CCSP because require-
ments change according to both the specificities of each production plant and
the typical set of programs to schedule.

MILP requires time discretization, and the logical constraints used lead to
rather weak linear relaxations. The current solution developed by PSI uses MIP
but it required a lot of simplifications (such as time bucketing) and tuning, just
to come up with solvable instances. Moreover, these simplifications generally
lead to sub-optimal final solutions, when compared to solutions found by CP.

4 Modeling using CP

Our model for the CCSP uses standard resource constraints for scheduling with
additional side constraints where needed mainly to impose offsets, set-up times
and precedence constraints between activities.



4.1 Model overview

The activities to schedule are structured hierarchically in heats, programs and
casters: an activity belongs to a heat, a heat to a program, and a program to a
caster.

– ∀c caster, the activities of programs p1, . . . , pnc
at the caster must be sched-

uled in a predefined order, separated by a setup time of the caster.
– ∀p program, the activities of heats h1, . . . , hnp

of p happening at the caster
must be scheduled in listed order, and be contiguous.

– ∀h heat, activities a1, . . . , anh
of the heat must be scheduled in listed order.

Every activity a has a fixed duration da, a set of resources Ra it can be
scheduled on, and a delay ta that modelizes the temperature constraint. Every
resource has an associated capacity, ranging from 0 to +∞. The demand of our
activities is always 1.

Example 3. Fig. 6 represents a schedule respecting all given constraints. Every
resource has a capacity limit, e.g. here 1 for the casters, 2 for the converter, +∞
for the transports, etc. Activities of the same program have the same color, we
single out the white program in this example. Caster order constrains the white
program to be scheduled before the blue one. Program order forces the activities
of the white program at the caster to be consecutive. Heat order constrains the
order of activities of the same heat, here the converter activity of white-1 must
happen before its stew activity, which must happen before its first transport,
etc. Temperature constrains the gap between the converter and caster activities
to be smaller than some value, given as an input.

Transport,
in�nite capacity

2 Degassers,
each of capacity 2

Transport,
in�nite capacity

Stew, capacity 2

Converter, capacity 2

4 Casters,
each has capacity 1

3

3

3

3

32

2

3

2

2

2

2

1

1

1

1

1

1

Fig. 6. A small example of continuous casting schedule.



4.2 CP model

The pure model uses conventional scheduling constraints for disjunctive and
cumulative resources (see [2] for more information on scheduling constraints).
The temperature constraint is modeled with a fixed time delay depending on
the heat.

Variables. We write the decision variables in boldface. They are, for each ac-
tivity a, start sa, duration da, end ea, and resource ra. The set of all activities
equipped with their decision variables is written A. Durations are fixed, the ini-
tial domain for starts and ends is N, and resources are initialized according to
user specifications, for instance, it is expected, for a resource variable of activity
a at caster c, that the initial domain of ra is {c}.

Constraints. There are two types of constraints in this problem, resource limi-
tations and time dependencies:

– Resource constraints. For every resource r, depending on its capacity C(r),
we add a constraint :
• C(r) = 0: the resource is not available, add the constraints ∀a ∈ A, ra 6=
r

• C(r) = 1: disjunctive(A)
• C(r) > 1: cumulative(A, C(r))
• C(r) = +∞: the resource does not constrain the problem, no constraint

added
– Time Dependencies. We write h(c) the activity of heat h at caster c, and

setupc the setup time that must separate programs at caster c.
• Caster order. ∀c caster, ∀pi, pi+1 consecutive programs of c with pi =

h1 . . . hn and pi+1 = h′
1 . . . h

′
n′ , ehn(c) + setupc ≤ sh′

1(c)
.

• Program order. ∀p program, ∀hj , hj+1 consecutive heats of p,
ehj(c) = shj+1(c).

• Heat order. ∀h heat, ∀ak, ak+1 consecutive activities of h, eak
≤ sak+1

.
• Temperature. ∀h = a1 . . . an, ea1

+ delayh ≥ san

Objective. The goal of the optimization here is to minimize the sum of the
completion times at casters, so if last(c) is the last activity at the caster c,
the objective value to minimize is

∑
c elast(c). This forces the resources to be

free earlier, to deal with new customer demands that are unknown at scheduling
time: a makespan objective would only be relevant if all jobs were known in
advance.

Search Heuristic. The problem sizes are so large (more than 500 activities) that
there is little hope to complete the search on real instances. Designing custom
heuristic and search strategies is thus crucial for CCSP. An important aspect for
PSI customers is the anytime behavior of the application. The operator should
have a solution available quickly, and the application can not afford to return
no solution. To this end, we designed a search heuristic behaving similarly to a



greedy manual schedule construction minimizing the risk of any backtrack before
reaching the first feasible solution. Recall that one important constraint is that
activities of a same program at a caster should be contiguous. We order the
heats (jobs) in a static order to ensure the feasibility of the continuity property.
This order on the jobs is obtained as follows (see Fig. 7):

1. Caster activities are placed without any gap between them (unfortunately
this schedule for caster activities is surely not feasible because of capacity
limitations at the converter, degasser, etc).

2. Programs are numbered according to their earliest starting time (see numbers
1 to 7 on top of the programs on Fig. 7)).

3. Heats are numbered increasingly inside a program by numbering first pro-
grams with lowest starting time (see numbers 1 to 18 in each heat on Fig. 7)).

2

10

3

4

5

7

6

1 2

4 65

83 9

7

16

11 12

1514

13 17 18

1

Caster1

Caster2

Fig. 7. Job ordering strategy obtained by first ordering programs, then heats inside
each programs. Heats in a same program have the same color.

Then for a given heat (job) activities are scheduled facility by facility, starting
at the converter and finishing with the caster activity, in their program order.
Because the domains are huge (duration are specified in seconds) a binary split
search is used instead of a labeling search. This static search is randomized by
applying some random modifications on the activity durations when creating the
program ordering.

Although the previous strategy is very good to obtain quickly feasible solu-
tions, it is too conservative to obtains high quality values for the sum of comple-
tion times. Indeed, this strategy may introduce large gaps between the programs
at the casters.

We use a Large Neighborhood Search (LNS) to improve the incumbent solu-
tion. Some structure of the current best solution is kept by restricting a random-
ized partial order schedule between the programs at the caster (inspired from
[6]). At each LNS restart we randomly choose between two searches:

– The safe search with static (randomized) ordering, or
– A schedule or postpone search (also called SetTimes) described in [9] on all

the activities of the problem.



SetTimes is a search that tries to assign early activities at their earliest starting
time (EST), postponing on backtrack the scheduling of activities that failed
until their EST changes: it only considers them again when their EST change
from propagation. This search exploits dominance properties that do not hold
for our problem. Indeed, it may be interesting in our case to postpone activities
on the converter to satisfy the itemperature constraints. Thus SetTimes is not
necessarily complete on our problem. However, this search proves very useful
in practice to minimize the sum of completion times when it finds a feasible
solution.

5 Experiments

Fig. 8. A real-life schedule.

Table 1 shows the results obtained for 48 CCSP instances. Those instances
were generated as variants of 2 real-life instances coming from a customer of
PSI. The horizon varies from 12 to 48 hours of operations to schedule, where 36
hours is a good enough time horizon for the industrial setting.

The number of activities given in the table does not take into account subpart
activities, in this particular instance 3 resources need subparts, our modeling
codes them as additional activities ; the number of activities the solver actually
has to handle is roughly the number in the table times 1.5.

Durations of activities were artificially changed to make the bottleneck re-
source change, allowing us to test the robustness of the search. In table 1, “step”
is the bottleneck resource (Converter or STEW), and “extension” is a fixed num-
ber of seconds added to the duration of each activity on this resource, making
the step slower and more bottleneck-like.

Example 4. Fig. 5 shows an example of a real-life schedule produced by our
model. The two bottom lines are subpart activities (as explained on Fig. 5). This
schedule is well optimized since activities are very well packed on the bottleneck



Safe SetTimes LNS

instance limit activities step extension objective objective objective

Instance1 12 234 Converter 600 274620 250740 250740
900 308280 270060 265200
1200 342720 298140 298140

STEW 600 253980 222600 221640
900 255180 223800 221640
1200 282300 221640

24 436 Converter 600 493560 440760 437760
900 570720 474480 474480
1200 630420 515940 513900

STEW 600 448440 378060 382441
900 449640 379260 383344
1200 482100 424500

36 598 Converter 600 588660 540720 536641
900 718560 610440 610440
1200 760920 658860 652920

STEW 600 539820 469440 475800
900 541020 470640 477181
1200 573480 574140

48 736 Converter 600 658260 610680 610441
900 776940 676380 676380
1200 861900 759660 757981

STEW 600 614580 553020 559080
900 615780 554160 559980
1200 649200 589140

Instance2 12 240 Converter 600 294258 268228 268583
900 318596 284783 279656
1200 358828 296848 290128

STEW 600 266398 243448 243448
900 271672 251478 251478
1200 282533 264348 264348

24 420 Converter 600 427218 421996 421996
900 547138 462369
1200 609786 482013 492857

STEW 600 388098 344727 347307
900 386397 352757 352757
1200 414408 374121

36 576 Converter 600 514408 509266 475486
900 641972 579460
1200 740546 687380 691115

STEW 600 475288 431917 436177
900 473587 439947 439947
1200 501598 461311

48 666 Converter 600 595276 590134 557004
900 723262 580207
1200 863598 782701 873943

STEW 600 556156 512876 516145
900 554455 520815 520815
1200 582466 542179

Table 1. Results on 48 CCSP instances testing 3 different search strategies with a
timeout of 30 seconds.



resources. For the first half of the schedule, the second facility is the bottleneck,
then the casters become the bottleneck.

A time-out of 30 seconds is given to the algorithm3 and we compare the final
objective function (sum of completion times) using different searches:

– A ”Safe” search as the one described above diving quickly toward feasible
solution.

– A SetTimes search on the whole set of activities.
– A LNS search using a partial order schedule relaxation and alternating be-

tween the two previous searches on each LNS restart.

The LNS search obtains the best objective most of the time on 34/48 in-
stances. The SetTimes search obtains the best solutions on 25/48 instances but
is not able to find any feasible solution for 10/48 instances. As expected the
”safe” search is always able to find a feasible solution, but the quality of the
objective is generally worse compared to the two previous searches. When the
LNS search is not the optimal one, it is reasonably close to the SetTimes results
and it has the main advantage to always produce a feasible solution. This search
is thus the most robust and should be preferred for the final deployment of the
application.

6 Conclusion and future work

We have described the continuous casting scheduling problem (CCSP) for steel
production and introduced a complete CP model and search strategy using LNS
for solving this problem with good any-time behavior. Although the application
is still in the prototyping phase, the high quality results obtained using CP and
the ease of maintaining and modifying the CP model should allow to deploy it
in the near future at some of PSI’s customers.

As a future work, we would like to experiment the Variable Objective Large
Neighborhood Search (VO-LNS) introduced in [13]. We believe VO-LNS might
be a good strategy to focus on a different restricted number of casters at each
LNS restart. We may also try to optimize activities according to a rolling hori-
zon scheduling strategy. This should allow us to consider a limited number of
activities, fix some of the earliest scheduled ones before sliding the horizon and
considering a few more activities. Finally we believe dominances and/or redun-
dant constraints may be inferred to improve the filtering on this problem.

References

1. Arezoo Atighehchian, Mehdi Bijari, and Hamed Tarkesh. A novel hybrid algo-
rithm for scheduling steel-making continuous casting production. Computers &
Operations Research, 36(8):2450–2461, 2009.

3 30s was chosen as a realistic wait an operator can allow, 300s would be unrealistic.



2. Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-based scheduling:
applying constraint programming to scheduling problems, volume 39. Springer, 2001.

3. Tom Carchrae and J Christopher Beck. Principles for the design of large neigh-
borhood search. Journal of Mathematical Modelling and Algorithms, 8(3):245–270,
2009.

4. Alan M Frisch, Ian Miguel, and Toby Walsh. Modelling a steel mill slab design
problem. In Proceedings of the IJCAI-01 workshop on modelling and solving prob-
lems with constraints. Citeseer, 2001.

5. Antoine Gargani and Philippe Refalo. An efficient model and strategy for the steel
mill slab design problem. In Principles and Practice of Constraint Programming–
CP 2007, pages 77–89. Springer, 2007.

6. Daniel Godard, Philippe Laborie, and Wim Nuijten. Randomized large neighbor-
hood search for cumulative scheduling. In ICAPS, volume 5, pages 81–89, 2005.

7. Stefan Heinz, Thomas Schlechte, Rüdiger Stephan, and Michael Winkler. Solving
steel mill slab design problems. Constraints, 17(1):39–50, 2012.

8. Philippe Laborie and Daniel Godard. Self-adapting large neighborhood search:
Application to single-mode scheduling problems. Proceedings MISTA-07, Paris,
pages 276–284, 2007.

9. Claude Le Pape, Philippe Couronné, Didier Vergamini, and Vincent Gosselin.
Time-versus-capacity compromises in project scheduling. In Proceedings of the
Thirteenth Workshop of the UK Planning Special Interest Group, 1994.

10. Arnaud Letort, Mats Carlsson, and Nicolas Beldiceanu. A synchronized sweep
algorithm for the k-dimensional cumulative constraint. In Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems,
pages 144–159. Springer, 2013.

11. Jean-Noël Monette, Yves Deville, and Pascal Van Hentenryck. Just-in-time
scheduling with constraint programming. In ICAPS, 2009.

12. Dario Pacino and Pascal Van Hentenryck. Large neighborhood search and adap-
tive randomized decompositions for flexible jobshop scheduling. In Proceedings of
the Twenty-Second international joint conference on Artificial Intelligence-Volume
Volume Three, pages 1997–2002. AAAI Press, 2011.

13. Pierre Schaus. Variable objective large neighborhood search: A practical approach
to solve over-constrained problems. In IEEE International Conference on Tools
with Artificial Intelligence (ICTAI)-2013, 2013.

14. Pierre Schaus, Pascal Van Hentenryck, Jean-Noël Monette, Carleton Coffrin, Lau-
rent Michel, and Yves Deville. Solving steel mill slab problems with constraint-
based techniques: Cp, lns, and cbls. Constraints, 16(2):125–147, 2011.

15. Paul Shaw. Using constraint programming and local search methods to solve
vehicle routing problems. In Principles and Practice of Constraint Program-
ming—CP98, pages 417–431. Springer, 1998.

16. steel.org. The online resource for steel. Accessed: 2014-04-20.
17. Lixin Tang, Peter B Luh, Jiyin Liu, and Lei Fang. Steel-making process schedul-

ing using lagrangian relaxation. International Journal of Production Research,
40(1):55–70, 2002.

18. Petr Vilım. Global constraints in scheduling. PhD thesis, PhD thesis, Charles Uni-
versity in Prague, Faculty of Mathematics and Physics, Department of Theoretical
Computer Science and Mathematical Logic, KTIML MFF, Universita Karlova,
Malostranské námestı 2/25, 118 00 Praha 1, Czech Republic, 2007.

19. Wikipedia. Continuous casting — Wikipedia, the free encyclopedia, 2013. Ac-
cessed: 2014-04-20.


