
Conflict Ordering Search
for Scheduling Problems

Steven Gay1, Renaud Hartert1, Christophe Lecoutre2, Pierre Schaus1

1 UCLouvain, ICTEAM, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium,
{firstname.lastname}@uclouvain.be

2 CRIL-CNRS UMR 8188, Université d’Artois, F-62307 Lens, France
lecoutre@cril.fr

Abstract. We introduce a new generic scheme to guide backtrack search,
called Conflict Ordering Search (COS), that reorders variables on the ba-
sis of conflicts that happen during search. Similarly to generalized Last
Conflict (LC), our approach remembers the last variables on which search
decisions failed. Importantly, the initial ordering behind COS is given by
a specified variable ordering heuristic, but contrary to LC, once con-
sumed, this first ordering is forgotten, which makes COS conflict-driven.
Our preliminary experiments show that COS – although simple to im-
plement and parameter-free – is competitive with specialized searches on
scheduling problems. We also show that our approach fits well within a
restart framework, and can be enhanced with a value ordering heuristic
that selects in priority the last assigned values.

1 Introduction

Backtracking search is a central complete algorithm used to solve combinatorial
constrained problems. Unfortunately, it suffers from thrashing – repeatedly ex-
ploring the same fruitless subtrees – during search. Restarts, adaptive heuristics,
and strong consistency algorithms are typical Constraint Programming (CP)
techniques used to cope with thrashing.

Last Conflicts (LC) [9] has been shown to be highly profitable to complete
search algorithms, both in constraint satisfaction and in automated artificial
intelligence planning. The principle behind LC is to select in priority the last
conflicting variables as long as they cannot be instantiated without leading to
a failure. Interestingly enough, last conflict search can be combined with any
underlying variable ordering heuristic. In normal mode, the underlying heuristic
selects the variables to branch on, whereas in conflict mode, variables are directly
selected in a conflict set built by last conflict.

While last conflict uses conflicts to repair the search heuristic, we show in this
paper that conflicts can also be used to drive the search process by progressively
replacing the initial variable heuristic. Basically, the idea behind our approach
– namely, Conflict Ordering Search – is to reorder variables according to the
most recent conflict they were involved in. Our experiments highlight that this
simple reordering scheme, while being generic, can outperform domain specific
heuristics for scheduling problems.

2 Related Works

We start by providing a quick overview of general-purpose search heuristics and
schemes since our approach is definitively one of them. The simple variable
ordering heuristic dom [5] – which selects variables by their domain size – has
long been considered as the most robust backtrack search heuristic. However,
a decade ago, modern adaptive heuristics were introduced. Such heuristics take
into account information related to the part of the search space already explored.
The two first proposed generic adaptive heuristics are impact [16] and wdeg [1].
The former relies on a measure of the effect of any assignment, and the latter
associates a counter with each constraint (and indirectly, with each variable)
indicating how many times any constraint led to a domain wipe-out. Counting-
based heuristics [14] and activity-based search [11] are two recently introduced
additional adaptive techniques to guide the search process.

Interestingly, Last Conflict (LC) [9] is a search mechanism that can be ap-
plied on top of any variable ordering heuristic. Precisely, the generalized form
LC(k) works by recording and assigning first the k variables involved in the k
last decisions that provoked a failure after propagation. The underlying search
heuristic is used when all the last k conflicting variables have been assigned.
While the ability of relying on an underlying search heuristic is a strong point
of LC, setting the parameter k can be problematic, as we shall see later. The
related scheme introduced in this paper goes further and orders permanently all
conflicting variables using the time of their last conflicts, eventually becoming
independent of the helper variable ordering heuristic.

3 Guiding Search by Timestamping Conflicts

We first introduce basic concepts. Then, we introduce Conflict Ordering Search
and highlight its benefits within a context of restarts. We conclude this section
by discussing the differences between LC(k) and COS.

3.1 Background

CSP. A Constraint Satisfaction Problem (CSP) P is a pair (X , C), where X is
a finite set of variables and C is a finite set of constraints. Each variable x ∈ X
has a domain dom(x) that contains the allowed values for x. A valuation on a
subset X ⊆ X of variables maps each variable x ∈ X with a value in dom(x).
Each constraint c ∈ C has a scope scp(c) ⊆ X , and is semantically defined by a
set of allowed valuations on scp(c); the valuations that satisfy c. A valuation on
X is a solution of P iff it satisfies each constraint of P . A CSP is satisfiable iff
it admits at least one solution.

Tree-Search. One can solve CSPs by using backtrack search, a complete depth-
first exploration of the search space, with backtracking when a dead-end occurs.
At each search node, a filtering process φ can be performed on domains by

soliciting propagators associated with constraints. A CSP is in failure, denoted
⊥, when unsatisfiability is detected by φ. A branching heuristic is a function that
maps a non-failed CSP to an ordered sequence of constraints, called decisions.
In this work, we only consider binary variable-based branching heuristics, i.e.,
heuristics that always generate sequences of decisions of the form 〈x ∈ D,x /∈ D〉,
where x is a variable of X and D a strict subset of dom(x). A search tree
is the structure explored by backtrack search through its filtering capability
and its branching heuristic. A failed node in the search tree is a node where
unsatisfiability has been detected by φ.

3.2 Conflict Ordering

Considering a variable-based branching heuristic, we can associate a failed search
node with the variable involved in the decision leading to it. This allows us to
timestamp variables with the number of the last conflict they caused (see Fig. 1).
The basic idea behind Conflict Ordering Search is to leverage this timestamping
mechanism to reorder the variables during search.

?

1

Fig. 1. Conflict numbering and timestamps associated with each variable. Variables
are stamped with the number of their latest conflict (or 0 by default).

Algorithm 1 describes Conflict Ordering Search. For simplicity, we only con-
sider classical binary branching with decisions of the form x ≤ v and x > v.
We use an integer nConflicts to count the number of conflicts and a reference
lastVar to the last variable involved in a decision (initially null at the root
of the search-tree). We also consider a one-dimensional array stamps that as-
sociates with each variable x ∈ X the last time variable x was involved in a
conflict. They are all initialized to 0. We suppose that φ corresponds to a do-
main filtering consistency, which is at least as strong as the partial form of arc
consistency ensured by the forward checking algorithm [5].

If the resulting CSP at line 1 is trivially inconsistent (⊥), false is returned
(line 6). If the failure is due to a previous decision (line 3), the number of conflicts
is incremented and the conflicting variable timestamped with this number (lines
4 and 5). Otherwise, COS returns true if a solution has been found, i.e., the
domain of each variable in X is a singleton (lines 7 and 8). The selection of
the next variable to branch on is performed between lines 9 and 13. Here, the
timestamps are used to select the unbound variable involved in the latest conflict.
If no unbound variable ever conflicted, the search falls back to the bootstrapping

heuristic varHeuristic. When a new value has been selected by the heuristic
valHeuristic[x], we recursively call COS . One can observe that the complexity
of selecting a variable is linear in time and space, hence scaling well.3

Algorithm 1: COS (P = (X , C): CSP)

Output: true iff P is satisfiable

1 P ← φ(P)
2 if P = ⊥ then
3 if lastVar 6= null then
4 nConflicts← nConflicts + 1
5 stamps[lastVar]← nConflicts

6 return false

7 if ∀x ∈ X , |dom(x)| = 1 then
8 return true

9 failed← {x ∈ X : stamps[x] > 0 ∧ |dom(x)| > 1}
10 if failed = ∅ then
11 lastVar← varHeuristic.select()
12 else
13 lastVar← argmax x∈failed{stamps[x]}
14 v ← valHeuristic[lastVar].select()
15 return COS(P|lastVar≤v) ∨ COS(P|lastVar>v)

Example 1. Let us consider a toy CSP with n “white” variables, and m “black”
variables. White variables have a binary domain while black variables have
{1, 2, . . . ,m− 1} as domain. We also add a binary difference constraint on each
pair of black variables (thus making the CSP unsatisfiable), but no constraint
at all on the white variables. Let us also assume a variable ordering heuristic
that selects the white variables first, then the black variables. Hence, proving
unsatisfiability using this heuristic requires to prove the “black conflict” for the
2n valuations of the white variables (see left part of Fig. 2). Using COS on top
of this heuristic allows one to detect unsatisfiability quickly. Indeed, the m − 2
first conflicting black variables will be prioritized as a white variable cannot be
involved in a conflict. The number of times the “black conflict” as to be proven
thus becomes linear in the number of white variables n (see right part of Fig. 2).

COSPhase: a variant. Because it is known that remembering last assigned values
for later priority uses can be worthwhile (see for example phase saving [15] in
SAT), we propose such a variant for COS. So, when a positive decision x ≤
v succeeds, we record its value v. Then, when branching is performed on a

3 The time complexity could be improved if an ordered linked-list is used instead of
the array stamps.

. . .

Without Conflict Ordering With Conflict Ordering

Fig. 2. Conflict Ordering Search reorders the variables to reduce the number of times
the inconsistent black subtree has to be explored.

timestamped variable x, we exploit the associated recorded value v. If v is still
in the domain of x, we use interval splitting on it, i.e., we branch with decisions
x ≤ v and x > v, otherwise the value heuristic is solicited. Observe that this
mechanism follows the first-fail/best-first principle.

3.3 Restarts and Timestamp Ordering

Depth-first search is far from always being the most efficient way to solve a CSP.
In some cases, it may suffer from heavy-tailed distributions [4]. While restarting
the search with a randomized heuristic is a typical way to avoid the worst parts
of a long-tailed curve, nogood learning mitigates the effect of cutting a search
process short by remembering parts of the search space already explored [8].4

In the context of COS, we observe that our approach not only remembers the
sources of conflicts but also produce a variable ordering that yields a behavior
similar to randomization. We thus propose to use no additional randomization
when restarting, only using the natural randomizing effect of conflict ordering
instead. The rationale is that while conflict ordering is good at finding a set of
conflicting variables in a given context – i.e., a sequence of previous decisions –
restarting with conflict ordering has the effect of trying the latest conflict set in
other contexts.

Example 2. Let us consider the toy CSP described in Example 1. The time
required to prove unfeasibility could be drastically reduced if a restart occurs
after having explored the inconsistent black subtree at least once. Indeed, in this
context, the second restart will directly explore the black search tree without
even considering the white variables that have been “disculpated”.

3.4 Differences with Last Conflict Search

Although similar, we show that COS and LC are rather different. Indeed, LC
relies on a parameter k that corresponds to the maximum size of the conflict
sets that can be captured by the search process. The value of k is of importance
as setting k too low may not allow LC to capture the encountered conflict sets.

4 Similar frameworks are typically used by SAT solvers [12].

For instance, LC(k) cannot capture the conflict set in Example 1 if k is lower
than m−2. COS, however, does not require any parameter and is able to handle
conflict sets of any size. While setting the parameter k to the number of decision
variables may solve the problem, LC still suffers from resets of its conflict set
that occur each time the conflicting variables have been successfully assigned.
Conversely, COS does not forget conflicting variables and progressively reorders
those variables to give priority to the recently conflicting ones. This is particu-
larly important with restarts as LC is not designed to focus on conflict sets in
such contexts (see Example 2).

4 Experiments

We have tested our approach on RCPSP (Resource-Constrained Project Schedul-
ing Project) instances from PSPLIB [6]. We used a computer equipped with
a i7-3615QM processor running at 2.30GHz. The problem has been modeled
in the open-source solver OscaR [13], using precedence and cumulative con-
straints. Precedences are simple binary precedence constraints, and cumulative
constraints use the Time-Tabling propagator presented in [2]. Both overload
checking [19] or time-table edge-finding [17] were tested but energy-based rea-
soning does not help much on PSPLIB instances, whose optimal solutions typ-
ically waste capacity. Adding TTDR [3] helps even with learning searches, but
it makes the experiments harder to reproduce, thus we chose to not use it.

4.1 Branch-and-bound

The goal of this first experiment is to find an optimal solution using a pure
branch-and-bound search. We compare five search solving methods. The first
is a simple min/min scheme, which selects the variable with the smallest min-
imal value and chooses the smallest value (for assignment). The second one is
the scheduling-specialized SetTimes heuristic with dominances [7], which is a
min/min scheme that simply postpones assignments (instead of making value
refutations) when branching at right, fails when a postponed task can no longer
be woken up, and assigns the tasks that are not postponed and cannot be dis-
turbed by other tasks. Finally, the last three heuristics correspond to conflict-
based reasoning searches, namely, LC(k) for the best value of k, our main con-
tribution COS, and COSPhase based on the variant presented in Section 15. All
these have a min/min helper heuristic.

We have observed that the ranking of these five search methods is the same
on the four RCPSP benchmarks (J30, J60, J90, J120) from PSPLIB. Results
are represented on the left part of Fig. 3 where the y-axis is the cumulated
number of solved instances and the x-axis is the CPU time. SetTimes is clearly
an improvement on min/min, as it finishes ahead and seems to continue its
course on a better slope than min/min. In turn, the well-parameterized LC
(we empirically chose the best possible value for k) fares better than SetTimes.
Finally, COS allows us to close a higher number of instances, and the variant
COSPhase improves COS even further.

4.2 Branch-and-bound with Restarts

As illustrated in Example 2, keeping the conflict ordering between restarts could
drastically reduce search efforts. The aim of this second experiment is to compare
the performance of COS if the ordering is kept between restarts or not. Experi-
mental settings are the same as before except that we use restarts and nogood
recording has explained in [10]. The first iteration is limited to 100 failures and
increases by a 1.15 factor. We compared the performance of COS and COSPhase
with and without reset (we add “rst-” as prefix for the resetting version). All
searches rely on minrnd/min – a randomized version of min/min that breaks ties
randomly – as helper heuristic.

Results are presented in the right part of Fig. 3. First, we observe that restarts
do have a positive effect as minrnd/min obtains better results than min/min in
the previous experiment. Next, we see that resetting the conflict order has a bad
effect on the search process. Indeed, these variant obtain worse results than in
the pure branch-and-bound framework. This highlights that using conflict-based
search as a full heuristic can yield much better results than using it as a repairing
patch. Finally, phase recording does not seem to help anymore.

COSPhase

1 min0

235

155

0

1 sec10 ms

COS

LC(k)

SetTimes

min/min

228

185
175

COSPhase237

172

0

COS

minrnd/min

211
206

rst-COSPhase
rst-COS

1 min0

0

1 sec10 ms

Search #closed Σ Makespans

COSPhase 235 77789
COS 228 77952
LC(k) 185 79010
SetTimes 175 80970
min/min 155 80038

Search #closed Σ Makespans

COS 237 77770
COSPhase 236 77721
rst-COSPhase 211 78301
rst-COS 206 78476

minrnd/min 172 79510

Fig. 3. On the left, results obtained for pure branch-and-bound, and on the right,
results obtained with branch-and-bound with restarts. Graphs at the top show the
cumulated number of solved RCPSP instances from PSPLIB120. The tables at the
bottom compare branching heuristics at the end of the 60s timeout, giving the number
of closed instances and the sum of makespans.

4.3 Destructive lower bounds.

We performed similar experiments for destructive lower bounds. We added the
Time-Table Edge-Finding propagator presented in [17] since it has a large im-
pact in this case. The results are similar. We also compared COS to the recently
introduced Failure Directed Search [18] by implementing it directly in CP Op-
timizer. Unfortunately our COS implementation in CP Optimizer was not able
to obtain results competitive with FDS.

5 Conclusion

In this paper, we have proposed a general-purpose search scheme that can be
combined with any variable ordering heuristic. Contrary to Last Conflict, Con-
flict Ordering Search is very aggressive, discarding progressively the role played
by the heuristic. Besides, by means of simple timestamps, all variables recorded
in the global conflict set stay permanently ordered, the priority being modified
at each new conflict. We have shown that on some structured known problems
our approach outperforms other generic and specific solving methods. So, COS
should be considered as one new useful technique to be integrated in the outfit
of constraint systems.

Acknowledgments

Steven Gay is financed by project Innoviris 13-R-50 of the Brussels-Capital re-
gion. Renaud Hartert is a Research Fellow of the Fonds de la Recherche Sci-
entifiques - FNRS. Christophe Lecoutre benefits from the financial support of
CNRS and OSEO (BPI France) within the ISI project Pajero. The authors
would like to thank Petr Viĺım for his help with the comparison to FDS in CP
Optimizer.

References

1. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search
by weighting constraints. In Proceedings of ECAI’04, pages 146–150, 2004.

2. Steven Gay, Renaud Hartert, and Pierre Schaus. Simple and scalable time-table
filtering for the cumulative constraint. In Proceedings of CP’15. Springer Interna-
tional Publishing, 2015.

3. Steven Gay, Renaud Hartert, and Pierre Schaus. Time-table disjunctive reasoning
for the cumulative constraint. Integration of AI and OR Techniques in Constraint
Programming, pages 157–172, 2015.

4. C. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in sat-
isfiability and constraint satisfaction problems. Journal of Automated Reasoning,
24:67–100, 2000.

5. R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263–313, 1980.

6. Rainer Kolisch, Christoph Schwindt, and Arno Sprecher. Benchmark instances for
project scheduling problems. In Project Scheduling, pages 197–212. Springer, 1999.

7. Claude Le Pape, Philippe Couronné, Didier Vergamini, and Vincent Gosselin.
Time-versus-capacity compromises in project scheduling, 1994.

8. C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Nogood recording from restarts. In
Proceedings of IJCAI’07, pages 131–136, 2007.

9. C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Reasonning from last conflict(s) in
constraint programming. Artificial Intelligence, 173(18):1592–1614, 2009.

10. Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal. Record-
ing and minimizing nogoods from restarts. Journal on Satisfiability, Boolean Mod-
eling and Computation, 1:147–167, 2007.

11. L. Michel and P. Van Hentenryck. Activity-based search for black-box constraint
programming solvers. In Proceedings of CPAIOR’12, pages 228–243, 2012.

12. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-
neering an Efficient SAT Solver. In Proceedings of DAC’01, pages 530–535, 2001.

13. OscaR Team. OscaR: Scala in OR, 2012. Available from
bitbucket.org/oscarlib/oscar.

14. G. Pesant, C.-G. Quimper, and A. Zanarini. Counting-based search: Branching
heuristics for constraint satisfaction problems. Journal of Artificial Intelligence
Research, 43:173–210, 2012.

15. Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme
for satisfiability solvers. In Theory and Applications of Satisfiability Testing–SAT
2007, pages 294–299. Springer, 2007.

16. P. Refalo. Impact-based search strategies for constraint programming. In Proceed-
ings of CP’04, pages 557–571, 2004.

17. Petr Viĺım. Timetable edge finding filtering algorithm for discrete cumulative
resources. In Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, pages 230–245. Springer, 2011.

18. Petr Viĺım, Philippe Laborie, and Paul Shaw. Failure-directed search for
constraint-based scheduling. In Integration of AI and OR Techniques in Constraint
Programming, pages 437–453. Springer, 2015.

19. Armin Wolf and Gunnar Schrader. O(n log n) overload checking for the cumu-
lative constraint and its application. In Declarative Programming for Knowledge
Management, pages 88–101. Springer, 2006.

	Conflict Ordering Search for Scheduling Problems

