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Abstract. We recently proposed an extension to Viĺım’s propagators for
the unary resource constraint in order to deal with sequence-dependent
transition times. While it has been shown to be scalable, it suffers from
an important limitation: when the transition matrix is sparse, the addi-
tional filtering, as compared to the original from Viĺım’s algorithm, drops
quickly. Sparse transition time matrices occur especially when activities
are grouped into families with zero transition times within a family. The
present work overcomes this weakness by relying on the transition times
between families of activities. The approach is experimentally evaluated
on instances of the Job-Shop Problem with Sequence Dependent Tran-
sition Times. Our experimental results demonstrate that the approach
outperforms existing ones in most cases. Furthermore, the proposed tech-
nique scales well to large problem instances with many families and ac-
tivities.
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1 Introduction

Unary resources with sequence-dependent transition times (also called set-up
times) for non-preemptive activities are very frequent in real-life scheduling prob-
lems. A first example is the quay crane scheduling in container terminals [20],
where the crane is modeled as a unary resource and transition times represent the
moves of the crane on the rail between positions where it needs to load or unload
containers. A second example is the continuous casting scheduling problem [9],
where a set-up time is required between production programs.

Although efficient propagators have been designed for the standard unary
resource constraint (UR) [16], transition time constraints between activities gen-
erally make the problem harder to solve because the existing propagators do not
take them into account. We recently introduced in [5] a propagator for the unary

? This work was started during Jean-Noël’s invited stay at UCLouvain in 2015.
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resource constraint with transition times (URTT) as an extension to Viĺım’s al-
gorithms, in order to strengthen the filtering in the presence of transition times.

Unfortunately, the additional filtering quickly drops in the case of a sparse
transition time matrix, which typically occurs when activities are grouped into
families with zero transition times within a family. The reason for a weak fil-
tering with sparse matrices is that it is based on a shortest path problem with
free starting and ending nodes and a fixed number of edges. The length of this
shortest path drops in the case of zero transition times.

The main contribution of the present article is to introduce adapted filtering
rules considering the families. The new propagator also relies on a shortest path
problem but over a different underlying graph. The main asset of our approach
is its scalability: we obtain an important amount of filtering while keeping a
low time complexity of O(n log(n) log(f)), for n activities and f families. In
general f � n, hence the theoretical complexity is very close to the one of the
propagators in [16] and [5]. The filtering is experimentally tested on instances of
the Job-Shop Problem with Sequence Dependent Transition Times (JSPSDTT),
although it can be used for any type of problems, e.g., with other kinds of
objective function than the makespan minimization. The results show that our
propagator improves the resolution time over existing approaches and is more
scalable.

The paper starts by providing the background for the considered problems
in Section 2. The work on the URTT propagator [5] is also briefly recalled and
its limitations are highlighted. Then, Section 3 presents the stronger filtering
making use of the families. Section 4 reviews alternative approaches and Section 5
compares the results of the different approaches.

2 Background

Non-preemptive scheduling problems are usually modeled in constraint program-
ming (CP) by associating three variables to each activity Ai: si, ci, and pi rep-
resenting respectively the starting time, completion time, and processing time of
Ai. These variables are linked together by the following relation: si+pi = ci. De-
pending on the problem, the scheduling of the activities can be restricted by the
availability of different kinds of resources required by the activities. In this work,
we are interested in the unary resource (sometimes referred to as a machine or a
disjunctive resource) and the propagators associated to one unary resource. Let
T be the set of activities requiring the considered unary resource. The unary
resource constraint prevents any two activities in T to overlap in time:

∀Ai, Aj ∈ T : Ai 6= Aj =⇒ (ci ≤ sj) ∨ (cj ≤ si)

The unary resource can be generalized by requiring transition times between
activities. The transition times are described by a square matrix T T in which
tt i,j , the entry at line i and column j, represents the minimum amount of time
that must occur between the activities Ai and Aj when Ai directly precedes
Aj . We assume that transition times respect the triangular inequality. That is,
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inserting an activity between two activities never decreases the transition time
between these two activities: ∀Ai, Aj , Ak ∈ T : tt i,j ≤ tt i,k + ttk,j .

The unary resource with transition times constraint imposes the following
relation:

∀Ai, Aj ∈ T : Ai 6= Aj =⇒ (ci + tt i,j ≤ sj) ∨ (cj + ttj,i ≤ si) (1)

The earliest starting time of an activity Ai is denoted est i and its latest start-
ing time is denoted lst i. The domain of si is thus the interval [est i; lst i]. Similarly
the earliest completion time of Ai is denoted ect i and its latest completion time
is denoted lct i. The domain of ci is thus the interval [ect i; lct i]. These defini-
tions can be extended to a set of activity Ω. For instance, estΩ is the earliest
time when any activity in Ω can start and ectΩ is the earliest time when all
activities in Ω can be completed. We also define pΩ =

∑
Aj∈Ω pj to be the

sum of the processing times of the activities in Ω. While one can directly com-
pute estΩ = min {estj |Aj ∈ Ω} and lctΩ = max {lctj |Aj ∈ Ω}, it is NP-hard to
compute the exact values of ectΩ and lstΩ [16]. Instead, one usually computes
a lower bound for ectΩ and an upper bound for lstΩ . The propagators of [16]
and [5] allow to compute efficiently such lower bounds, but have limitations in
the presence of family-based transition times.

2.1 Propagator for the Unary Resource

The filtering rules presented in [16] for the UR constraint fall in several cate-
gories known as Overload Checking (OC), Detectable Precedences (DP), Not-
First/Not-Last (NF/NL), and Edge Finding (EF). The implementation of these
filtering rules runs in O(n log(n)), with n = |T |. It relies on an efficient computa-
tion of a lower bound ectLB0

Ω of the earliest completion time of a set of activities
Ω ⊆ T , defined as:

ectLB0
Ω = max

Ω′⊆Ω
{estΩ′ + pΩ′} (2)

The rules OC, DP, and NF/NL, rely on the so-called Θ-tree data structure,
while EF relies on the Θ-Λ-tree data structure. The Θ-tree and the Θ-Λ-tree are
used to compute efficiently and incrementally ectLB0

Θ on a set of activities Θ.
For instance, the OC rule is used to detect when ectLB0

Θ > lctΘ for any Θ ⊆ T ,
which triggers a failure. We refer the reader to [16] for a detailed description of
this and the other rules. The following example illustrates the missed filtering
for UR when it does not consider the transition times globally.

Example 1 Consider a set of 3 activities Ω = {A1, A2, A3} as shown in Fig-
ure 1. Consider also, for simplicity, that all pairs of activities from Ω have the
same transition time tt i,j = 3. The OC rule detects a failure when ectLB0

Ω > lctΩ.
The filtering as described in [16] computes:

ectLB0
Ω = estΩ +

∑
Ai∈Ω

pi = 0 + 5 + 5 + 3 = 13
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Fig. 1: Example illustrating the missed failure detection of OC when not consid-
ering transition times.

As we have lctΩ = maxAi∈Ω lct i = lct2 = 17, the OC rule from [16], combined
with the transition times binary decomposition (Equation (1)), does not detect
a failure. However, as there are 3 activities in Ω, at least two transitions occur
between these activities and it is actually not possible to find a feasible schedule.
Indeed, taking these transition times into account, one could compute ectΩ =
13 + 2 · tt i,j = 13 + 2 · 3 = 19 > 17 = lctΩ, and thus detect the failure.

2.2 Propagator for the Unary Resource with Transition Times

In [5], we extended Viĺım’s work [16] to the case of the unary resource with
transition times constraint. By extending the Θ-tree and the Θ-Λ-tree to take
the transition times into account to compute a lower bound of ectΘ, we could
strengthen the filtering without increasing the time and space complexities.1

Let ΠΩ be the set of all possible permutations of activities in Ω. For a given
permutation π ∈ ΠΩ , where π(i) is the activity taking place at position i, we
can define the total time spent by transition times, ttπ, as follows:

ttπ =

|Ω|−1∑
i=1

ttπ(i),π(i+1)

A lower bound for ectΩ can then be defined as:

ectLB1
Ω = max

Ω′⊆Ω

{
estΩ′ + pΩ′ + min

π∈ΠΩ′
ttπ

}
(3)

Unfortunately, computing this value is NP-hard as computing the optimal per-
mutation π ∈ Π minimizing ttπ amounts to solving a TSP. Since embedding an
exponential algorithm in a propagator is generally impractical, a looser lower
bound can be used instead.

1 Strictly speaking, the propagators are not sufficient to prove Equation (1) is re-
spected, so the binary propagators for Equation (1) must remain active to ensure
correctness.
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More precisely, for each possible subset of cardinality k ∈ {0, . . . , n}, we
compute the smallest transition time permutation of size k on the set T of all
activities requiring the resource:

tt(k) = min
{Ω′⊆T : |Ω′|=k}

{
min
π∈ΠΩ′

ttπ

}
(4)

For each k, the lower bound computation thus requires one to find the shortest
node-distinct (k−1)-edge path between any two nodes, which is also NP-hard
as it can be casted into a resource-constrained shortest path problem. We pro-
posed in [5] various lower bounds to achieve the pre-computation in polynomial
time. Our final lower bound formula for the earliest completion time of a set of
activities, making use of pre-computed lower-bounds of transition times, is:

ectLB2
Ω = max

Ω′⊆Ω
{estΩ′ + pΩ′ + tt(|Ω′|)} (5)

The different lower bounds of ectΩ can be ordered as follows:

ectLB0
Ω ≤ ectLB2

Ω ≤ ectLB1
Ω ≤ ectΩ

In order to compute ectLB2
Ω incrementally, adapted versions of the Θ-tree

and the Θ-Λ-tree were introduced in [5].

Limitation An important limitation of this approach arises in the context of
sparse transition matrices. Indeed, when there exists a node-distinct path with K
zero-transition edges, we have: tt(k) = 0 ∀k ∈ {1, . . . ,K}. The pruning achieved
by the propagator is then equivalent to the one of the original algorithms from
Viĺım [16], which has been shown to perform poorly when transition times are
involved (see [5]). To cope with that problem, we propose to reason with families
of activities, as described in the next section.

Example 2 Consider again the three activities Ω = {A1, A2, A3} shown in Fig-
ure 1 with A1 belonging to family F1, A2 to family F2, and A3 to family F3. The
transition times are equal to 3 between activities from different families and equal
to 0 between activities of the same family. Assume that 3 additional activities
(not represented) also belong to family F1. Because the transition times between
any pair of activity from a same family is 0, we have that tt(2) = tt(3) = 0 and
ectLB2

Ω = 13 = ectLB0
Ω , hence the OC of [5] is unable to detect the failure.

3 Filtering with Families of Activities

When transition times are present, it is often the case that activities are grouped
in families on which the transition times are expressed. Formally, we denote by
F (Ai) the family of activity Ai and by F the set of all families. In a family-
based setting, the transition times are described as a square matrix T T F of size
|F|. The transition time between two activities Ai and Aj is the transition time
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between their respective families F (Ai) and F (Aj), and it is zero if F (Ai) =
F (Aj):

∀Ai, Aj ∈ T : tt i,j = ttFF (Ai),F (Aj)
∧
(
F (Ai) = F (Aj) =⇒ ttFF (Ai),F (Aj)

= 0
)
(6)

The matrix T T F is smaller and less sparse than the original matrix T T .
To cope with the limitations highlighted in Section 2.2, we adapt in the

present section Viĺım’s propagators [16] to include transition times between fam-
ilies while keeping a low time complexity: O(n log(n) log(|F|)), where n = |T |.
To do so, we adapt the algorithms and the Θ-tree and Θ-Λ-tree data structures
in a way similar to [5]: the number of different families present in a set Ω of ac-
tivities is used instead of the cardinality of Ω. Counting the number of families
results in non-zero lower bounds even for small sets, assuming that there are no
zero transition times between families. Formally, Equation (5) is replaced by:

ectLB3
Ω = max

Ω′⊆Ω
{estΩ′ + pΩ′ + tt(|FΩ′ |)} (7)

where FΩ = {F (Ai) | Ai ∈ Ω}. The term tt(|FΩ′ |) in Equation (7) is pre-computed
using the lower bounds introduced in [5] for tt(|Ω′|), but using T T F instead of
T T .

Lemma 1. In the presence of families, ectLB2
Ω ≤ ectLB3

Ω .

Proof. (Sketch) T T F induces a graph that is isomorphic to a subgraph of the
graph induced by T T and any (shortest) path induced by T T F has a corre-
sponding valid path induced by T T . ut

Computing ectLB3
Ω requires some careful adaptations to the algorithms (Sec-

tion 3.1) and data structures (Sections 3.2 and 3.3).

3.1 Adapting the Algorithms

We adapt the original algorithms of [16] in order to consider transition times.
While most of the modifications impact the underlying Θ-tree and Θ-Λ-tree data
structures, the filtering rules are also slightly adapted. This is done in a similar
manner to [5], but reasoning with FΩ instead of Ω.

For instance, in the original algorithms of [16] (OC, DP, NF/NL and EF),
if the activity i is detected as having to take place after all activities in a set
Θ, the following update rule can be applied: est i ← max

{
est i, ectLB0

Θ

}
. As

transition times are involved, we can replace ectLB0
Θ by ectLB3

Θ but, additionally,
the minimal transition from any family Fj ∈ FΘ to the family F (Ai) should
also be added as it was not taken into account in the computation of ectLB3

Θ .
This transition is the minimal one from any family to F (Ai), because we do not
know which activity will be just before Ai in the final schedule. The update rule
becomes:

est i ← max

{
est i, ectLB3

Θ + min
Fj∈FΘ

ttFFj ,F (Ai)

}
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An analogous reasoning can be applied to the rule updating the lct of an ac-
tivity. Finally, notice that as in [5], the transition times binary decomposition
from Equation (1) must be added to the model in order to ensure correctness.
Indeed, ectLB3

Θ contains only a lower bound of the total transition time in Θ.
The propagators based on ectLB3

Θ are thus not sufficient to ensure correctness.

3.2 Extending the Θ-tree with Families

A Θ-tree is a balanced binary tree in which each leaf represents an activity
from a set Θ and internal nodes gather information about the set of activities
represented by the leaves under this node, denoted Leaves(v). We write l(v) for
the left child of v and r(v) for the right one. Leaves are ordered in non-decreasing
order of the est of the activities: for two activities Ai and Aj , if est i < estj , then
the leaf representing Ai is at the left of the leaf representing Aj .

The main value stored in a node v is the lower bound of ectLeaves(v), denoted
ectv. To be able to compute this value incrementally upon insertion or deletion
of an activity in the Θ-tree, one needs to maintain additional values.

In [16], Viĺım has shown that, by defining ectv = ectLB0
Leaves(v), it suffices to

store additionally pv = pLeaves(v). In a leaf v representing an activity Ai, one
can compute pv = pi and ectv = ect i. In an internal node v, one can compute:

pv = pl(v) + pr(v)

ectv = max
{

ectr(v), ect l(v) + pr(v)

}
Hence, the values only depend on the values stored in the two children.

In this work, we would like instead to define ectv = ectLB3
Leaves(v) in order to

take family-based transition times into account. As this value cannot easily be
computed incrementally, we compute a lower bound, denoted ect∗v . In addition
to ect∗v , one needs to store not only pv, but also Fv = FLeaves(v), the set of the
families of the activities in Leaves(v). In a leaf v representing an activity Ai, one
can compute pv = pi, ect∗v = ect i, and Fv = {F (Ai)}. In an internal node v, one
can compute:

pv = pl(v) + pr(v)

Fv = Fl(v) ∪ Fr(v)

ect∗v = max

{
ect∗r(v)
ect∗l(v) + pr(v) + tt

(∣∣Fr(v) \ Fl(v)

∣∣+ eI
(
Fl(v), Fr(v)

))
where eI (FA, FB) is equal to 1 if (FA ∩ FB) = ∅, and to 0 otherwise.

Lemma 2. ect∗v ≤ ectLB3
Leaves(v)

Proof. (Sketch) By induction. If v is a leaf representing activity Ai, then ect∗v =
ect i = ectLB3

{Ai}. Otherwise, our induction hypothesis is that ect∗l(v) ≤ ectLB3
Leaves(l(v))

and ect∗r(v) ≤ ectLB3
Leaves(r(v)). Let us call ΩLB3 ⊆ Leaves(v) the optimal set to

compute ectLB3
Leaves(v). Either:
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– ect∗v = ect∗r(v). This rule assumes ΩLB3 ⊆ Leaves(r(v)). If this is the case,

then we already know by induction that ect∗r(v) ≤ ectLB3
Leaves(r(v)).

– ect∗v = ect∗l(v)+pr(v)+tt
(
|Fr(v) \Fl(v)|+ eI

(
Fl(v), Fr(v)

))
. This rule assumes

ΩLB3 ∩ Leaves(l(v)) 6= ∅. If this is the case, then one only needs to ensure
that:

ectLB3
Leaves(l(v)) + pr(v) + tt

(
|Fr(v) \Fl(v)|+ eI

(
Fl(v), Fr(v)

))
≤ ectLB3

Leaves(v)

Intuitively, we only add to ectLB3
Leaves(l(v)) a time quantity that was not con-

sidered in ectLB3
Leaves(l(v)) and that has yet to be spent: durations of activities

in Leaves(r(v)) and a number of transitions in Fr(v) \Fl(v) (plus an extra
transition when the intersection between Fl(v) and Fr(v) is empty).

ut

Complexity We use bit sets to represent the set of families in each node. The
space complexity of the Θ-tree is therefore O(n|F|). The set operations we use
are union, intersection, difference and cardinality. Using bit sets, the 3 former
ones are O(1) and the latter one is O(log(|F|)) with a binary population count
[18]. The time complexity of insertion and deletion of an activity in the Θ-tree
is therefore O(log(n) log(|F|)).

Example 3 Let us consider the activities presented in Figure 2 (left). The tran-
sition matrix T T F between families is given in Figure 2 (center). The pre-
computed values of tt(k) are reported in Figure 2 (right). Figure 3 illustrates
the extended Θ-tree when all activities are inserted. Note that the value at the
root of the tree is indeed a lower bound as the real ect is 85 and ectLB3

Θ = 80.

A1 A3 A2 A4

est 0 15 25 30
p 10 10 20 25
F F1 F2 F3 F3

T T F =

 0 10 15
5 0 10
5 15 0


tt(k) k

0 0
1 0
2 5
3 15

Fig. 2: Example: four activities and their families (left), transition times for the
families (center), and pre-computed lower bounds for the transition times (right).

3.3 Extending the Θ-Λ-tree with Families

The Edge-Finding (EF) algorithm requires an extension of the original Θ-tree,
called Θ-Λ-tree [16]. In this extension, leaves are marked as either white or gray.
White leaves represent activities in the set Θ and gray leaves represent activities
that are in a second set, Λ, with Λ ∩Θ = ∅. In addition to ectv, a lower bound
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ect∗ = max{70, 25 + 45 + 5} = 75
p = 20 + 45 = 65
F = {F1,F2,F3}

ect∗ = max{55, 45 + 25 + 0} = 70
p = 20 + 25 = 45
F = {F3}

ect∗ = 55
p = 25
F = {F3}
est4 = 30

ect∗ = 45
p = 20
F = {F3}
est2 = 25

ect∗ = max{25, 10 + 10 + 5} = 25
p = 10 + 10 = 20
F = {F1,F2}

ect∗ = 25
p = 10
F = {F2}
est3 = 15

ect∗ = 10
p = 10
F = {F1}
est1 = 0

Fig. 3: A Θ-tree when all activities of Figure 2 are inserted.

to the ect of Θ, a Θ-Λ-tree also aims at computing ectv, which is a lower bound
to ect (Θ,Λ), the largest ect obtained by including one activity from Λ into Θ:

ect (Θ,Λ) = max
Ai∈Λ

ectΘ∪{Ai}

In addition to pv, ectv, the original Θ-Λ-tree structure also maintains pv and
ectv, respectively corresponding to pv and ectv, if a single gray activity in the
sub-tree rooted at v maximizing ectLeaves(v)∪{Ai} was included.

Our extension to the Θ-Λ-tree is similar to the one outlined in Section 3.2:
in addition to the previous values, each internal node also stores Fv and F v in
order to compute the lower bounds ect∗v and ect

∗
v . This latter value is defined as:

ect
∗
(Θ,Λ) = max

{
ect∗Θ , max

Ai∈Λ

{
ect∗Θ∪{Ai}

}}
Adapting the rules for the Θ-Λ-tree requires caution when families are involved.
In [16] and [5], the rules only use implicitly the information about which gray
activity is considered in the update. In our case, the rules must consider explicitly
where the used gray activity is located: either in the left subtree, denoted (L),
or in the right subtree, denoted (R). The rules are then defined as:

ect
∗
v = max


ect
∗
l(v) + pr(v) + tt

(
|Fr(v) \F l(v)|+ eI

(
F l(v), Fr(v)

))
(L)

ect∗l(v) + pr(v) + tt
(
|F r(v) \Fl(v)|+ eI

(
Fl(v), F r(v)

))
(R)

ect
∗
r(v) (R)

F v =

{
F l(v) ∪ Fr(v) (L)

Fl(v) ∪ F r(v) (R)

pv =

{
pl(v) + pr(v) (L)

pl(v) + pr(v) (R)

In the rules above, the choice of which formula to use for F v and pv depends on
the letter, either (L) or (R), associated with the term maximizing ect

∗
v , hence

this value must be computed first. If a leaf v represents an activity Ai, then we
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simply have ect
∗
v = ect i, pv = pi, and F v = {F (Ai)}. The rules for pv, ectv, and

Fv are as presented in Section 3.2, but one must also define, for a gray leaf v,
ect∗v = −∞, pv = 0, and Fv = ∅.

For space reasons, we do not present the proof of correctness of our recursive
rules. As for the extended Θ-tree introduced in Section 3.2, the time complexity
for the insertion and the deletion of an activity is O(log(n) log(|F|)).

4 Related Work

As described in a recent survey [1], scheduling problems with transition times
can be classified in different categories. First the activities can be in batch (i.e.
a machine allows several activities of the same batch to be processed simulta-
neously) or not. Transition times may exist between successive batches. A CP
approach for batch problems with transition times is described in [16]. Secondly
the transition times may be sequence-dependent or sequence-independent. Tran-
sition times are said to be sequence-dependent if their durations depend on both
activities between which they occur. On the other hand, transition times are
sequence-independent if their durations only depend on the activity after which
they take place. The problem category we study in this article is non-batch
sequence-dependent transition times problems.

Over the years, many CP approaches have been developed to solve such prob-
lems [7, 2, 19, 10, 5]. For instance, in [2], a Traveling Salesman Problem with Time
Window (TSPTW) relaxation is associated to each resource. The activities used
by a resource are represented as vertices in a graph, and edges between vertices
are weighted with the corresponding transition times. The TSPTW obtained by
adding time windows to vertices from bounds of corresponding activities is then
resolved. If one of the TSPTW is found unsatisfiable, then the corresponding
node of the search tree is pruned. A similar technique is used in [3] with addi-
tional propagators, which are, to the best of our knowledge, the state of the art
propagators when families of activities are present.

State-of-the-art filtering with Families

An idea from [17] that is also used in [3] is to pre-compute the exact minimal total
transition time for every subset of families. For a subset of families F ′ ⊆ F , let
tt (F ′) denote the minimal total transition time used for any activity set Ω such
that FΩ = F ′. Similarly tt (Fi → F ′) is the minimal total transition time when
the processing starts with some activity of type Fi ∈ F ′, and tt (F ′ → Fi) when it
completes with an activity of type Fi ∈ F ′. We can pre-compute these values for
every set of families F ′ ⊆ F and every family Fi ∈ F ′ with a dynamic program
running in Θ(|F|2.2|F|) and requiring Θ(|F|.2|F|) of memory. For instance, for
tt (Fi → F ′), one defines:{

tt (Fi → {Fi}) = 0 ∀Fi ∈ F
tt (Fi → {F ′ ∪ Fi}) = min

Fj∈F ′
{ttFFi,Fj + tt (Fj → F ′)} ∀F ′ ⊆ F ,∀Fi ∈ F \ F ′
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Based on these pre-computed values, which are assumed to be obtainable in
O(1) once the pre-computation is made, two propagators are introduced in [3]:

– A DP-like propagator called UpdateEarliestStart running inO(n2 log(n)).

– An EF-like propagator called PrimalEdgeFinding running in O(|F|n2).

Although the filtering obtained with these propagators can be stronger than their
counterpart from [16] and our extensions, the time complexity of the propagators
is quite high as compared to O(n log(n) log(|F|)). In addition, they do not make
use of a Not-First/Not-Last rule and the pre-computation of the minimal exact
transition times for every subset of family is only tractable for small (typically
less than 10) values of |F|.

5 Experimentations

The experiments were conducted on JSPSDTT instances. We used AMD Opteron
processors (2.7 GHz), the Java Runtime Environment 8 and the constraint solver
OscaR [12]. The memory consumption was limited to 4Gb.

Problem instances We have used two sets of instances. First, we used the
standard t2ps instances from Brucker and Thiele [4]. However, there are only
15 of them, and we wanted to evaluate instances with more families, jobs, and
machines in order to challenge the scalability of the different approaches. We
therefore generated a new set of 315 instances, here referred to as uttf, with up
to 50 jobs, 15 machines and 30 families.2

Compared Propagators We compare models with the following propagators
for Equation (1):

– binary-decomp: binary decomposition of Equation (1) only.

– utt-no-families: propagators for URTT from [5].

– artigues-exact-tsp: propagators of [3] using exact values for tt (F), tt (F → F)
and tt (F → F).

– artigues-lb-tsp: propagators of [3] adapted to make use of cardinality-based
lower bounds from [5] for tt (F), tt (F → F) and tt (F → F).

– utt-families-exact-tsp: propagators introduced in this paper making use of
the exact values for tt(|F|) computed with minF ′:|F ′|=|F| tt (F ′).

– utt-families-lb-tsp: propagators introduced in this paper making use of lower
bounds for tt(|F|). The bounds are computed with the lower bounds of [5].

All approaches also use the binary decomposition of Equation (1) in order to
ensure correctness as specialized propagators are generally not checking.

2 The instances are available at http://becool.info.ucl.ac.be/resources/uttf-instances.
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Replay Evaluation In order to derive fair and representative conclusions about
the propagators only (i.e., by removing the effects of the search heuristic), we
used the Replay evaluation methodology [14]. First, for each instance, a baseline
model is used to generate a search tree. This baseline model is, among the
different compared approaches, the one that prunes the less the domains (here
binary-decomp). Once the search tree is generated, it is replayed separately with
each model. A replay basically consists in reapplying the exact same sequence of
modifications to the constraint store (e.g., the branching constraints) that were
used to generate the search tree with the baseline model.

The performance of those replays is then used to construct so-called perfor-
mance profiles [6], that we built with a public web tool [15] made available to
the community.3 Performance profiles are cumulative distribution functions of a
performance metric ratio τ . In our case, τ is a ratio of either time or number of
backtracks. In the case of time, the function is defined as:

Fm(τ) =
1

|I|

∣∣∣∣∣∣
i ∈ I :

timereplay(m, i)

min
m′∈M

timereplay(m′, i)
≤ τ


∣∣∣∣∣∣ (8)

where I is the set of considered instances, m is a model and M is the set of all
models. The function is similar for the number of backtracks.

To generate the search tree, the Conflict Ordering Search [8] was used, as it
was shown to be a good search strategy for scheduling problems. The generation
lasted for 300 seconds, and we enforced a timeout of 1,800 seconds for the replay.

If a timeout occurs for a model m, we consider that
timereplay(m,i)

min
m′∈M

timereplay(m′,i) = +∞.

The running times reported here do not take into account the pre-computation
step since they are negligible (generally less than 2 sec. and max 10 sec.).

Results on the t2ps Instances Figures 4 and 5 provide the performance pro-
files for the time and number of backtracks, respectively. Figure 5 shows that,
interestingly, utt-families-lb-tsp prunes exactly as much as utt-families-exact-tsp.
This is due to the fact that our lower bounds are here able to compute the same
values than minF ′:|F ′|=|F| tt (F ′). This suggests that we often do not have to
compute the exact values for tt (F) with the resource-consuming dynamic pro-
gram, which is interesting since it is not tractable when there are many families.
We can see that from a time perspective, our approach is the fastest for 80% of
the instances (utt-families-exact-tsp being here equivalent to utt-families-lb-tsp,
see the function in τ = 1 in Figure 4). But our approach is also robust, as the
other instances (i.e., the remaining 20%) are solved within a factor τ < 2 com-
pared to the best model for those remaining instances. Considering the number
of backtracks, our approach generally achieves less pruning than artigues-exact-
tsp (not more than three times), but substantially more than utt-no-families.
This lack of pruning as compared to artigues-exact-tsp is compensated in prac-
tice by the low time complexity. Although not reported, we tried to combine

3 Accessible at http://sites.uclouvain.be/performance-profile/.
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Fig. 4: Performance profiles on t2ps instances for the time metric.

utt-families-exact-tsp and artigues-exact-tsp and the performances were close to
the ones of artigues-exact-tsp alone, thus only inducing a small overhead when
utt-families-exact-tsp does not provide additional pruning.

Results on the uttf Instances First of all, we consider the approaches
artigues-exact-tsp and utt-families-exact-tsp unable to solve (i.e., times out by
default) the 120 instances (out of 315) with 20 families or more, since the pre-
computation becomes too expensive in terms of CPU and memory usage accord-
ing to our 4Gb limitation.

Figures 6 and 7 provide the time performance profiles for the instances with
strictly less than and with more than 20 families, respectively. Figure 6 shows
that our approach still outperforms the other ones, even if it is the fastest on a
smaller percentage of instances than for the t2ps instances. The instances being
less structured, the gain in pruning is weaker as compared to the decomposition.
However, our method catches up very quickly; for example, it is at most ∼ 1.3
and 2 times slower than the best approach for almost 60% and 80% of the in-
stances, respectively. Another interesting point is that utt-families-exact-tsp and
utt-families-lb-tsp have very similar time performances, while the values for tt(k)
were here generally different (not reported here). This means that computing the
exact values for tt (F) is not mandatory4 when used with our propagators, which
is profitable since we also target scalability in terms of number of families.

Regarding the instances with more than 20 families (Figure 7), our approach
is significantly better than the other ones, as we are the fastest on almost 70%
of the instances and it is at most 4 times slower than the best approach on the

4 Still, if it is available at a low cost, it can be beneficial to use it.
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Fig. 5: Performance profiles on t2ps instances for the backtracks metric.
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Fig. 6: Performance profiles on uttf instances with strictly less than 20 families
for the time metric.

remaining instances. This teaches us that when more families are involved, our
approach is both efficient and robust.

Improvements on Open t2ps Instances Although not the focus of this paper,
we were able to find tighter upper bounds for 3 of the 6 open t2ps instances
within less than 5 minutes of computation. We simply combined our lightweight
propagators with a LNS [13]. We used a basic relaxation of precedences of activ-
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Fig. 7: Performance profiles on uttf instances with more than 20 families for the
time metric.

Upper Bound t2-ps11 t2-ps12 t2-ps15

Former 1,470 1,305 1,527
New 1,441 1,299 1,505

Table 1: New upper bounds for open t2ps instances.

ities on the same machine combined with a Set Times [11] search strategy. The
improved bounds are given in Table 1.

6 Conclusion

This paper has extended the algorithms and data structures for the unary re-
source, taking into account family-based transition times in order to perform
additional propagation. The original data structures and algorithms have been
adapted accordingly. The approach is therefore lightweight from both the time
and space perspectives. Experiments conducted on the JSPSDTT have demon-
strated that the introduced approach provides a substantial gain and is quite
robust to changes in instance characteristics (e.g., number of activities and fam-
ilies).

Future work We would like to consider other types of problems and combine this
work with the use of good lower bounds in a branch-and-bound setting. More
importantly, when there are no families defined a priori in an instance, we want
to study the benefit of first creating them by means of clustering algorithms and
then using the filtering introduced in this paper. This approach might prove to
be helpful when the intra-cluster transition times are significantly smaller than
the inter-cluster ones.
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