
Embarassingly Parallel Search Reengineered

Guillaume Derval1, Pierre Schaus1, and Jean-Charles Régin2.

1 INGI, Université Catholique de Louvain
Place de l’Université, 1, 1348 Louvain-la-Neuve, Belgium

guillaume.derval@student.uclouvain.be
pierre.schaus@uclouvain.be

2 Universite Nice-Sophia Antipolis, I3S UMR 6070, CNRS, France
jcregin@gmail.com

Abstract. With the current cloud trend, parallelizing applications has
become more and more important, and the constraint solvers will have to
take profit from this massively parallel computing power now available.
Embarrassingly Parallel Search is one of the most promising methods,
but some of its aspects have to be explored further. This paper presents
improvements on the architecture and methods used by EPS, such as
decomposition strategies, bound information sharing, and subproblem
representation. An open-source implementation of EPS, built on top of
OscaR is also presented.

Keywords: Parallel Search, Constraint Programming

1 Introduction & background

Parallelism in Constraint Programming is not a new topic. Work Stealing [8,2,6]
is one of the most used techniques for CP. The main idea behind Work Steal-
ing is to use multiple CP solvers; each time a CP solver becomes idle, it asks
to another solver a part of its current work. This method performs well for a
moderate size of workers, but with a very high number of cores, the number of
"steals" become too high inducing a significant communication overhead. An-
other method, parallel portfolio search [1], involves solving the same model with
multiple searches in parallel. The results are very problem dependent, and it is
difficult to create sufficiently different searches to scale on thousands of CPUs.

Embarrassingly Parallel Search[12] (EPS) is a promising technique that aims
at solving CP problems on massively parallel or distributed environments. Its
principle is simple: EPS decomposes an initial CSP/COP into many subprob-
lems, that are then solved independently by multiple workers. The solving part
itself can be implemented in two different ways:

– Static sharing: subproblems to solve are shared a-priori between the workers.
– Dynamic sharing: subproblems are put into a queue, that is pulled each time

a worker becomes idle.

The central idea behind EPS is that, if the initial CSP/COP is divided in a
sufficiently high number of subproblems, the running time of each worker would
differ by only a tiny fraction.

Theorem 1. Let m be the number of workers, s the number of subproblems per
worker and P a constraint satisfaction or optimization problem, divided in n =
m ·s subproblems P1, P2, ...Pn and such that P =

⋃n
i=1 Pi and that subproblem Pi

takes ti seconds to be solved. Moreover,
∑n

i=1 ti = T , the time taken to solve P.
Let us divide the work among all workers such that worker j receive subproblems
Wj. Then, for each worker j, we have that lims→∞

∑
i∈Wj

ti =
T
m .

Proof. This is a direct consequence of the law of large numbers. ut

Theorem 1 is true in a statistical way, but in practice can require a very high
number of subproblems to allow reaching this optimal case, depending on how
the problem is decomposed a-priori3. Of course, the number of subproblems to
generate is a tradeoff since generating subproblem and sharing them among the
worker also takes time.

Apart from these statistical considerations, decomposing a CSP/COP is not
a trivial task: the algorithm used to decompose, and the way the subproblems
are stored can have a very important impact on the solving speed-up, as shown
in next theorem:

Theorem 2. (from [12]) Using dynamic sharing, let tmax = maxni=1 ti. Then
(i) The minimum running time for solving all the subproblems is tmax. (ii) The
maximum inactivity time for a worker is tmax.

In [12] the authors assumes that when the number of subproblems increases,
as a consequence, the value of tmax should also decrease. While this is a reason-
able assumption, the theorems 1 and 2 also tell us that the results of EPS can
be improved using decomposition strategies that minimize tmax.

In [12] the authors propose a decomposition strategy that only generates
subproblems consistent with propagation, that are problems not proved incon-
sistent by the fixed-point algorithm. This allows to avoid considering numerous
inconsistent subproblems: the authors show that the ratio between consistent
and inconsistent subproblems can be very high on some problems.

The method proposed is an Iterative Deepening Depth First Search (IDDFS),
made on top of the CP solver: the algorithm incrementally runs the CP solver
using a n-ary search, with a given cut-off based on the height of the tree. If
the number of subproblems (leaves in the search tree) is not high enough, a
table constraint containing all the current solutions is added to the model, and
the cut-off height is increased. As [12] focuses mainly on enumerating all the
solutions to CSPs, this cut-off is not an issue. However some particularities must
be taken into account while solving COPs with EPS:

3 Static sharing is used in theorem 1, but it remains true with dynamic sharing

– The decomposition: The objective is to design a decomposition such that all
the subproblems are roughly equally difficult to solve. This not only allows
to minimize tmax, but also ensures that the interesting parts of the search
tree are shared more evenly between the workers, leading to better chances
to find the optimum faster. This is, of course, difficult to estimate, especially
for optimization problems where the difficulty also depends on the upper-
bound of the objective function.

– The ordering of the sub-problems: The subproblems that are more likely to
contain optimal solutions should be treated first (this is intuitively similar as
the impact of a good value heuristic) such that the best-bound can quickly
be used by all the workers to prune most of the subsequent problems that
are explored only to proof the optimality. Problem ordering has no impact
for CSPs (Régin et al. even suggested to randomize it), but it has a crucial
impact on the efficiency for solving COPs.

Our contribution is twofold. First we introduce new decomposition strategies
that improve the results of EPS, both when solving CSPs than COPs. Second
we introduce our architecture in a CP Solver to efficiently store and distribute
subproblems.

2 Iterative Refinement for Decomposing CSPs/COPs

As stated in the introduction, [12] uses an IDDFS with a static variable or-
dering(with n-ary branching) and a cut-off based on the height of the tree to
decompose a CSP/COP into subproblems. This method can be improved to use
custom searches, as shown in [14].

IDDFS is a standard choice for CP as it offers the time complexity of Breadth-
First-Search while requiring the same amount of memory as a Depth-First-Search
[7]. However the cut-off at a given depth has the drawback of offering very little
control in order to generate equally difficult sub-problems. Instead we propose
to use an iterative refinement approach: starting with an initial subproblem in
a priority queue, pop the first element in the queue, split it (heuristically with
the branching heuristic), and push the new subproblems into the queue again.
This method is presented in Algorithm 1.

Algorithm 1 Iterative refinement for decomposing CSP/COP
Require: P , the initial CSP/COP

generateChildNodes(s), a heuristic function that returns consistent children of the CSP/COP s
c, the desired number of subproblems
q ← priority queue of subproblems, initially empty
push P to q
while size of q < c do

s ← pop q
for all c ∈ generateChildNodes(s) do

push c to q
end for

end while
return content of q, reordered by priority

Algorithm 1 describes a generic algorithm for generating subproblems: the
way the priority queue orders the problem can be specified as well as the branch-
ing heuristic. These two parameters should be carefully chosen to favor the gen-
eration of equally difficult problems in the queue.

The performance of IDDFS and algorithm 1 are asymptotically equivalent
under the assumption that running the fixed-point algorithm after the addition of
one additional constraint takes a constant time w.r.t. the number of constraints
added so far. Also while IDDFS may do multiple passes on each node of the
decomposition tree, iterative refinement only does one pass on each node. In
practice, we observed that both IDDFS and iterative refinement obtain the same
performances but the refinement approach offers more flexibility.

3 Domain size oriented decomposition

0 500 1000 1500
10

0

10
5

10
10

10
15

S
p
a
c
e
 s

iz
e

0 500 1000 1500
0

20

40

60

80

100

Subproblem number

%

Cartesian product size

% Search space explored

(a) Depth-bounded decomposition with
a static n-ary search tree

0 500 1000 1500
10

0

10
5

10
10

10
15

S
p
a
c
e
 s

iz
e

0

20

40

60

80

100

Subproblem number
%

% Search space explored

Cartesian product size

(b) Cartesian-product iterative refine-
ment with a static binary search tree

Fig. 1: Comparison of decomposition with different tree forms and methods

An optimal decomposition should generate equally difficult subproblems. Un-
fortunately evaluating how much time a CSP/COP would require to be solved
is difficult. A widely used estimator of the size of the search tree is the Cartesian
product of the domains [11].

Figure 1a shows the Cartesian product associated with each subproblem cre-
ated by the IDDFS [12]. As can be observed, it is very unbalanced among prob-
lems. Furthermore undesirable "size patterns" appears. We observed the same
behavior with different searches strategy on the Golomb-Ruler. For instance, we
observed that a binary search with a static ordering of the variables resulted in
90% of the estimated search space being assigned to the first 50% subproblems.

We propose to use instead a Cartesian Product Iterative Refinement (CPIR).
This is algorithm 1 instantiated with a priority queue that always returns the
subproblem with the greatest cardinality. As shown in figure 1 decomposing us-
ing Cartesian product refinement reduces the importance of the initial search
tree shape and also the magnitude of the patterns (while not removing them
completely). As can be observed, the overall search space (evaluated by the
Cartesian product) is now more evenly spread among the subproblems. Another
advantage of CPIR over IDDFS is that it behaves better when combined with a
binary branching. The problem is that binary search trees are generally unbal-
anced so cutting at a given depth also results in unbalanced subproblems.

4 Architecture of an EPS implementation

An implementation of EPS needs to be carefully designed in order to take full
advantage of it. The original implementation [13] is based on FlatZinc [9] and
is using, underneath, compatible solvers such as Gecode[4] or Or-tools [5]. The
architecture is pretty simple:

1. A master uses the IDDFS decomposition presented earlier to decompose an
initial MiniZinc/FlatZinc model into multiple new FlatZinc models, to which
constraints have been added.

2. These FlatZinc models are then sent to the multiple workers, either a-priori
or using a queue, and then solved independently. When solving COPs, the
queue is preferably used, and the current bound on the main model is sent
with the subproblem.

3. Once all these subproblems have been solved, the solutions are fetched from
the workers.

Although this architecture allows to easily change the used solver thanks to
FlatZinc, it presents two weaknesses:

– Using FlatZinc to represent subproblems leads to overhead,
– The new bound information is not sent to "running" workers, thus missing

potential filtering.

We describe the architecture of the implementation of EPS in OscaR-Modeling,
a symbolic layer for OscaR-CP[10]. OscaR-Modeling reuses many of the ideas
present in Objective-CP [15], such as model concretization and model opera-
tors that makes it a perfect building block to rely on for implementing EPS.
Moreover, OscaR-Modeling is very similar to the existing DSL (Domain-Specific
Language) currently used to model with OscaR-CP.

The important ingredients of a successful EPS architecture are 1) the way
subproblems are represented, 2) how they are transferred to the workers, and 3)
how the optimization bound is updated when solving COPs.

Fig. 2: Overview of the architecture of OscaR-Modeling with EPS

4.1 Global architecture

The architecture of OscaR-Modeling when using EPS is presented in figure 2.
Each worker is composed of two threads. The first thread is a running instance of
a CP solver (namely Oscar-CP), while the second is in charge of the communica-
tion between the solver and the master agent. The current bound on the objective
is shared between them. This state is atomically locked to ensure thread-safety.
The search/branching strategy given to OscaR-CP checks, each time it is in-
voked (at each node of the tree), if the value of the bound has changed. Each
time the CP solver finds a new solution while solving a subproblem, depending
on the type of CP model, the solution, will be either stored locally (for CSPs)
or directly sent, with the new objective bound, to the master agent (for COPs).
On the reception of this new bound, the master agent will bounce the message
to all the workers. This direct communication of the bound ensures each worker
(and by extension, each CP solver) has, at any time, the best possible bound.

The shared state and the real-time communication of the bound add a slight
but limited overhead to EPS that is largely compensated by the additional fil-
tering obtained with the refreshing of the bound, as shown in figure 3.

16 32 48 64 80 96 112 128
0

20

40

60

80

100

120

140

Workers

M
e
a
n
 s

p
e
e
d
u
p

Update during subproblem solving

No updates during subproblem solving

No communication

Fig. 3: Mean speedup (on three runs) of OscaR-Modeling with EPS on a Golomb-
ruler model of size 13, with different communication methods

4.2 Representing subproblems

OscaR-Modeling is a symbolic layer on top of OscaR-CP. The representation of
the models simply consists of a list of variable, with domains (range or sets),
and a list of constraints with scopes defined on these variables. This consumes
very little memory and can easily and lightly be serialized to be transferred to
the workers.

Subproblems are represented as a list of branching constraints leading to the
corresponding subproblem node. This representation requires to re-compute the
fix-point of the node when a worker starts to process a subproblem.

An alternative representation would be to store the difference of the domains
between the subproblem and the initial mode. However this representation is
often more costly (memory-wise) as DFS search trees are generally not very
deep as compared to the potential difference of the domains.

4.3 Example and Performance

Code listings 1.1 and 1.2 compare the difference between a standard single-
threaded n-Queens model on OscaR-CP and the same model whose solving can
be parallelized and distributed with EPS (on OscaR-Modeling). As can be ob-
served they are mostly cosmetic making it almost transparent for any user to
use EPS. The main difference is that one branching is given for both the de-
composition and for the subproblem searches. Also the decomposition strategy
is parametric.

Figure 4a compares the speed-up between OscaR-Modeling with EPS and
Gecode using Work-Stealing. These figures show a nearly linear speedup on these
two problems with EPS, while work-stealing fails to continue to improve above
30 threads due to the communications involved. Figure 4b shows the speed-up
of OscaR-Modeling with EPS on a Golomb ruler model when distributed over
more than one thousand threads, which is clearly linear.

0 10 20 30 40 50 60 70
0

10

20

30

40

Threads

M
e

a
n

 s
p

e
e

d
u

p

OscaR−Modeling using EPS

Gecode using Work−Stealing

(a) Size 13, comparison with
Gecode/Work-Stealing

0 200 400 600 800 1000
0

200

400

600

800

1000

Workers

S
p

e
e

d
u

p

(b) Size 14, up to 1024 threads

Fig. 4: Mean speedup (on five runs) on a Golomb-ruler model.

1 ob j e c t Queens extends CPModel with App {
2 val nQueens = 10
3 val Queens = 0 un t i l nQueens
4 // Var iab l e s
5 va l queens = Array . f i l l (nQueens) (CPIntVar (0 , nQueens − 1))
6 // Constra ints
7 add (a l l D i f f e r e n t (queens))
8 add (a l l D i f f e r e n t (Queens .map(i => queens (i) + i)))
9 add (a l l D i f f e r e n t (Queens .map(i => queens (i) − i)))

10 // Search h e u r i s t i c
11 search (b i na r yF i r s tFa i l (queens))
12 // Execution
13 p r i n t l n (s t a r t ())
14 }

Listing 1.1: 10-Queens in OscaR

1 ob j e c t NQueens extends DistributedCPApp [Unit] {
2 va l nQueens = 16
3 val Queens = 0 un t i l nQueens
4 // Var iab l e s
5 va l queens = Array . f i l l (nQueens) (IntVar (0 , nQueens − 1))
6 // Constra ints
7 post (a l l D i f f e r e n t (queens))
8 post (a l l D i f f e r e n t (Queens .map(i => queens (i) + i)))
9 post (a l l D i f f e r e n t (Queens .map(i => queens (i) − i)))

10 // Search h e u r i s t i c
11 val f f = Branching . b i na ryF i r s tFa i l (queens)
12 setSearch (f f)
13 // Search used f o r decomposit ion and method used
14 decompos i t ionStrategy (new CartProdRefinement (queens , f f))
15 // Execution
16 p r i n t l n (s o l v e ())
17 }

Listing 1.2: 10-Queens in OscaR-Modeling

5 Conclusion

EPS is a powerful and non-intrusive technique to parallelize constraint solvers
that can lead to linear or super-linear speedups with carefully designed imple-
mentations. The key points are the problem decomposition strategy, the way
bound information is shared, and the representation of subproblems. Decompo-
sition strategies should tend to minimize the solving time of the most difficult
subproblem. This article presents a new method, Cartesian Product Iterative
Refinement (CPIR), which aims at reducing the Cartesian product cardinality
of the subproblems. While the Cartesian product seems to provide a good esti-
mation of the search tree size, the CPIR decomposition should be tested on a
larger set of benchmarks.

The importance of the decomposition for EPS is at least as important as
the search itself when using linear search. To emphasize this we rephrase the
well-known CP mantra for EPS:

CP with EPS = Model+ Search+Decomposition

More information and details about the subjects seen in this article can be
found in the associated master’s thesis[3].

References

1. Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with massively parallel
constraint solving. In: Proceedings of the 21st International Jont Conference on
Artifical Intelligence. pp. 443–448. IJCAI’09, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (2009), http://dl.acm.org/citation.cfm?id=1661445.
1661516

2. Chu, G., Schulte, C., Stuckey, P.J.: Principles and Practice of Constraint Pro-
gramming - CP 2009: 15th International Conference, CP 2009 Lisbon, Portugal,
September 20-24, 2009 Proceedings, chap. Confidence-Based Work Stealing in Par-
allel Constraint Programming, pp. 226–241. Springer Berlin Heidelberg, Berlin,
Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-04244-7_20

3. Derval, G.: Parallelization of Constraint Programming using Embarrassingly Par-
allel Search. Master’s thesis, EPL/INGI, Université Catholique de Louvain (2016)

4. Gecode Team: Gecode: Generic constraint development environment (2006), avail-
able from http://www.gecode.org

5. Google: Or-Tools (2015), https://developers.google.com/optimization/
6. Jaffar, J., Santosa, A.E., Yap, R.H.C., Zhu, K.Q.: Scalable distributed depth-first

search with greedy work stealing. In: Tools with Artificial Intelligence, 2004. ICTAI
2004. 16th IEEE International Conference on. pp. 98–103 (Nov 2004)

7. Korf, R.E.: Depth-first iterative-deepening: An optimal admissible tree search. Ar-
tificial Intelligence 27, 97–109 (1985)

8. Michel, L., See, A., Hentenryck, P.V.: Transparent parallelization of constraint
programming. INFORMS Journal on Computing 21(3), 363–382 (2009), http:
//dx.doi.org/10.1287/ijoc.1080.0313

9. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Miniz-
inc: Towards a standard cp modelling language. In: Proceedings of the 13th Inter-
national Conference on Principles and Practice of Constraint Programming. pp.
529–543. CP’07, Springer-Verlag, Berlin, Heidelberg (2007), http://dl.acm.org/
citation.cfm?id=1771668.1771709

10. OscaR Team: OscaR: Scala in OR (2012), available from
https://bitbucket.org/oscarlib/oscar

11. Refalo, P.: Principles and Practice of Constraint Programming – CP 2004: 10th
International Conference, CP 2004, Toronto, Canada, September 27 -October
1, 2004. Proceedings, chap. Impact-Based Search Strategies for Constraint Pro-
gramming, pp. 557–571. Springer Berlin Heidelberg, Berlin, Heidelberg (2004),
http://dx.doi.org/10.1007/978-3-540-30201-8_41

12. Régin, J.C., Rezgui, M., Malapert, A.: Embarrassingly parallel search. In: Princi-
ples and Practice of Constraint Programming. pp. 596–610. Springer (2013)

13. Régin, J.C., Rezgui, M., Malapert, A.: Improvement of the embarrassingly parallel
search for data centers. In: Principles and Practice of Constraint Programming,
pp. 622–635. Springer International Publishing (2014)

14. Rezgui, M.: Parallélisme en programmation par contraintes. Ph.D. thesis, Nice
(2015), http://www.theses.fr/2015NICE4040/document

15. Van Hentenryck, P., Michel, L.: Principles and Practice of Constraint Program-
ming: 19th International Conference, CP 2013, Uppsala, Sweden, September 16-
20, 2013. Proceedings, chap. The Objective-CP Optimization System, pp. 8–29.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013), http://dx.doi.org/10.
1007/978-3-642-40627-0_5

