
CoverSize: A Global Constraint for
Frequency-based Itemset Mining

Pierre Schaus1 and John O.R. Aoga1,2(0000-0002-7213-146X) and Tias Guns3

1UCLouvain, ICTEAM (Belgium); 2UAC, ED-SDI (Benin)
3VUB Brussels (Belgium) and KU Leuven (Belgium)

{john.aoga,pierre.schaus}@uclouvain.be; tias.guns@{vub.be,cs.kuleuven.be}

Abstract. Constraint Programming is becoming competitive for solving
certain data-mining problems largely due to the development of global
constraints. We introduce the CoverSize constraint for itemset mining
problems, a global constraint for counting and constraining the number
of transactions covered by the itemset decision variables. We show the
relation of this constraint to the well-known table constraint, and our
filtering algorithm internally uses the reversible sparse bitset data struc-
ture recently proposed for filtering table. Furthermore, we expose the size
of the cover as a variable, which opens up new modelling perspectives
compared to an existing global constraint for (closed) frequent itemset
mining. For example, one can constrain minimum frequency or compare
the frequency of an itemset in different datasets as is done in discrimi-
native itemset mining. We demonstrate experimentally on the frequent,
closed and discriminative itemset mining problems that the CoverSize
constraint with reversible sparse bitsets allows to outperform other CP
approaches.

1 Introduction

Frequent itemset mining (FIM) is one of the well-known and most studied data
mining problems [8] and first introduced in [2]. Guns et al. [19] showed that
FIM problems could be modelled and solved using Constraint Programming
(CP) with the additional benefit that new constraints can easily be integrated
into the models. Since then several CP (also SAT) approaches have been pro-
posed for other data-mining problems such as frequent sequence mining [22,29],
dominance-based pattern mining [28] and closed FIM [20,21,24].

The flexibility of adding constraints when using a generic CP solver typically
comes at the cost of efficiency; a well-known tradeoff. We can hence look at item-
set mining papers in terms of where they are on the efficiency versus generality
scale. Most works in itemset mining focus primarily on efficiency [8,39], while
typical constraint-based mining papers hard-code a select number of constraints
based on properties like (anti-)monotonicity [32]. Earlier papers on using CP for
itemset mining focus mostly on generality and decompose the itemset mining
constraints into many (reified) linear constraints [19] at the cost of efficiency. In
line with recent works in CP for sequence mining [3,4,22], Lazaar et al. [24] have

shown that a single global constraint for closed frequent itemset mining can out-
perform a decomposition approach. This comes at significant cost for generality
though, because 1) by encapsulating all but the itemset variables, only syntactic
constraints on the items can be added; 2) only closed frequent patterns can be
found and adding syntactic constraints can have unwanted side-effects [6].

In this paper, we aim to maximize both generality and efficiency while em-
ploying a global constraint for itemset mining. We achieve this by introducing
the CoverSize global constraint, which 1) computes a lower and upper-bound on
the frequency and synchronizes this with a decision variable, meaning that the
frequency can be used in other separate constraints; 2) internally, the filtering
algorithm uses the reversible sparse bitset data structure which was introduced
to efficiently filter table constraints [14]. This CoverSize constraint can be com-
bined with a CoverClosure constraint to enforce the closed property [24,34] or
with a discriminative optimization constraint (such as χ2) to solve the correlated
itemset mining problem as in [31].

In contrast to most constraints in CP, what is typical about global constraints
for data mining is that they must be able to handle large amounts of data. A
traditional global constraint that shares this property is the table constraint,
which has a rich history in CP literature [5,12,25,35]. Its link with a global
constraint for itemset mining (IM) is even stronger, as both can be seen as
operating on a binary matrix; for IM the columns are items (Boolean variables)
and for table the columns are (variable, value) pairs. The use of bitvectors and
fast bitvector operations is common in itemset mining implementations, indeed,
it was also used for the closed FIM constraint [24]. Related, a column-based
bitvector representation for the table constraint was recently proposed [14], and
the propagator was shown to outperform all other approaches. Inspired by this
relation, we show that the reversible sparse bitset data structure that was devised
for table can also be used to implement efficient itemset mining propagators. Our
scaling experiments on large and sparse data indicate the benefit of this.

Furthermore, our proposed CoverSize global constraint propagates from the
item variables to a variable representing the frequency and back. This means that
the same constraint can be used to enforce a minimum and maximum frequency
of a set in a table/database. We show that domain-consistent filtering is NP-
hard, though good results can be obtained with weaker filtering. We showcase
the added flexibility of such a choice by using it as a building block for modelling
closed frequent itemset problem [24] and correlated itemset mining problem [31].
For closed, we argue for and propose a separate global constraint.

Our contributions are hence as follows: we show how advances in data struc-
tures for table constraints can benefit global constraints for itemset mining too;
we propose that global constraints for itemset mining expose the frequency
through a variable, and demonstrate how this allows, for example, to solve dis-
criminative itemset mining too; and empirically our experiments with a generic
CP solver show that this approach outperforms other CP approaches and is on
par with a special-purpose CP solver, thereby decreasing the gap to the highly
efficient specialized itemset miners.

2 Background

2.1 Itemset Mining
Frequent itemset mining is concerned with finding a set of items that appears
frequently in a database of sets [2]. The database is often called a transaction
database, and each entry in the database is called a transaction (such as a
purchase of products). Itemset mining has applications in market basket analysis,
web log mining, bio-informatics and more [1].

More formally, given a set I of n possible items and a transaction database
of size m: H = {(t, T) | t ∈ {1, . . . ,m}, T ⊆ I}. Figure 1a shows an example
database with I = {A,B,C,D}. The goal of the frequent itemset mining problem
is to enumerate all sets I ⊆ I such that |{(t, T) ∈ H | I ⊆ T}| ≥ θ with θ a user-
supplied threshold.

The set of transactions that contain the itemset {(t, T) ∈ H | I ⊆ T} is
called the cover. Computing this set efficiently is a core aspect of itemset min-
ing algorithms. Different algorithms have used different representations of the
transaction database. Figure 1(a,b,c) shows three of them. In a vertical repre-
sentation, the intersection is the key operation. Let V(i) be the set of transaction
identifiers of item i, then |{(t, T) ∈ H | I ⊆ T}| = |{

⋂
i∈I V(i)}|. In case of a

vertical dense bitvector representation, efficient bitwise operations can be used
for the intersection, which scales very well in practice.

Many other variations on frequent itemset mining have been investigated.
For example, closed frequent itemset mining adds the additional restriction that
an itemset must not have a superset with the same frequency: @I ′ ⊃ I : {(t, T) ∈
H | I ′ ⊆ T} = {(t, T) ∈ H | I ⊆ T}; and maximal frequent itemset mining
has additional restriction that an itemset must not have any frequent superset:
@I ′ ⊃ I : |{(t, T) ∈ H | I ′ ⊆ T}| ≥ θ [1]. Other constraints on items and
transactions have been investigated as well [32].

In an optimization setting, one can search for the most or least frequent
itemsets (typically under a number of other constraints) or find the most dis-
criminating itemsets. Given two databases H+ and H− (for example, from two
consecutive months), the goal is to find the itemset(s) that best discriminate
between the two; such as an itemset that is very frequent in one and barely
frequent in the other. A range of discriminative measures, also called correlation
measures, have been studied [27]. A property that we will exploit later is that
these measures can be computed using just information on the frequency of the
sets plus the total number of transactions of the databases. We can hence de-
note these measures by a function f(|H+|, |H−|, p, n) where p, n represents the
frequency of the itemset in the two databases.

Modeling itemsets. Following [13], we use an array of Boolean decision variables
I = [I1, I2, . . . , In] to represent an itemset X ⊂ I. Each Ii is a binary variable
with domain dom(Ii) = {0, 1} and an item i ∈ X ⇐⇒ Ii = 1. We say that
Ii is unbound if there is more than one value in dom(Ii). Ii is bound to 1 (0)
means the item i is part (not part) of the itemset. Hence, one assignment to I
corresponds to one itemset.

The decomposition formulation of frequent itemset mining [19] introduces an
extra array of Boolean decision variables T = [T1, T2, . . . , Tm], one for each of the
m transactions. A Boolean variable Tt indicates whether the transaction with
identifier t belongs to the cover {(t, S) ∈ H | I ⊆ S}. This is enforced with a
constraint for every transaction as follows: ∀(t, S) ∈ H : Tt = 0⇐⇒

∨
i/∈S Ii. In

other words: if an item i is in the itemset and not in the transaction (t, S) then
this transaction is not covered by the itemset and equivalently if a transaction is
not covered none of the items i in the itemset do belong to (t, S). The size of the
cover can then be constrained as follows:

∑
t Tt ≥ θ. This model is not domain

consistent for the frequent itemset mining problem that aims to enumerate all
frequent patterns for a certain θ. As suggested in [13], one can further add the
redundant constraints ∀i : Ii = 1 =⇒ (

∑
(t,S)∈H,i∈S Tt) ≥ θ to achieve domain

consistency for the frequent itemset problem: these constraints enforce that an
item is only supported if adding it to the current itemset will not violate the
frequency constraint.

2.2 Table Constraint and Reversible Sparse Bit-Sets

A table constraint enforces that an array of integer decision variables [V1, . . . , Vn]
corresponds to one of the provided tuples Γ = {(t, τ)}|t ∈ {1, . . . ,m}}, where
t is the tuple identifier and each tuple τ = (v1, . . . , vn) consists of n values
corresponding to the n variables: table([V1, . . . , Vn], Γ) ⇐⇒ ∃(t, τ) ∈ Γ : V1 =
τ1∧. . .∧Vn = τn. A key property to maintain is the set of tuples supported by the
current domain: currTable = {(j, τ) ∈ Γ | τ1 ∈ dom(V1) ∧ . . . ∧ τn ∈ dom(Vn)}.
In [14], a reversible sparse bitset was proposed to maintain the set of tuple
indices during search. In the propagator, a dense vertical representation of Γ
is used: for every variable/value combination (Vi, v), v ∈ dom(Vi), a bitvector
support[Vi, v] = {(j, τ) ∈ Γ | τi = v} is precomputed that stores the tuple
identifiers in which the pair (Vi, v) appears. The indices of currTable and the
consistency of each (Vi, v) is computed using bitwise operations, e.g. (Vi, v) is
supported if support[Vi, v] ∩ currTable 6= ∅.

We briefly recall the RSparseBitSet data structure [14] which we will use
in our propagators. The pseudo-code of this data structure is given in Algorithm
1 and some illustrative methods are also shown. The Reversible Sparse BitSet
represents a set as a bitset (array of 64-bit Long words) and is “reversible” means
that it is able to restore itself on backtrack. The reversibility relies on a global
trail mechanism well known in the folklore of constraint programming (see [23]
for an introduction to trailing and time-stamping).

The originality of this structure is that it borrows the idea of reversible
sparse-sets [37] to discard all-zero words. When a bitvector is sparse (contains
many zero words), this can save unnecessary iterations and computations over
those words.

The following class invariant is maintained to ignore zero words: the number
of non-zero words is a reversible integer denoted limit; and the limit first
entries of index are indexes to the non-zero words in the bitvector. All the
words beyond that limit are the indexes of zero words.

For the intersect method, which is also crucial for itemset mining, one can
see how this is maintained by exchanging a detected zero word with the last
non-zero one before decreasing the limit (swapping).

Apart from skipping entire words, the bitvector representation allows using
highly efficient operations over entire words such as and and bitCount.

3 Global constraints for frequency-based itemset mining

There is a close relation between a table constraint that reasons over a binary
representation of the table and itemset mining. Each variable/value pair (Vi, v)
is a column and can be seen as an item (in the itemset mining problem), and
internally a vertical dense representation of the table can be used. Because each
tuple in table Γ is of size n, in a binary representation of the table there will
be exactly n non-zero entries per row. Further knowing that there are exactly
n variables that each must be assigned one value, one can see that checking
whether the set representation of V : {(Vi, v) | Vi = v ∈ V } is a subset of
the set representation of a tuple τ : {(Vi, τi) | τi ∈ τ} coincides with checking
whether they can be equal as both sets will have equal length when V is fully
assigned. The cover relation of itemset mining is hence equivalent to the table
support relation in this case, and the table constraint can be seen as enforcing
a minimum frequency constraint with θ = 1.

Earlier work has proposed a single global constraint for minimum frequent
closed itemset mining. For efficiency reasons, we propose to use the reversible
sparse bitset to maintain the set of transactions that can still be covered. For
generality reasons, we propose to separate the computation of the frequency
from the minimum (or maximum) frequency restriction and to separate that
from enforcing the closedness property.

3.1 Computing frequency: the CoverSize constraint

Given a set of boolean variables I representing the pattern (selected items),
a vertical dense bitvector representation of the database D (see Fig. 1c for an
example), and an integer variable c, the CoverSize global constraint enforces the
relation

CoverSize([I1, . . . , In],D, c)⇐⇒ c =

∣∣∣∣∣ ⋂
Ii=1
D(Ii)

∣∣∣∣∣
such that c represents the number of bits set in the intersection of the vertical
bitvectors (D) of the selected items. Using bitwise operations it can be formulated
as

CoverSize([I1, . . . , In],D, c)⇐⇒ c = size(&Ii=1D(Ii)).

For example in Fig. 1c and for itemset {C,D}, c = |D(IC) & D(ID))| = 2.
Lazaar et al.[24] have argued that a global constraint is preferred over a

decomposition into a constraint per transaction because the many constraints
that need to be handled create overhead for the solver. This was shown earlier

in [30], which proposed a CP-inspired dedicated solver with a global constraint
for (reified) matrix-wide operations over bitvector variables.

When not exporting the cover as individual Boolean variables, we can use an
internal data structure to store the cover such as RSparseBitSet. Note that
not exposing the cover also limits the generality of the approach: no constraints
can be put on the cover so that constraints such as closedness, maximality,
non-frequency-based quality measures, etc either require changes to the global
constraint, or a separate global constraint that recomputes the cover. However,
there are a number of constraints that depend only on the size of the cover and
hence for added flexibility we propose to hide the cover but expose the cover
size.

Consistency of CoverSize Theorem 1 is used to demonstrate that it is NP-
hard to check the consistency for CoverSize.
Theorem 1. Given a collection of sets {S1, . . . , Sn}, the problem of finding a
subset of these such that their union is of fixed cardinality k is NP-hard.

Proof. We build a reduction from the NP-hard exact cover by three sets (X3C)
problem: given a collection {C1, C2, . . . , Cn} of 3-element subsets built from a
universe X with |X| = 3q (a multiple of 3), can we find exactly q subsets
of C to cover X? We reduce this X3C problem into our problem such that
Si = Ci∪{ai1, . . . , ai|X|+1} ∀i ∈ {1, . . . , n}. All the artificial aij elements added are
different and not in universe X. Each set Si has thus a cardinality of 3+|X|+1 =
4 + 3q. We are looking for a collection of sets such that their union is of size
k = q(4 + 3q). Only q sets can be selected; even when counting just the artificial
elements (|X| + 1 = 3q + 1 per set), more than q sets is not possible because
k − ((q + 1) · (3q + 1)) < 0. Fewer then q sets is also not possible because
k − ((q − 1) · (3q + 1)) > |X| and hence there would need to be more than |X|
unique elements in universe X to achieve cardinality k. For exactly q sets, one
can verify that these q sets will cover |X| after the removal of the q(|X| + 1)
added elements: q(4 + 3q)− q(|X|+ 1) = q(4 + 3q − 3q − 1) = 3q = |X|. �

Corollary 1. Given a collection of sets {S1, . . . , Sn}, the problem of finding a
subset of these such that their intersection is of fixed cardinality k is NP-hard.

Proof. We reduce the problem of Theorem 1. Let X =
⋃
i Si be the universe

and Si = X \ Si the complement set of Si w.r.t. X. There exists a subset
Ω ⊆ {1, . . . , n} such that

∣∣⋃
i∈Ω Si

∣∣ = k if and only if
∣∣⋂

i∈Ω Si
∣∣ = |X| − k. �

Theorem 2. Determining the satisfiability for CoverSize is NP-hard.

Proof. The problem of Corollary 1 is reduced to finding a feasible solution for
CoverSize([I1, . . . , In],D, c = k) with D(Ii) the bitvector representation for set
Si. �

Despite this hardness result, we can still propagate many conditions effi-
ciently. The hardest part is to propagate from an upper bound on c to the item
variables.

CoverSize Propagator We denote by U = {Ii ∈ I | dom(Ii) = {0, 1}} the
set of undecided items and by P = {Ii ∈ I | dom(Ii) = {1}} the set of included
items. The filtering rules for CoverSize are:

1. (Rule 1) computes the maximum cover size (exact upper-bound) that corre-
sponds to discarding all the undecided items: max(c) ≤

∣∣∣⋂Ij∈P D(Ij)
∣∣∣ .

2. (Rule 2) computes the minimum cover size (exact lower-bound) that corre-
sponds to including all the undecided items min(c) ≥

∣∣∣⋂Ij∈(P∪U)D(Ij)
∣∣∣ .

3. (Rule 3) discards item Ii if including it would result in a cover size that is be-
low the minimum threshold. ∀Ii ∈ U :

∣∣∣⋂Ij∈P D(Ij) ∩ D(Ii)
∣∣∣ < min(c) =⇒

Ii = 0. This rule is also implemented in [24] and can be achieved in the
decomposition with a redundant constraint for each item separately.

4. (Rule 4) detects mandatory items. If the lower-bound is equal to the max-
imum allowed cover size, then if the cover size lower-bound would increase
while excluding an item Ii then this item Ii is mandatory. ∀Ii ∈ U :∣∣∣⋂Ij∈(P∪U)D(Ij)

∣∣∣ = max(c)∧
∣∣∣⋂Ij∈(P∪U)D(Ij)

∣∣∣ < ∣∣∣⋂Ij∈(P∪U)\{Ii}D(Ij)
∣∣∣ =⇒

Ii = 1.

Algorithm 2 gives the filtering algorithm for the CoverSize constraint im-
plementing the Rules 1-4. N denotes the newly bound item variables since the
previous call to the propagate method. The algorithm is thus incremental.

The block at Line 5 updates the current cover to reflect the new items in-
cluded in the itemset1. The second block at Line 8 filters out the items that
if included would induce a cover size below the allowed threshold min(c). This
corresponds to Rule 3.

Line 11 computes the upper-bound of the cover size according to Rule (1).
The lower-bound (Line 12) is obtained by including all the unbound items ac-
cording to Rule (2).

Line 13 is triggered when the smallest possible intersection size (lb) is the
largest allowed size of the frequency variable (max(c)). In this case, all the items
that are mandatory to reach the lower-bound can be forcefully included (this is
not necessarily true when min(c) = max(c) as min(c) can be externally set
resulting in min(c) > lb). An unbound item I is mandatory if it is the only item
that does not contain a transaction that all the other unbound and included
ones do; in that case lb would increase to lb′ > max(c). In the algorithm,
m ← cover &Ij∈U\Ii

D(Ij) is the cover if one would include all unbound items
except I. If m * D(Ii) then m ∩ D(Ii) would be a smaller set than m and hence
Ii is mandatory to obtain the smallest cover size lb. For the example of Fig. 1,
let C be included then lb = 1, ub = 3. Let max(c) = 1 then A is mandatory:
not including it results in m = {2, 4},m * {1, 3, 4} because of transaction 2.
This condition is equivalent to Rule 4 but slightly more efficient to compute as
it does not require to consider every non-zero words by returning true as soon
as one word of m is not included.
1 This is similar to the update of currTable in [14] for filtering table constraints.

Algorithm 1: Class RSparseBitSet. t[0] denotes the first element of
array t and 0k denotes a sequence of k bits set to 0.

1 words: array of rlong // reversible longs, array length = p
2 index: array of int // array length = p
3 limit: rint // a reversible integer
4 Method intersect(m: array of long)

/* this← this & m */
5 foreach i from limit downto 0 do
6 o← index[i]
7 w ← words[o] & m[o] // bitwise AND
8 words[o]← w
9 if w = 064 then

10 swap(index[i], index[limit])
11 limit← limit− 1

12 Method contains(m: array of long): bool
/* m ⊆ this */

13 foreach i from 0 to limit do
14 o← index[i]
15 if (words(o) & ~ m[o]) 6= 064 then
16 return false

17 return true

Algorithm 2: Class CoverSize([I1, . . . In],D, c)
1 cover: RSparseBitSet // Current cover
2 N, U // New bound variables, Unbound variables
3 D // D[Ii] = bit-set for item Ii

4 Method propagate()
/* update current cover */

5 foreach variable Ii ∈ N do
6 if Ii = 1 then
7 cover← cover & D[Ii]

/* remove items that if included induce cover < min(c) */
8 foreach variable Ii ∈ U do
9 if size(cover & D[Ii]) < min(c) then

10 Ii ← 0

/* cover bounds */
11 ub← size(cover); max(c)← min(max(c), ub)
12 lb← size(cover &Ii∈U D[Ii]); min(c)← max(min(c), lb)

/* propagating maximum size */
13 if lb < ub ∧ lb = max(c) then
14 foreach variable Ii ∈ U do

/* include items mandatory for a cover size = lb */
15 m← cover &Ij∈U\Ii

D[Ij]
16 if m * D[Ii] then
17 Ii ← 1

The time complexity for executing propagate is O(|I| × m/64) with |I| the
number of items andm/64 the number of words necessary to represent the cover.
In practice, the reversible sparse bitset will only iterate on the non-zero words
in the cover bitvector. The space complexity is O(|I| × m) similar to that of
other approaches and due to the space needed to store the database.

Since domain consistency CoverSize is NP-hard we can unfortunately not
clearly characterize2 the filtering of Algorithm 2. Only in the case of an uncon-
strained max(c) (for instance for the frequent itemset problem), the filtering
reaches domain consistency.

3.2 Closed itemsets: the CoverClosure constraint
The idea of mining for closed frequent itemsets is to reduce the set of extracted
itemsets to a smaller, more interesting one. The intuitive idea is that if a frequent
pattern has a cover that is exactly the same as a super pattern, then only the
super pattern should be enumerated.

An itemset is hence a closed itemset if there is no superset with the same
cover: @I ′ ⊃ I : {(t, T) ∈ H | I ′ ⊆ T} = {(t, T) ∈ H | I ⊆ T}. Hence, the closure
of an itemset can be computed by verifying which items could be added to the
itemset without changing the cover:

cloH(I) = I ∪ {j /∈ I | {(t, T) ∈ H | I ∪ {j} ⊆ T} = {(t, T) ∈ H | I ⊆ T}} (1)

As argued in [6] there are two ways of interpreting the closed property when
combined with other constraints: 1) of all closed itemsets, keep only those that
satisfy the constraints 2) take the closure such that the new itemset satisfies all
constraints

This can have far-reaching consequences. Let us take the database in Fig. 1,
where item B is in all transactions and so will be in all closed itemsets. If we now
add the constraint ′B′ /∈ I, then under interpretation 1 there would not be any
valid itemset, while under interpretation 2 there isD,C,AD andACD namely all
closed itemsets when ignoring B. It should be clear that interpretation 1) should
not be taken by default. On the other hand, enforcing interpretation 2) requires
one to reason not in terms of local constraints but over valid solutions to the
CSP, for example with dominance properties [28]. Nonetheless, interpretation
1) is valid as long as all constraints have the property that adding a cover-
preserving item to the set can never violate another constraint; for example, one
can freely add a minimum size or maximum frequency constraint [6]. In case of
such constraints it must be expressed as a preference over solutions of the CSP,
e.g. by adding constraints each time a solution is found [28]. We hence propose to
offer the widely used unconstrained closure operator as a separate CoverClosure
constraint.

Another argument for separating the closure constraint is that in case of
discriminative itemset mining, we may want to enforce closedness on only one of
the two databases or on the entire database [19]. A separate constraint allows
this freedom.
2 As for many NP-hard global constraints like bin-packing, cumulative, circuit, etc.

CoverClosure Propagator Two filtering rules are enforced similar to [24]:
1. (Rule 5) Closure inclusion. This rule checks for each unbound item Ii if

including it would result in an unchanged cover. If yes, this item should be
included in the final pattern. More formally

∀Ii ∈ U : (
⋂
Ij∈P

D(Ij) ∩ D(Ii)) =
⋂
Ij∈P

D(Ij) =⇒ Ii = 1

2. (Rule 6) Closure exclusion. This rule detects if extending the pattern with
an item would result in a cover for which there is an already excluded item
that should be added by the closure operator. Hence, including the first item
would lead to an inconsistency and so it should be excluded. More formally,
assuming Ik ∈ I, Ik = 0 represents the excluded items:

∀Ii ∈ U, Ik ∈ I, Ik = 0 : ((
⋂

Ij∈P

D(Ij))∩D(Ii)) ⊆ ((
⋂

Ij∈P

D(Ij))∩D(Ik)) =⇒ Ii = 0

Algorithm 3 implements the domain consistent filtering for the CoverClosure
constraint. This constraint also uses the RSparseBitSet data structure to
store the cover. It has a complexity of O(|I|2 × m/64).

A faster (but not domain consistent) filtering is obtained by replacing Rule 6
with a consistency check verifying that for each discarded item (Ii = 0), including
it changes the cover: ∀Ik ∈ I, Ik = 0 : (

⋂
Ij∈P D(Ij)∩D(Ik)) =

⋂
Ij∈P D(Ij) =⇒

fail. This version has a complexity of O(|I| × m/64), similar to CoverSize.

4 Frequency-based itemset mining with CoverSize and
CoverClosure

4.1 Frequent itemset mining
Our model for frequent itemset mining contains just one CoverSize and a con-
straint that the size of the cover is above a fixed minimum frequency θ:

enumerate CoverSize([I1, . . . , In],D, c) ∧ c ≥ θ

Notice that as c is a variable, one can also add a maximum frequency constraint,
or use it in branch-and-bound to search for the most frequent itemsets under
constraints such as a minimum itemset cardinality:

maximize c, s.t. CoverSize([I1, . . . , In],D, c) ∧
∑
i

Ii ≥ β

4.2 Closed frequent itemset mining
Looking for the frequent closed itemset amounts to adding CoverClosure:

enumerate CoverSize([I1, . . . , In],D, c) ∧ c ≥ θ ∧ CoverClosure([I1, . . . , In],D)

As explained in Sect. 3.2, other constraints should only be added if they do
not constrain the addition of (frequency-preserving) items.

Algorithm 3: Class CoverClosure([I1, . . . In],D)
1 cover: RSparseBitSet // Current cover
2 N, U // New bound variables, Unbound variables
3 D // D[Ii] = bit-set for item Ii

4 Method propagate()
/* update current cover */

5 foreach variable Ii ∈ N do
6 if Ii = 1 then
7 cover← cover & D[Ii]

/* Rule 5 */
8 foreach variable Ii ∈ U do
9 if cover = (cover & D[Ii]) then

10 Ii ← 1

/* Rule 6 */
11 foreach variable Ii ∈ U do
12 foreach variable Ik ∈ I with Ik = 0 do
13 if (cover & D[Ii]) ⊆ (cover & D[Ik]) then
14 Ii ← 0; break

4.3 Discriminative (closed) itemset mining
Given a split database D+ and D− containing positive (+) and negative (−)
transactions defined on a same set of items, the objective is to find the high-
est scoring itemsets (discriminating one class over another) w.r.t. a correlation
(discriminative) measure such as accuracy, information gain, χ2 measure, Gini
index, etc. Those itemsets are interesting as classification rules directly[9,11,16],
or as features (if the itemset is present or not) for another classifier[10,15].

Using accuracy as a discriminative measure leads to the following problem:

maximize p− n, s.t.
CoverSize([I1, . . . , In],D+, p) ∧ CoverSize([I1, . . . , In],D−, n)

Another standard discriminative measure is the χ2 one depicted on Fig.1d.
As explained in [31] the standard discriminative functions such as χ2 have the
property that they are zero on the diagonal (relative to the possible values of p, n)
and convex (denoted by ZDC). A general ZDC-based model for discriminative
itemset mining is composed of
– two constraints CoverSize([I1, . . . , In],D+, p) and CoverSize([I1, . . . , In],D−, n)

to compute the cover size on the positive and negative transactions;
– a Zero Diagonal Convex constraint ZDC(|D+|, |D−|, p, n, score) that links p,
n and score using a discriminative function (such as χ2) to maximize;

– optionally CoverClosure([I1, . . . , In],D−∪D+) to obtain the closedness prop-
erty. Note that posting CoverClosure separately on the positive (negative)
can decrease p (n) and is hence not allowed for symmetric ZDC measures.

This approach which employs a separate ZDC constraint that takes only the
cardinalities p and n as input, is novel and favors reusability in a different con-
text: it is itemset-agnostic, meaning that it could also be used for example to
find discriminating sequences instead of itemsets. In [31] the authors also employ
a global constraint for the discriminative itemset mining problem, but one that
reasons at the transaction level with one variable per transaction. The filter-
ing they achieve is stronger than our decomposition into three constraints. They
perform what they call a redundant look-ahead filtering3 on each item separately.

We briefly describe our filtering for ZDC, illustrated in Fig.1e. Because of
the ZDC property, the minimum and maximum is located at one of the four
corners of the box [min(p),max(p)] × [min(n),max(n)], and hence only these
extremes need to be computed for pruning min(score). Given a minimum value
for min(score), for example as enforced during branch-and-bound maximization,
the value of max(p) and max(n) can be reduced as illustrated on Fig.1e. On
this figure, the iso-curve corresponding to min(score) is visualized. The ZDC
property implies that any larger score must lay outside of the region enclosed by
the iso-curves. The gray zone on Fig.1e corresponds to inconsistent combinations
for p and n, hence discovering the new minimum for p requires to find v such
that ZDC(|D+|, |D−|, v,max(n)) = min(score). Any value larger than v for p
would be inconsistent. The upper-cardinality of p is constrained and therefore
the filtering of CoverSize([I1, . . . , In],D+, p) based on this upper cardinality is
important to prune the search tree. A similar reasoning is used to prune min(n).

5 Experiments

In this section, we report the experimental results on frequent, closed as well as
discriminative itemset mining. Each experiment is driven by a concrete question.
All experiments were run in the JVM with maximum memory set to 8GB on
PCs with Intel Core i5 64bits processor (2.7GHz) and 8GB of RAM running
Linux Mint 17.3. Execution time is limited to 1000 seconds.

Datasets and mining algorithms. We use data from the FIMI4 repository
and from the CP4IM5 website. The properties of the datasets are presented in
Table 1 (first column) and Table 2a (these latter are labelled positive/negative
datasets). We compare with the following methods:

– Frequent Itemset Mining: FIMCP [19] using the Gecode solver [17],DMCP [30]
a custom CP bitvector solver, and four dedicated algorithms namely Borgelt’s
Apriori and Eclat implementations [7], Nonordfp [36] and LCMv3 6 [39].

– Closed Frequent Itemset Mining: FIMCP, DMCP, Borgelt’s Apriori and
LCMv3 again, as well as ClosedPattern [24] using the or-tools solver [18].

– Discriminative Itemset Mining: CIMCP [19] based on Gecode and the spe-
cialised algorithm corrmine [31].

3 A related generic technique in CP is shaving [26].
4
http://fimi.ua.ac.be/data/

5
https://dtai.cs.kuleuven.be/CP4IM/datasets/

6
http://research.nii.ac.jp/~uno/codes.htm (v3 is fastest of all versions in our experiments)

http://fimi.ua.ac.be/data/
https://dtai.cs.kuleuven.be/CP4IM/datasets/
http://research.nii.ac.jp/~uno/codes.htm

tid itemset
1 {A,B,D}
2 {B,C,D}
3 {A,B,D}
4 {A,B,C,D}
5 {B,C}

(a)

item tid-set
A {1,3,4}
B {1,2,3,4,5}
C {2,4,5}
D {1,2,3,4}

(b)

item tid-bitvector
[1, 2, 3, 4, 5]

A [1 0 1 1 0]
B [1 1 1 1 1]
C [0 1 0 1 1]
D [1 1 1 1 0]

(c)
p

n

(d)

dom(n)

dom(p)

(e)

Fig. 1: a,b,c) Three equivalent representations of itemset databases, d) χ2 ZDC
function and e) Filtering of the ZDC(|D+|, |D−|, p, n, score) constraint. Note:
c+ = p, c− = n, a) Horizontal sparse - H, b) Vertical sparse - V c) Vertical dense - D

Table 1: CPU runtime for several algorithms vs CoverSize.(TO≡TimeOut;
∗ ≡CoverSize+CoverClosure; ρ ≡ density = 1

|T |×|I|
∑
t∈T ,i∈I Dti)

Na
me

|T
| ×
|I|

ρ(%
)

θ
Frequent Closed

CP-based Specialized CP-based Specialized

FI
M
C
P

D
M
C
P

C
ov
er
Si
ze
-b
its
et

C
ov
er
Si
ze

A
pr
io
ri

Ec
la
t

N
on
or
df
p

LC
M
v3

FI
M
C
P

C
lo
se
dP

at
te
rn

C
ov
er
Si
ze
-D

C
∗

C
ov
er
Si
ze
∗

D
M
C
P

A
pr
io
ri-
cl
os
e

LC
M
v3

ret
ail

88
16

2×
16

47
0

(ρ
=

0.0
6)

80 TO 6.91 25.76 5.33 0.60 5.81 0.98 0.21 TO TO 394.48 45.09 16.95 0.82 0.26
60 TO 10.45 33.87 7.37 0.71 8.26 1.31 0.24 TO TO 952.83 67.74 25.10 1.03 0.31
40 TO 15.96 65.13 11.19 0.77 11.42 1.83 0.27 TO TO TO 125.67 41.78 1.29 0.49
20 TO 26.81 132.53 19.74 1.10 17.86 2.56 0.43 TO TO TO 226.32 94.24 1.61 0.48
10 TO 40.03 191.05 37.08 1.73 24.63 3.68 0.39 TO TO TO 366.83 238.71 2.48 0.66

on
lin
e-r
eta
ils

54
19

09
×

26
03

(ρ
=

0.1
)

70 TO 11.00 54.19 8.27 2.75 14.27 0.31 1.59 TO TO 242.80 98.67 11.00 1.28 1.43
40 TO 11.33 59.60 8.00 4.78 15.07 0.40 1.43 TO TO 497.14 111.34 12.06 1.28 1.51
10 TO 11.49 86.66 8.49 2.15 15.61 0.43 1.51 TO TO 907.68 131.94 13.31 1.36 1.52
5 TO 15.64 84.05 8.82 2.13 14.56 0.31 1.32 TO TO TO 148.29 13.72 1.31 1.65
1 TO TO TO TO 2.18 15.66 0.42 1.22 TO TO TO TO 14.99 1.44 1.60

BM
SW

eb
Vi
ew
1

59
60

2×
49

7

(ρ
=

0.5
)

48 TO 1.92 1.51 0.69 0.08 0.51 0.11 0.03 TO TO 3.10 2.54 48.04 0.29 0.11
36 TO 17.83 7.23 1.87 0.88 0.37 0.30 0.11 TO TO 3.77 3.74 512.09 1.55 0.26
34 TO 63.93 23.07 8.12 7.04 0.43 0.60 0.10 TO TO 3.99 4.57 746.61 10.46 0.37
32 TO TO TO TO TO 0.68 60.63 0.28 TO TO 5.12 8.24 TO TO 0.47
30 TO TO TO TO TO 0.53 TO 1.22 TO TO 6.61 13.50 TO TO 0.67

T1
0I4
D1
00
K

10
00

00
×

87
0

(ρ
=

1.0
)

500 TO 1.07 3.58 0.79 0.48 3.32 0.80 0.36 TO 8.32 8.20 7.81 1.04 0.81 0.34
400 TO 0.98 4.1 1.03 0.49 3.74 0.58 0.29 TO 13.06 9.27 8.88 1.12 0.67 0.43
300 TO 1.39 4.96 1.27 0.69 4.14 0.94 0.30 TO 25.28 11.12 10.51 1.30 0.85 0.41
200 TO 2.65 6.59 1.28 0.63 3.95 0.70 0.39 TO 77.20 12.95 10.98 1.61 1.07 0.38
100 TO 2.35 7.27 1.78 1.02 5.08 1.01 0.53 TO 125.26 15.79 15.07 2.11 1.15 0.58

pu
ms
b-s
tar

49
04

6×
20

88

(ρ
=

2.0
)

18000 302.06 1.02 1.26 0.84 6.34 0.77 0.25 0.21 TO 56.55 0.99 0.89 2.11 5.11 0.22
16000 375.07 2.57 2.55 1.52 18.81 1.04 0.27 0.22 TO 120.33 0.80 0.93 4.04 15.59 0.27
14000 563.21 9.14 4.72 3.36 81.93 1.34 0.31 0.26 TO 275.23 1.65 2.25 6.22 57.99 0.30
12000 TO 33.66 20.12 10.16 285.36 1.95 0.62 0.38 TO 601.72 4.51 5.55 14.04 284.39 0.44
10000 TO TO TO TO TO 3.45 164.76 0.45 TO TO 10.37 13.97 26.96 TO 0.54

pu
ms
b

49
04

6×
21

13

(ρ
=

3.0
)

40000 237.09 2.82 2.02 1.51 1.45 0.87 0.14 0.15 TO 212.83 1.84 2.14 7.22 1.46 0.15
35000 889.08 33.87 13.20 10.26 15.92 3.36 0.21 0.20 TO TO 12.71 16.76 43.48 15.98 0.27
30000 TO 220.03 124.65 63.91 356.90 10.55 0.54 0.27 TO TO 62.81 82.47 121.24 370.78 0.60
25000 TO TO TO 602.72 TO 66.46 3.56 1.04 TO TO 468.99 611.62 TO TO 1.54

acc
ide
nts

34
01

83
×

46
8

(ρ
=

7.0
)

300000 50.02 0.78 0.16 0.05 1.23 1.02 0.23 0.21 221.80 0.13 0.08 0.07 0.80 1.48 0.19
250000 55.69 1.08 0.18 0.17 1.75 1.26 0.33 0.40 253.90 1.71 0.17 0.14 1.16 2.00 0.21
200000 112.55 0.99 0.34 0.33 2.46 1.76 0.35 0.62 302.97 8.57 0.56 0.68 1.41 2.55 0.56
150000 386.51 2.87 1.52 1.32 17.83 3.12 0.52 1.06 575.32 61.60 5.00 5.09 3.71 18.91 0.99
100000 TO 18.08 10.69 7.79 116.26 7.32 0.74 1.73 TO 570.38 47.55 43.75 23.63 140.26 1.47

mu
sh
roo

m

81
24
×

11
9

(ρ
=

19
.0)

600 33.06 0.85 2.14 1.92 14.61 0.30 0.05 0.04 8.38 0.62 0.73 0.84 0.16 10.09 0.06
400 106.71 3.48 5.52 5.43 58.46 0.29 0.09 0.04 14.86 1.08 0.70 0.67 0.20 36.11 0.11
200 449.85 16.77 23.37 20.10 133.54 0.37 0.27 0.07 20.12 2.35 0.75 1.56 0.35 112.82 0.17
100 TO 67.09 96.13 68.46 264.69 0.65 0.95 0.10 27.10 4.30 1.11 2.91 0.63 284.15 0.24

soy
be
an
s

63
0×

50

(ρ
=

32
.0)

16 1.21 0.47 1.02 1.03 0.45 0.03 0.02 0.00 0.31 0.20 0.36 0.35 0.08 0.71 0.02
13 1.57 0.70 1.40 1.44 0.44 0.03 0.02 0.01 0.32 0.25 0.32 0.28 0.12 0.95 0.02
10 2.54 0.75 1.69 1.44 0.71 0.04 0.03 0.02 0.34 0.29 0.40 0.29 0.11 1.20 0.02
7 3.54 1.46 2.35 2.07 0.84 0.05 0.03 0.01 0.47 0.33 0.23 0.22 0.14 1.61 0.03
4 7.05 3.86 4.02 3.87 1.69 0.05 0.07 0.02 0.42 0.42 0.25 0.20 0.18 2.98 0.03

ch
ess

31
96
×

75

(ρ
=

49
.0)

2000 3.71 0.30 1.59 1.39 3.14 0.11 0.01 0.01 1.85 1.71 1.11 1.02 0.42 3.48 0.09
1500 46.05 3.05 4.81 3.88 77.85 0.39 0.11 0.07 14.06 15.53 4.73 3.42 1.88 69.56 0.59
1000 577.29 35.16 52.60 44.94 849.49 2.15 0.68 0.37 101.68 96.65 28.11 22.76 14.96 885.14 4.90
500 TO 959.16 TO TO TO 19.06 12.35 2.96 882.16 900.45 304.74 282.50 144.04 TO 51.66
250 TO TO TO TO TO 72.69 129.05 14.42 TO TO TO TO 580.64 TO 211.99

We denote our approach by CoverSize and it uses the OscaR solver [33].
Q1: What is the impact of using a reversible “sparse”-bitset over

a reversible non-sparse one? In Table 1 CoverSize-bitset is the same imple-
mentation as CoverSize but using a reversible bitset implementation that does
not check for zero words. The results on Frequent in Table 1 convincingly show
that using the sparse data structure is always better and sometimes an order of
magnitude faster, especially on large and sparse datasets.

For closed, we can also compare Coversize-DC* to ClosedPattern [24] which
uses the same filtering rules but in a single global constraint and with a differ-
ent solver and non-reversible non-sparse bitsets [24]. We only have the binaries
and though different solvers will perform differently, or-tools has won MiniZinc
challenge [38] gold medals and so the remarkable difference in runtime with our
method provides strong evidence that the reversible sparse bitset is a well suited
and very scalable data structure for itemset propagators.

Q2: Is domain consistency interesting for closed frequent itemset
mining? In [24] the authors concluded that using the domain consistent version
of Rule 6 dominates the simpler non-domain consistent one because of the re-
sulting reduction in number of explored nodes. We reran the same experiment,
CoverSize-DC* and CoverSize* in Table 1, and the conclusion changes when
using reversible sparse bitsets: while on pumsb and pumsb-star the runtime in-
creases when using the simpler non-DC version, on the other datasets it is similar
or faster to use the simpler one. For the largest and sparsest datasets retail and
online-retails, the difference is even up to an order of magnitude.

Q3: How does CoverSize compare with existing approaches? The
CoverSize approach clearly outperforms the decomposition-based FIMCP. For
frequent, CoverSize is on par (sometimes somewhat better or worse) withDMCP,
the dedicated CP solver which uses bitvector variables. By profiling the execution
we observed that for the instances where DMCP was faster (such as mushroom)
only 1% of the time was spent in CoverSize. The remaining time is devoted to the
solver (propagation management, search, trailing, ...), which a dedicated solver
like DMCP has less overhead in. Hence, here we show that similar performance
can be achieved with a generic solver, through the use of global constraints with
carefully designed data structures.

For closed, our approach outperforms FIMCP, and also ClosedPattern as
discussed in Q2. The differences between CoverSize and DMCP become more
varied and pronounced, for example for the sparsest retail and online-retails
dataset in favor of DMCP, and for BMSWebView1 in favor of CoverSize.

Specialised algorithms. There remains a significant gap between CP-based
methods and specialised methods though, and especially the highly praised
LCMv3 algorithm lives up to its reputation. It should be pointed out that
these algorithms do not allow any constraints, and for example a version of
LCM (LCMv5) that allow some constraints is also remarkably slower. For denser
datasets, our method does typically outperform Apriori.

Q4: What is the difference in performance for discriminative item-
set mining with CoverSize? The state-of-the-art for this problem is the

generic CP-based CIMCP method and the specialized corrmine method which
implement the same bounds [31]. Table 2b shows a comparison using Information
Gain as the ZDC measure, which is the one implemented in corrmine. Despite
the stronger filtering of CIMCP, CoverSize outperforms CIMCP for the most
difficult instances showing the importance of globals with a good data structure.
corrmine is superior though specialized to this specific problem.

6 Conclusion and Perspectives

We showed that compared to the ClosedPattern approach [24] of using a global
constraint for frequent closed itemset mining, both generality and efficiency can
be significantly improved. Generality can be improved by a separation of con-
cerns in terms of global constraints. We propose to use one global constraint
that exposes the frequency through a decision variable which can then be used in
other constraints. For example frequency constraints, objective functions or dis-
crimination scores. Another global constraint can be used to enforce the closure
property, though care has to be taken when combining it with other constraints.

Efficiency-wise we showed the connection with a well-known constraint that
also has to handle a lot of data: the table constraint. Using the Reversible Sparse
bitset data structure that was recently proposed [14] allows our global constraints
to scale to even larger and sparser datasets while still in a generic CP solver.
This is relevant not just for frequency-based itemset mining, but also for other
existing as well as novel data mining problems in CP, and perhaps beyond.

Acknowledgments

The research is supported by the FRIA-FNRS (Fonds pour la Formation à la
Recherche dans l’Industrie et dans l’Agriculture, Belgium) and FWO (Research
Foundation – Flanders). We also thank Willard Zhan for his help with the re-
duction proof.

Table 2: Runtimes, in seconds, for discriminative itemset mining
a) Dataset features. b) Discriminative a) b)

Name Dense Trans Item CI
MC

P

Co
ver
Siz
e

cor
rm
ine

Name Dense Trans Item CI
MC

P

Co
ver
Siz
e

cor
rm
ine

anneal 0.45 812 93 0.167 0.24 0.014 letter 0.5 20000 224 54.255 4.547 0.367
australian-cr 0.41 653 125 0.166 0.195 0.012 mushroom 0.18 8124 119 15.979 0.069 0.025
breast-wisc 0.5 683 120 0.193 0.345 0.037 pendigits 0.5 7494 216 2.939 1.196 0.138
diabetes 0.5 768 112 1.564 1.769 0.28 primary-t 0.48 336 31 0.02 0.058 0.003
german-cr 0.34 1000 112 1.521 1.659 0.09 segment 0.5 2310 235 1.154 0.15 0.052
heart-clevel 0.47 296 95 0.175 0.221 0.055 soybean 0.32 630 50 0.046 0.048 0.003
hypothyroid 0.49 3247 88 0.592 0.118 0.016 splice-1 0.21 3190 287 22.341 0.113 0.025
ionosphere 0.5 351 445 1.047 0.336 0.23 vehicle 0.5 846 252 0.551 0.55 0.094
kr-vs-kp 0.49 3196 73 0.698 0.145 0.01 yeast 0.49 1484 89 3.386 1.366 0.818

Average. when found 5.933 0.729 0.126

References

1. Aggarwal, C.: An Introduction to Frequent Pattern Mining, pp. 1–17. Springer
(2014)

2. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. International Conference on Management of Data (SIG-
MOD) 22(2), 207–216 (Jun 1993)

3. Aoga, J.O., Guns, T., Schaus, P.: An efficient algorithm for mining frequent se-
quence with constraint programming. ECML PKDD 2010 European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases 9853 (2016)

4. Aoga, J.O., Guns, T., Schaus, P.: Mining time-constrained sequential patterns with
constraint programming. Constraints pp. 1–23 (2017)

5. Bessiere, C., Régin, J.C.: Arc consistency for general constraint networks: prelim-
inary results. In: International Joint Conference on Artificial Intelligence (IJCAI)
(1997)

6. Bonchi, F., Lucchese, C.: On closed constrained frequent pattern mining. In: ICDM
’04. Fourth IEEE International Conference on Data Mining. pp. 35–42 (Nov 2004)

7. Borgelt, C.: Efficient implementations of Apriori and Eclat. In: FIMI: Workshop
on Frequent Itemset Mining Implementations (2003)

8. Borgelt, C.: Frequent item set mining. Wiley Interdisciplinary Reviews: Data Min-
ing and Knowl. Discovery 2(6), 437–456 (2012)

9. Bringmann, B., Zimmermann, A.: Tree 2–Decision Trees for tree structured data.
In: European Conference on Principles of Data Mining and Knowledge Discovery.
pp. 46–58. Springer (2005)

10. Bringmann, B., Zimmermann, A., De Raedt, L., Nijssen, S.: Don’t be afraid of
simpler patterns. In: PKDD. vol. 4213, pp. 55–66. Springer (2006)

11. Cheng, H., Yan, X., Han, J., Philip, S.Y.: Direct discriminative pattern mining
for effective classification. In: Data Engineering, 2008. ICDE 2008. IEEE 24th
International Conference on. pp. 169–178. IEEE (2008)

12. Cheng, K.C., Yap, R.H.: An MDD-based generalized arc consistency algorithm for
positive and negative table constraints and some global constraints. Constraints
15(2), 265–304 (2010)

13. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining.
In: International Conference on Knowledge Discovery and Data Mining (SIGKDD).
pp. 204–212 (2008)

14. Demeulenaere, J., Hartert, R., Lecoutre, C., Perez, G., Perron, L., Régin, J.C.,
Schaus, P.: Compact-Table: Efficiently Filtering Table Constraints with Reversible
Sparse Bit-Sets, pp. 207–223. Springer (2016)

15. Deshpande, M., Kuramochi, M., Wale, N., Karypis, G.: Frequent substructure-
based approaches for classifying chemical compounds. IEEE Transactions on
Knowledge and Data Engineering 17(8), 1036–1050 (2005)

16. Fan, W., Zhang, K., Cheng, H., Gao, J., Yan, X., Han, J., Yu, P., Verscheure, O.:
Direct mining of discriminative and essential frequent patterns via model-based
search tree. In: Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining. pp. 230–238. ACM (2008)

17. Gecode Team: Gecode: Generic constraint development environment (2006), avail-
able from http://www.gecode.org

18. Google: Google optimization tools (2015), available from https://developers.
google.com/optimization/

http://www.gecode.org
https://developers.google.com/optimization/
https://developers.google.com/optimization/

19. Guns, T., Nijssen, S., De Raedt, L.: Itemset mining: A constraint programming
perspective. Artificial Intelligence 175(12-13), 1951–1983 (2011)

20. Jabbour, S., Sais, L., Salhi, Y.: The top-k frequent closed itemset mining using top-
k sat problem. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. pp. 403–418. Springer (2013)

21. Jabbour, S., Sais, L., Salhi, Y.: Mining top-k motifs with a sat-based framework.
Artificial Intelligence (2015)

22. Kemmar, A., Loudni, S., Lebbah, Y., Boizumault, P., Charnois, T.: PREFIX-
PROJECTION global constraint for sequential pattern mining. In: International
Conference on Principles and Practice of Constraint Programmingn (CP). pp. 226–
243. Springer (2015)

23. Knuth, D.: The Art of Computer Programming: Combinatorial Algorithms, vol. 4.
Addison-Wesley (2015)

24. Lazaar, N., Lebbah, Y., Loudni, S., Maamar, M., Lemière, V., Bessiere, C., Boizu-
mault, P.: A global constraint for closed frequent pattern mining. In: International
Conference on Principles and Practice of Constraint Programmingn (CP). pp. 333–
349. Springer (2016)

25. Lecoutre, C.: STR2: optimized simple tabular reduction for table constraints. Con-
straints 16(4), 341–371 (2011)

26. Lhomme, O.: Quick shaving. In: Proceedings of the 20th national conference on
Artificial intelligence-Volume 1. pp. 411–415. AAAI Press (2005)

27. Morishita, S., Sese, J.: Traversing itemset lattice with statistical metric pruning.
In: Vianu, V., Gottlob, G. (eds.) Proceedings of the Nineteenth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, May 15-17,
2000, Dallas, Texas, USA. pp. 226–236. ACM (2000)

28. Negrevergne, B., Dries, A., Guns, T., Nijssen, S.: Dominance programming for
itemset mining. In: Data Mining (ICDM), 2013 IEEE 13th International Confer-
ence on Data Mining. pp. 557–566. IEEE (2013)

29. Negrevergne, B., Guns, T.: Constraint-based sequence mining using constraint pro-
gramming. In: CPAIOR 2015. pp. 288–305. Springer (2015)

30. Nijssen, S., Guns, T.: Integrating constraint programming and itemset mining. In:
ECML PKDD 2010 European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases. pp. 467–482 (2010)

31. Nijssen, S., Guns, T., De Raedt, L.: Correlated itemset mining in ROC space:
a constraint programming approach. In: International Conference on Knowledge
Discovery and Data Mining (SIGKDD). pp. 647–656. ACM (2009)

32. Nijssen, S., Zimmermann, A.: Constraint-Based Pattern Mining, pp. 147–163.
Springer (2014)

33. OscaR Team: OscaR: Scala in OR (2012), available from
https://bitbucket.org/oscarlib/oscar

34. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-
sets for association rules. In: Beeri, C., Buneman, P. (eds.) Database Theory -
ICDT ’99, 7th International Conference, Jerusalem, Israel, January 10-12, 1999,
Proceedings. Lecture Notes in Computer Science, vol. 1540, pp. 398–416. Springer
(1999)

35. Perez, G., Régin, J.C.: Improving GAC-4 for table and MDD constraints. In: Inter-
national Conference on Principles and Practice of Constraint Programmingn (CP).
pp. 606–621. Springer (2014)

36. Rácz, B.: nonordfp: An FP-growth variation without rebuilding the FP-tree. In:
FIMI: Workshop on Frequent Itemset Mining Implementations (2004)

37. de Saint-Marcq, V.l.C., Schaus, P., Solnon, C., Lecoutre, C.: Sparse-sets for domain
implementation. In: CP workshop on - Techniques foR Implementing Constraint
programming Systems (TRICS). pp. 1–10 (2013)

38. Stuckey, P.J., Becket, R., Fischer, J.: Philosophy of the minizinc challenge. Con-
straints 15(3), 307–316 (2010)

39. Uno, T., Kiyomi, M., Arimura, H.: LCM Ver.3: Collaboration of array, bitmap and
prefix tree for frequent itemset mining. In: Proceedings of the 1st international
workshop on open source data mining: frequent pattern mining implementations
(OSDM ’05). pp. 77–86. OSDM ’05, ACM (2005)

	CoverSize: A Global Constraint for Frequency-based Itemset Mining

