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Abstract. Block modeling has been used extensively in many domains
including social science, spatial temporal data analysis and even medi-
cal imaging. Original formulations of the problem modeled the problem
as a mixed integer programming problem, but were not scalable. Subse-
quent work relaxed the discrete optimization requirement, and showed
that adding constraints is not straightforward in existing approaches. In
this work, we present a new approach based on constraint programming,
allowing discrete optimization of block modeling in a manner that is not
only scalable, but also allows the easy incorporation of constraints. We
introduce a new constraint filtering algorithm that outperforms earlier
approaches, in both constrained and unconstrained settings. We show its
use in the analysis of real datasets.

1 Introduction

Block modeling has a long history in the analysis of social networks [31]. The
core problem is to take a graph and divide it into k£ clusters and interactions
between those clusters described by a k x k image matrix. The purpose is to
summarize a complex graph to be better understood by humans.

More formally, in its simplest formulation, the core problem is: given a graph
G(V,E) whose n x n adjacency matrix is X, simplify X into a symmetric
trifactorization FMFT. Here F is an n x k block allocation matrix with the
blocks/clusters stacked column wise, and F; ; € {0,1}. M is a k x k interaction
(image) matrix showing the interaction between blocks. The objective function
is to minimize the reconstruction error || X — FMFT||.

This block modeling formulation has the advantage of identifying structural
equivalence: if the reconstruction error is 0, any instance in cluster ¢ must have
the exact same neighbors in the graph. The reconstruction error (||X — FMFT||)
counts the number of edges that violate this property.

The original MIP formulations of block modeling were lacking in two direc-
tions. Firstly, they were not scalable; secondly, they often found results that
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were inconsistent with the expectations of domain experts. To solve both prob-
lems, the use of constraints has been studied in the literature. For example: i)
Entry level constraints such as non-negativity [30], i) Incorporating simple com-
position constraints on the blocks such as spatial continuity or together/apart
constraints [3II6], iii) Constraints on the interaction/image matrix [I5] and even
iv) simultaneous constraints on blocks and interaction/image matrices [2].

However, each of these studies yielded a different type of solver that is only
scalable for one specific problem setting. For example, in [3] an update rule for
the LM method is used, and in [2] a multiplicative update rule. Hence, it is
impossible to use all of these constraints at the same time; the approaches are
either not usable or not scalable without the predefined constraints.

In this paper we propose a novel approach to block modeling based on Con-
straint Programming. The advantage of CP is that it offers a generic and modular
approach to solving constraint satisfaction and optimization problems by means
of global constraints. Global constraints can be combined to solve problems in-
volving multiple constraints. In this work, we introduce a global constraint for
block modeling. This allows solving block modeling problems under additional
constraints such as: (a) upper and lower bounds on the cluster size; (b) complex
requirements in conjunctive normal form, such as that if vertex i is in the same
cluster as j, then k& and [ must not be; (¢) constraints on the structure of the
image graph M, forcing it to be a tree, a ring graph, a star graph, ...; (d) con-
nectivity constraints: we can require that the subgraph induced by the nodes in
each cluster is connected; (e) bin packing constraints: given a weight for each
vertex, limit the total weight of each cluster; and more.

Such constraints now allow combining strong semantic knowledge (the con-
straints) along with empirical evidence (the graph).

The focus of this work is primarily on how to build a filtering algorithm
for block modeling that works well in practice. We will demonstrate this on a
number of experiments on both datasets used in earlier studies and new problems
that we propose in this work. We will show that our propagator is correct for
the constraint that it implements and outperforms other methods by orders of
magnitude.

2 Related Work

Block modeling in practice has two core computational challenges: i) the problem
needs to be solved as a discrete optimization problem to be truly interpretable.
ii) constraints are required to make results realistic in that they are consistent
with human expectations.

Take for example the application of block modeling on Twitter data from
the US elections. Each person/account should be allocated to a cluster, and we
wish to efficiently find clusters consistent with our expectations (i.e. that Donald
Trump will not be in the same cluster as Hillary Clinton).

There have been two lines of work to address both challenges, but no work
attempts to address both. There are some MIP formulations of block modeling
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[9], but as we show in this paper (Table |3) their run time is extremely slow.
Instead, most work has focused on relaxing the problem to a continuous problem
and adding constraints. There are a plethora of such constraints, some of which
we outline in Table[]] Unfortunately, these methods cannot be combined to create
a block modeling solver that uses all constraints as they use different underlying
solving methods. Furthermore, these solvers do not yield exact solutions for the
discrete allocation problem. All of these constraints and others mentioned in the
introduction (i.e. cardinality constraints) can however easily be encoded in our
exact CP model.

Table 1. A list of some complex constraints used to solve continuous optimization
versions of block modeling. These methods cannot be combined as they use different
underlying solvers, whereas our method can address all of these constraints.

Constraint Description Solver Used

Spatial Continuity [3] A soft constraint based on a kernel ~ Additive Update Rule

Path [2] All nodes in a block have a path Multiplicative Update Rule
to each other
Composition [I6]  Must-link/cannot-link constraints Gradient Descent
Image Structure [I5] Constraints on image matrix Gradient Descent

3 Problem Statement: Block Modeling for Structural
Equivalence

The assumption underlying block modeling is that every vertex plays a role in
the network, and the ties that this vertex will have with other vertices depend on
their respective role. Vertices playing an equivalent role are grouped in clusters,
and the structure of the graph is summarized with the graph of connections
between the different clusters (the image graph).

Different definitions of equivalence between vertices have been proposed in
the block modeling literature. The one most commonly used, called “structural
equivalence”, dictates that two vertices are equivalent if they are connected to
exactly the same other vertices in the network [22]. Formally, given a graph
G = (V,E), vertices u,v € V are structurally equivalent v = v if and only if
VeeV:(ux) € E < (v,z) € EA(z,u) € E < (x,v) € E.

For example, consider the digraph, along with its adjacency matrix, in
Vertices 1 and 2 are structurally equivalent, since they are both connected
to vertices 3 and 4 and nothing else. The equivalence classes according to =
define a partition of the vertices into to three clusters, V7 = {1,2}, Vo = {3,4}
and V3 = {5}. Observe that in the adjacency matrix, the rows and columns of
equivalent vertices are identical. This gives rise to blocks in the matrix, delimited
by lines in In this example, the vertices of the same block are numbered
sequentially, but in practice the rows and columns have to be reordered to show
the blocks in the matrix. Structural equivalence dictates that blocks be either
Null blocks (containing only 0) or Complete Blocks (containing only 1) [4].
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Fig. 1. Small digraph along with its adjacency matrix X. According to structural
equivalence, 1 =2 and 3 = 4.
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Fig. 2. Image graph of along with its image matrix M.

The image graph is shown in It has one vertex for each cluster,
and the edges are given by the blocks in X. We can reconstruct the adjacency
matrix X from the image matrix M in the following way. Let F' be a 5 x 3 matrix
such that Fj, = 1 if vertex 4 is in cluster k, otherwise F;; = 0. Then we have
X = FMFT, where FT is F transposed.

Structural equivalence is a very strong requirement. In order to deal with the
noise in real-world data, we will look for an F and M which approximate the base
graph X with the least error, for a fixed model size k. We define the error (the
cost of the solution) as the number of edges which must be added or deleted from
our graph in order to fit the model perfectly: || X —FMFT|| = 37" | >0 | |Xi;—
(FMFT);;|. Formally, the minimization problem BLOCKMODEL(X, k) that we
are solving in the absence of other constraints is as follows: given X € B"*" a
binary adjacency matrix and number of clusters k, find F' and M such that

min || X — FMFT|| (1)
F,M
k
st Y Fie=1 Vi e {1.n} (2)
c=1
Y Fie>1 Ve e {1.k}. (3)
i=1

F € B"** is the indicator matrix and M € B*** is the image matrix of our
model. Equation ensures that vertices are assigned to one cluster only, while
equation ensures that there are no empty clusters. To this model, additional
constraints can be added.

4 CP Model for Block Modeling with a Global Constraint

The main contributions of this paper are (1) a CP model for the block modeling
problem, (2) a global constraint used in this model, that we call blockModelCost,
and (3) a tailored filtering algorithm for this constraint. We first describe the CP
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model, with its variables and constraints. Afterwards, we present the global con-
straint and its filtering algorithm. Finally, we present a heuristic and symmetry
breaking scheme for the CP solver based on the global constraint.

There are four groups of variables in our model: the cluster variables C, the
image matrix variables M, the block cost variables cost and the total cost of our
solution totalCost. They are presented in this table:

Variable Domain Interpretation

C; {1..k} C; = cif vertex i is in cluster ¢

Mg {0,1} Mg = 0 if the submatrix of rows in cluster ¢ and columns in
cluster d is a Null block, and M4 = 1 if it is a Complete Block

costeg  {0..n%} Number of entries in the submatrix ¢, d which do not match
Mcd

totalCost {0..n%} The cost of the solution || X — FMFT||

The variables are subject to the following constraints:

— sum(cost, totalCost), which ensures that the total cost of the solution and
the individual cost of every block stays consistent: 3% | 3% cost.y =
totalCost. This constraint is already implemented in most CP systems.

— atLeast(1,C,¢),Ve € {1..k}, which ensures that every value between 1 and
k appears at least once in C — i.e. there are no empty clusters, as per

— blockModelCost(X, M, C, cost, totalCost). This is the global constraint that
we add to the solver, which filters the values of the different variables along
the search. It ensures 7' | 3" | |Xi; — Mc,c,| < totalCost and
Z?:l Z;L:l(ci = C) : (CJ = d) . |Xij - Mcd‘ < costeq VC, d.

Note that the constraint of equation (vertices can only be in one cluster)
is implicitly modeled by the variable C. Since in the final solution, all variables
must be bound to a single value, no vertex is bound to more than one cluster.

The model can be extended with any set of existing additional constraints
present in CP systems, on any of the variables, such as cardinality constraints
or connectivity constraints.

5 A Global Constraint for Block Modeling

A global constraint [20] is a constraint that captures a relationship between
a number of variables. Typically, a global constraint, as this one, can also be
decomposed into several simpler constraints but considering it globally permits
filtering more impossible values and is often also faster [7]. Global constraints
are thus key to prune the search tree and solve complex problems efficiently
with CP. The filtering algorithm of the global constraint is called every time
the domain of one variable in its scope changes. This filtering does not need to
be complete, although it needs to be able to check the feasibility when all the
variables are bound and it must also guarantee that no valid values are removed.
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Table 2. Adjacency matrix with its columns and rows reordered to show the partial
assignment of vertices into clusters.

cluster 1 2 3 unbound
vertex || 1 2 7 9|5|3 4|6 8
1 -1 1
2 . 111 1|1
7 1 A .
9 . - 11
51 - - 171 1|1 1
311 1 .
41 - 1 1 . 1
61 1 1 1 -
8 111 1|1

In this subsection, we present blockModelCost, a global constraint for block
modeling. We first give a concrete example to illustrate the filtering strategies.
Then, we describe the pseudo code for the propagation method.

5.1 Illustration of the Different Filtering Strategies

To illustrate the filtering algorithm, let’s consider the following partial assign-
ment: C = ({1}, {1}, {3}, {3}, {2}, {1, 2,3}, {1}, {1,2,3}, {1}), Ve, d : Moy € {0.1},
cost.q € {0..13} and totalCost = {0..13}. In we show the adjacency ma-
trix X for this example with its rows and columns reordered to show the current
partial assignment.

Filtering costeq If we look at the submatrix defined by what is already assigned
to the block (1,1) — i.e. the northwestern block in — we see that it
contains fourteen Os and two 1s. If My ; = 0, the block should be filled with Os
so the its cost will be at least 2, because of the two 1s. It could be more than 2 if
other vertices are bound to cluster 1, but it can never be less than 2. If M; ; =1,
the cost will be at least 14, because of the fourteen 0s. Thus, we can increase
the lower bound of the domain of cost; ; to 2. Doing this for all blocks, we get

{2.13} {1..13} {2..13}
cost = | {0..13} {0..13} {0..13}
{3..13} {0..13} {1..13}

After propagating the sum constraint, we get totalCost € {9..13} and

{2..6} {1..5} {2..6}
cost = | {0..4} {0..4} {0..4}

(3.7} {0..4} {1..5}

Filtering M.y As observed previously, setting M; ; to 1 would bring the minimum
cost of the block to 14. However, the value 14 is not in the domain of cost; 1, so
we can filter the value 1 from My i, in effect binding it to M;; = 0.
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Filtering C; If we were to assign vertex 6 to cluster 1, it would add six 1s to the
(1,1) block — three from the partial column representing edges from vertices in
cluster 1 to vertex 6, and three more from the partial row representing edges
from vertex 6 to vertices in cluster 1. Remember that M;; = 0, so each one
would increase the cost of the block. The resulting cost (8) would exceed the
maximum allowed value for cost; 1, so we can remove 1 from the domain of Cg.

Tightening the lower bound on totalCost In what has been described so far, the
lower bound of totalCost is only the sum of the lower bounds of the individual
cost variables. These take into account only the submatrix defined by the vertices
already assigned to a specific cluster. We can improve the bound by also taking
into account the unbound vertices (vertices 6 and 8 in our example). In
consider the horizontal rectangle in bold at row 6. It corresponds to the edges
going from vertex 6 to vertices in cluster 1. Since Cg € {2,3}, we do not know
yet in which block it will be, but those 4 values will stay together in the final
assignment. If the 4 values end up in a Null block, their cost will be 3, and
if they end up in a Complete block, their cost will be one, so we can at least
increase the lower bound on totalCost by one. The same can be done for all other
rectangles in the “unbound” part of except for the southeastern corner
(edges between unbound vertices). If we add all of these contributions, we get
totalCost € {12..13}.

5.2 Filtering Algorithm

The pseudocode for our propagation method is shown in Algorithm[I] In order to
filter the domains of our CP variables efficiently, the number of zeroes and ones
in the different “blocks” of our reordered matrix are computed. For efficiency
reasons, those counters are stored on a trail [27], or more exactly inside reversible
integers that are restored on backtracking. This permits an incremental update
based on the changes since the last call to the filtering algorithm without having
to worry about the restoration at backtracking. Specifically, these values are
stored as reversible integers:

— nbOBlock, a k X k array reflecting the number of zeroes already assigned to
each block: nbOBlock.y = #{Xij | C =c Cj =d, Xij = 0},

— nbORow, a n X b array where for all unbound vertices i:
I‘IbOROWZ‘C = #{X” | Cj = C, Xij = 0},

— nb0Col, a b x n array where for all unbound vertices :
IlbOCOlci = #{Xﬂ | Cj =cC, in = 0},

as well as their equivalent variables for the number of ones: nb1Block, nblRow
and nbiRow. The set of unbound vertices unboundVertices = {i € {l.n} |1 <
| dom(C;)|} is maintained in a reversible sparse set [26].

A lower bound on the cost of the block ¢, d is:

nbOBlock.q if Mg = {1}
cost(c,d) = < nbiBlock.g if Mg = {0}
min(nbOBlock.4, nb1Block.y) otherwise.
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We obtain a better bound by also maintaining rowcost, using the method
described in the earlier paragraph “Tightening the lower bound on totalCost”,
as follows:

nbORow;,. if Vd : Mg, = {1}
rowcost(c,i) = ¢ nb1Row;, if Vd : Mg, = {0}

min(nbORow;., nb1Row;.) otherwise.

Similarly we maintain colcost(c, i), defined equivalently from nb0Col and nb1Col.
They put a lower bound on the cost incurred by rows and columns of vertices
which have not been bound yet.

Finally, we can also calculate a lower bound on the added cost for block
(¢c,d) if we put vertex i in cluster z, diz(c, d) = costia(c, d) — cost(c, d) where
cost; . (c,d) is the value of cost(c, d) if vertex i is assigned to cluster x.

The first step in our algorithm is to process all the vertices that have been
bound to a cluster since the propagation method was last called, and update
the constraint’s variables. Then, we filter the CP variables cost.q with the new
lower bounds cost(c, d), and filter totalCost further with rowcost and colcost.
Then we filter the values of M4 by removing the values which lead to a cost
higher than max(cost.q). Finally, we filter the values of C; with the lower bounds
of disz(c,d). This order of steps was chosen as we found it to perform well in
practice.

5.3 Theoretical Properties of the Algorithm

The algorithm was designed with practical performance for block modeling in
mind. For example, we only implemented filtering on the lower bound of the cost
variables, since we are trying to minimize them. Of course, filtering their upper
bound would also be possible, but was not implemented since it does not help
solve the block modeling problem. Similarly, our algorithm does not have some of
the theoretical guarantees ensured by well-known other global constraints, such
as bound or arc consistency and idempotency. These would be very complex to
implement for this problem, and would not improve the performance. We will
nontheless discuss them in this section.

Soundness, Completeness and Idempotency: The filtering is sound (any pruned
value is inconsistent with respect to the objective) but it does not achieve any
classical notion of consistency. Our focus was on practical performance rather
than theoretical guarantees. We added fine-grained filtering only when it im-
proved efficiency. Consequently, propagation is also not idempotent. For exam-
ple, at the last step of Algorithm [I| (filter C) if a variable C; is bound, we do not
update the local counters and miss all further filtering arising from that if the
propagation is not called again. A while loop in the propagator would solve this,
but we found that such a loop reduces performance: intermediate propagation
by other, lighter constraints helps in practice.
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Algorithm 1 Propagation of our global constraint.

AC is a list of all the variables C; which have been bound since the last propagation
of this constraint.

32:
33:
34:

/* update local counters */

for all C; = {c¢} € AC do
unboundVertices < unboundVertices \ {i}
for all j in unboundVertices do
nblColcj += Xij;nbOColcj += (1 — X”)
nblRow;. += in;nbOROch += (1 — in)
end for
for alld =1 to k do
nb0OBlock.q += nbORow;q;nb1Block.q += nblRow;q
nbOBlocky. += nb0Coly;;nblBlocky. += nb1Coly;
end for
nbOBlocke. += (1 — Xii);nblB].OCkcc += X
: end for
: /* filter cost and totalCost */

: minCost < 0
: for all ¢,d € {1..k} x {1..k} do

update min of cost.q to cost(c,d).

minCost += cost(c, d).
: end for
: for all unbound vertex i, c =0 to k do

minCost += colcost(c, i) + rowcost(c, i)
: end for
: update min of totalCost to minCost
2 /¥ filter M */
: for all ¢,d € {1..k} x {1..k} if Mcq = {0,1} do

if nbOBlock.q > max(costeq) then M. <+ Mcq \ {0} end if
if nb1Blockeq > max(costeq) then Meg — Meg \ {1} end if

: end for
: /¥ filter C */

: for all i € unboundVertices, c € C;,d =1 to k do

if cost(c,d) + dise(c,d) > max(costeq) or cost(d, c) + dise(d, ¢) > max(costqc)
then
end if

end for

Time Complezity for One Ezxecution: For practical block modeling applications,
the complexity of one execution of Algorithm [I]is linear in terms of the number
of unbound vertices. Let us define three variables: ¢, the number of variables in
C bound since the last call, uc, the number of unbound variables in C, and k the
number of clusters. The different steps of the algorithm have these complexities:

Step 1: updating local counters : O(d¢c (uc + k))
Step 2: filtering cost and totalCost: O(k? + uck)
Step 3: filtering M: O(k?)
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Step 4: filtering C: O(uck?)

In total for one execution of the filtering algorithm this yields O(dc (uc + k) +
k? + uck + k* + uck?®) = O(6cuc + dck + uck?). The value ¢ is assumed to
be small between consecutive calls of the filtering algorithm, and the number of
clusters k is typically small (10 at most) in block modeling applications, so we
consider the complexity to be O(uc).

Time Complexity Along a Branch: We will now consider the time complexity to
reach the first solution from the root of the search tree. We consider the worst
case, i.e. there is no additional constraint on the variables, and no constraint
on the cost of the solution. We start from the root — all C and M variables
unbound — and assign a value to the variables one by one.

Let’s assign first the n variables in C, then the k? variables of M. For the
first n variables, dc = 1 and uc decreases from n — 1 to 0, giving a complexity
at each search node of O(nk?). For the last k% nodes of the search tree, ic =
0 = uc, so the complexity is O(k?). This gives a complexity along the branch of
O(n2k? + k%).

6 Search Procedure for Block Modeling

In constraint programming, the formulation of the problem is kept separate
from the search procedure. The search procedure is a branch and bound depth-
first-search. Two important components of a search procedure are the variable
and value ordering heuristics. These should permit discovering rapidly good
incumbent solutions in order to prune the search tree. Since the problem also
exhibits value symmetries, we use a dynamic symmetry breaking scheme during
the search. When the search space becomes too large, and there is no hope to
explore completely the search tree, LNS (Large Neighborhood Search) [28] can
be used on top of CP to diversify the search and discover good solutions rapidly.

Value and Variable Ordering Heuristic When arriving at a branching point in
the search, the CP solver must decide which variable to branch on and what
value to try first. These decisions are called variable ordering and value order-
ing. Selecting the right ordering for the problem can significantly improve the
efficiency of the solver.

For the CP model presented here, there are two sets of variables we can
branch on (C and M). Since the blockModelCost constraint filters mostly based
on the vertices which have been bound, it is better to branch on those before
branching on M variables. The ordering of the C variables can further be refined
with modern first-fail learning heuristics [I7/19)23]. A good value heuristic for
the clusters can also be constructed from our global constraint. We calculate
Sisa(c, d), alower bound on the added cost of assigning vertex ¢ to cluster z, so
a good heuristic is to branch first on C; = argming ., diz(c, d), i.e., branch
first on the value for which we expect the least increase in cost. Similarly for M,
we branch first on M.4 = 0 if nb1Block.y < nbOBlock.q, and M.; = 1 otherwise.



Generic Constraint-based Block Modeling using Constraint Programming 11

Symmetry Breaking for the Block Modeling Problem Symmetry breaking permits
to drastically reduce the search. Symmetries can generally be avoided by adding
constraints to the model. Unfortunately, this approach suffers from a bad inter-
action with the search as good solutions that were discovered early may become
unfeasible because of the symmetry breaking constraints [29]. Therefore, a dy-
namic symmetry breaking during search strategy is generally more efficient. At
every stage of the search, all-but one child nodes leading to symmetrical states
are discarded.

The search space for this CP formulation of the block modeling problem has
a number of symmetries. Firstly, it is clear that as long as the clusters stay the
same, their labels can be changed — i.e. for any permutation o : {0..k} — {0..k}
and any state S = (C,M), the permutated state o(S) = (0(Cy),My(s)o(x))
is symmetrical to S. If ¢’ is an automorphism of the graph X, then S’ =
(Cor(x)» Mss) is symmetrical to S. Finally, if 0" is an automorphism of the graph
M, then S” = (Ci, My (4)07(x)) has the same error as S.

In our CP model, we are only concerned with the first kind of symmetries
(permutations of the cluster labels); those are easier to break. The dynamic
symmetry-breaking scheme is: when branching on a C; variable, the solver ex-
plores branches C; = 1,C; = 2,...,C; = m + 1 where m is the largest value
bound to a C variable m = max{v | 3i: C; = {v}}.

Breaking the symmetries on the graph automorphisms of X and M is much
more complicated and has not been considered for this paper. It is nonetheless
an interesting direction for further work on this problem. For a related treatment
of symmetry breaking of graph automorphisms, see [32].

7 Experiments

7.1 Comparison with MIP Model

The block modeling problem is often approximated using heuristic search. How-
ever, an approach to find the optimal solution is proposed in [9]. It builds on
the work of [8], which defines a MIP model to find the optimal partition given a
fixed image matrix M. We expand this approach to find the optimal solution by
generating a minimal, representative set of image matrices of size k and running
the MIP solver for each matrix in this set.

In this section, we compare the performance of the CP approach with this
MIP approach. As both give exact solutions, the quality of the solutions are
identical, and we only need to compare the running time. In order to evaluate
the performance of our global constraint, we wrote three CP models. The first is
used as a baseline. It follows the mathematical formulation of the problem, and
uses our symmetry-breaking scheme. The second uses our global constraint for
filtering with the same search procedure. The third uses our global constraint
with the value ordering heuristic. The MIP model and the 3 CP approaches are
compared on four small well-studied social networks, published and analyzed
in depth in [I2] Chapters 2, 6], namely: (a) the Transatlantic Industries little
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league baseball team network, [14], (b) the Sharpstone little league baseball team
network, [I4], (c) the political actor network (PA), and [I1] (d) the Kansas search
and air rescue (SAR) network. [I3].

The CP models were written and solved in OscaR [24]. The MIP model
was written and solved in Java using Gurobi [I8]. All experiments were run on
a computer with Xeon Platinum 8160 24c/48t HyperThread processors. The
results are shown in [Table 3l

We clearly observe that the MIP approach does not scale and is inapplicable
for non-trivial sizes. The effect of our global constraint and our value heuristic
are also evident, making the search orders of magnitude faster.

Table 3. Run time of the MIP approach compared to a baseline CP approach
(CP(bsl)), a CP approach with our global constraint (CP(our)), and our constraint
+ our value heuristic (+heuris.) for different number of clusters k. “—” indicates a
timeout after 2 hours.

CPU time (s)

dataset n k MIP CP(bsl) CP(our) +heuris.
Transatlantic 13 2 1.73 0.80 0.45 0.28
3 142.25 21.15 0.88 0.79
4 — 386.20 2.94 2.07
Sharpstone 13 2 1.24 0.50 0.44 0.19
3 62.46 13.57 1.17 0.85
4 2952.13 221.41 2.78 1.82
5 — 1102.68 2.31 1.30
Political Actor 14 2 2.14 1.13 0.62 0.31
3 155.90 60.15 1.32 0.89
4 2178.42 1936.43 2.68 2.20
5 — — 2.93 2.25
Search And Rescue 20 2 13.31 22.04 0.85 0.48
3 — — 6.01 5.18

7.2 Comparison with Local Search

The global constraint can also be used in local search by doing Large Neigh-
borhood Search [28]. In this subsection, we compare the performance of the
LNS approach with a local search algorithm for block modeling bundled in the
popular graph processing software Pajekﬂ

We generated synthetic graphs with 50, 100, 150 and 200 vertices — the
classical block modeling algorithm included in Pajek [5] only supports graphs of
less than 256 vertices — with a fixed block model structure of 5 clusters. We

3 http://mrvar.fdv.uni-1j.si/pajek/
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Fig. 3. Comparison of LNS search with the local search bundled in Pajek for synthetic
dataset with 40% of noise. Each graph shows a different instance of the problem, for
n = 50 to n = 200 by increments of 50.

added 40% of noise to the data, then compared the evolution of the quality of
the solution with time for both methods. The results are shown in
For all instances over 50 vertices, the LNS method outperformed Pajek’s local
search.

7.3 Scalability

We now show the scalability of the complete search and LNS method on larger
instances. We once again generated synthetic graphs of different sizes n with a
known block model structure and 20% of noise. In the first plot of
we report the runtime until proving optimality for different sizes n and number
of clusters k. In the second plot of we plot the convergence of Large
Neighborhood Search over 10 minutes, with restarts every 1000 failed states
and relaxation of 5% of the variables. We see that, while proving optimality is
still prohibitively hard for large graphs, the LNS search converges quickly on a
solution of optimal cost, even with thousands of vertices. Note that all of these
graphs are too large for Pajek’s method, but were solved by our LNS search in
a handful of minutes.

7.4 Beyond Traditional Block Modeling

A real strength of a constraint programming formulation is the ability to add
complex constraints on the clusters or the image graph, to combine multiple
instances of the same constraint, and to optimize any of the variables. As an
illustration, we explore the use of block modeling on migration data in Europe.
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Fig. 4. Scalability on graphs with known block model and 20% of noise. The first graph
shows runtime until the solution is proven optimal. The second shows the convergence
of the solution with LNS.

In the first illustration, we add the constraint that the clusters must
be connected on the map — i.e. one can travel between any two countries of a
cluster without leaving the cluster. This connectivity constraint is very complex
to model in MIP but is an existing building block in CP [25/I0I6]. In the second
illustration, [Figure 6| we study a problem that involves multiple instances of our
global constraint: we take the migration matrix at 5 different points in time. We
build a blockmodel for each year, with the constraint that the clusters are the
same in all models. We have five block models, so we minimize the sum of their
costs. This is similar to the non-negative RESCAL setting [21].

The migration graphs were built from an open dataset provided by the World
Bank [I]. An edge X4 = 1 indicates that the number of migrants born in a
living in b is more than 0.01% of the population of a. The dataset was limited
to countries in continental Europe, excluding islands for the first illustration
because of the connectivity constraint. The models were found after a Large
Neighborhood Search of 10 minutes, with restarts after 1000 failed states relaxing
5% of the variables.

In we clearly see the ex-Soviet block appear in cluster 4, with
mostly internal migration and not much migration to Western Europe. Germany
and Switzerland appear as a core destination for migrants from most European
countries. Denmark is the only member of its cluster, but it would have been in
the same cluster as Fennoscandia if it did not violate the connectivity constraint.
In we observe for example the migration of people from Russia to
Germany in the nineties (thick arrow between 9 and 6), which we can probably
link to the fall of the Iron Curtain.

8 Conclusion and Further Work

We have introduced a CP approach to the block modeling problem, using a ded-
icated global constraint. It has the advantage of being able to easily incorporate
any combination of additional constraints, contrary to previous works. Our ex-
periments show that our approach is orders of magnitude faster than competing
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Fig. 5. A block model of migrant stocks in continental Europe in 2015, with geograph-
ically connected clusters.
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Fig. 6. RESCAL model for the evolution of migrant stocks in Europe. The edges which
appeared in a decade are rendered in thick stroke, and those which disappeared are in
dotted red stroke.

solutions to find optimal block models. Our CP formulation can also be used for
heuristic search with Large Neighborhood Search.

This work could be further expanded with an equivalent global constraint
for regular equivalence or generalized blockmodeling [12]. The search could be
accelerated by breaking symmetries on the automorphisms of X and M and
considering more advanced variable ordering schemes.
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