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Abstract. This paper introduces SolverCheck, a property-based test-
ing (PBT) library specifically designed to test CP solvers. In particular,
SolverCheck provides a declarative language to express a propagator’s
expected behavior and test it automatically. That language is easily ex-
tended with new constraints and flexible enough to precisely describe
a propagator’s consistency. Experiments carried out using Choco [41],
JaCoP [27] and MiniCP [35] revealed the presence of numerous non-
trivial bugs, no matter how carefully the test suites of these solvers have
been engineered. Beyond the remarkable effectiveness of our technique
to assess the correctness and robustness of a solver, our experiments
also demonstrated the practical usability of SolverCheck to test actual
CP-solvers.

Introduction

Constraint Programming (CP) owes much of its success to the declarative aspect
of its models and the expressiveness of its constraints. Obviously, CP wouldn’t
have been the achievement we all know if it weren’t for the efficiency of the
propagators that have been devised over the years to enforce some degree of
consistency for the constraints enlisted in the catalog [5]. E.g. alldiff [42], reg-
ular [40], element [24]. Nevertheless, the success of the tools developed in our
community remains fragile as results of a solver might all be invalidated by
a bogus implementation of one single propagator. As it turns out, the algo-
rithms and data structures involved in those propagators are quite advanced
and sometimes rely on state-restoration mechanisms. This is why, ensuring the
correctness and robustness of their implementation is crucial to the success of
CP as a whole. However, checking the correctness of a propagator by focusing
solely on the absence of solution removal is far from enough. Indeed, in order
to be able to tackle real world problems, it is essential that a solver be both
correct and efficient. In practice, the efficiency of a propagator results from a
balance between the strength of the enforced consistency and the complexity of
the algorithm used to implement it. Hence, being able to test the consistency
level imposed by a propagator becomes a necessity. Else, should the consistency

* Massart and Rombouts have worked on a preliminary version of this work for their
MSc. thesis which we supervised. They presented it at the CP-2018 Doctoral Pro-
gramme [33].
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be weaker than announced, some problem instances might become intractable
and that intractability could hardly be analyzed or reasoned about.

In that context, we propose SolverCheck: an open-source property-based test-
ing (PBT) library inspired by QuickCheck [I3] for Haskell. It has been specifically
designed and engineered to improve the quality of the tests used to validate CP
solvers. In practice, SolverCheck makes it easy to both test the correctness of
the propagators and to test the level of consistency enforced by the latter. More-
over, SolverCheck aims at being an extensible framework. Therefore, it comes
with simple interfaces through which a user can easily describe the relation im-
posed by a new constraint. Concretely, this relation is described using a Checker,
a predicate deciding whether or not a tuple belongs to the constraint relation.
Similarly, the consistency level that can be tested need not necessarily be one
of the classical consistency level (DC, BC(D), BC(Z), RC, FC)[6] as Solver-
Check permits the definition of custom mixed consistencies matching the exact
expected behavior of some given propagator. Additionally, SolverCheck is able
to perform dynamic checking and hence to explicitly test the correctness of the
state-restoration mechanisms involved in the targeted propagators.

Our contribution with this paper is the following: we propose SolverCheck as
a DSL and tool to help improve the quality and robustness of JVM-based CP
solvers. Given the very implementation-minded nature of the CP community, we
hope that it can benefit the whole community and foster further innovation in
the same way as Minizinc [36], XCSP3 [7], CPViz [44], Essence [23], etc... have
in the past.

Outline The rest of our paper is organized as follows: Sections [I| and [2| present
the background material necessary to understand the purpose and methodology
applied in SolverCheck. Then, Section [3] briefly presents other related lines of
research and how these relate to our work. After that, Section [] introduces the
various capabilities of SolverCheck through a simple yet illustrative example.
Section [5] gives some more details relative to the implementation of our tool.
Finally, Section [6] reports on the experiments that were made to validate the
effectiveness and practical usability of SolverCheck before conclusions are drawn
in Section

1 Property-based testing

SolverCheck adopts the so-called property-based testing paradigm which tack-
les the weaknesses of the classical example-based testing methodology. All the
open-source solvers that we are aware of, in particular Gecode [46], Choco [41],
JaCop [27], Or-tools [38], OscaR [39], and MiniCP [35], maintain a test suite to
test the solver at the granularity of the constraints. The test suites of most of
the solversﬂ follow the classical example-based approach.

1 Gecode, and likewise Choco for some of its propagators, are a notable exception
which is covered in the related work section.
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As the name suggests, example-based testing relies on a tester to describe
concrete situations (example, with actual variables and domain instantiation)
supposedly representative of a class of errors. By combining many such exam-
ples, the tester creates a broad test suite covering a large number of poten-
tial problems. However, we point out two weaknesses of this approach. First,
example-based unit tests are expensive to write and to maintain. Manually find-
ing interesting instances to test is no easy task. It requires some expertise and
intuition. Also, test code is often treated as a second class citizen: the quality
standards applied to that fraction of the code are less stringent than for the rest
of the code base. Therefore, it results that the code composing the test suites
is often crippled with duplicate fragments. Moreover, the hard-coded instances
fail to clearly communicate the intent regarding what important property is be-
ing tested with a given example. For instance, the objective of testing a global
constraint’s consistency level does not shine from any given test example. Add
to that picture the fact that example-based tests often opt for an all imperative
coding style, and the original goal of the test becomes difficult to grasp. Mean-
while, example-based testing does not offer any means to improve on that floor
or to test that kind of property in a generic way.

Property-based testing (PBT) addresses those weaknesses by a combination
of fuzzing [45] and formal specification. Doing so, PBT changes the role of the
test engineer. With PBT he must express the general properties that must hold
for all executions of a given software rather than manually crafting lots of test
cases (example-based testing). These properties are expressed in a high-level
declarative language which abstracts away the details of actual test cases. As
the name suggests, this method is test-based. Hence, it is inherently incomplete.
Nevertheless, moving the burden of actual test case generation from the human
tester to an automated tool makes PBT a remarkably effective approach to
identifying bugs in practice.

2 Mixed consistency

In order to solve a CSP, filters are used to reduce the search space. A filter applied
on a constraint aims at establishing some consistency property of this constraint
by removing some values in the domain of its variables, without removing any
solutions. We thus hereby only consider filters for domain-based consistencies.
That is filters reducing the domain of variables.

In particular, we would like to set the focus on filters where different consis-
tencies are mixed in a constraint. The idea of mixed consistency is to maintain
different levels of consistency on the different variables of a constraint. The con-
cept of mixed consistency has been introduced in [I7] to handle graph and set
variables. It is also used in [29J31].

A constraint ¢ over the variables (z1,...,x,) (its scope) is a relation over the
values of the variables. Like any relation, a constraint ¢ can either be defined in
extension as the set of all the n-tuples belonging to ¢. Or it can be defined in
comprehension using a checker c(vy,...,v,) stating if (vy,...,v,) belongs to c.
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The domain of a variable x is a finite set of discrete values D(x) < Z. It
inherits the usual properties of proper finite subsets of Z. In particular, it is either
empty or it has a minimum (noted [b(D(x))) and a maximum (noted ub(D(z))).
We denote D the set of tuples D(z1) x ... x D(x,). A tuple 7 = (v1,...,v,) is
said to be valid if 7 € D. The element v; of the tuple is denoted 7;.

A partial assignment is a mapping associating a domain to each variable.

The idea of support is central in the notion of consistency. Intuitively, a
support of a value of a variable is a valid tuple, involving this value and satisfying
the constraint. The definition of support can also be extended by considering sets
larger than the actual variables domains. For instance, one can consider all the
integer values between the bounds of the domain. We define D%(z) = {v € Z |
Ib(D(z)) < v < ub(D(x)}.

Definition 1. A support on ¢ of (z;,v) in D is a tuple 7 € D such that 7 € ¢
and 7; = v. A bound(Z) support on ¢ of (z;,v) in D is a tuple T € D? such that
TEC and T; = v.

Different classical levels of consistency can now be defined. Each consistency,
however, focuses on a single variable of the constraint. This will allow to later
combine them in a mixed consistency.

Definition 2. (DC) A constraint ¢ is domain consistent on x; with respect to
D iff Vv € D(x;), there exists a support on ¢ of (x;,v) in D.

Definition 3. (RC) A constraint c is range consistent on x; with respect to D
iff Vv € D(x;), there exists a bound(Z) support on ¢ of (x;,v) in D.

Definition 4. (BC(D)) A constraint ¢ is bound(D) consistent on xz; with respect
to D iff (x;,lb(D(x;))) and (z;,ub(D(z;)) have a support on ¢ in D.

Definition 5. (BC(Z)) A constraint c is bound(Z) consistent on x; with respect
to D iff (x;,1b(D(x;))) and (z;,ub(D(x;)) have a bound(Z) support on c in D.

Definition 6. (FC) A constraint ¢ is forward checking consistent on z; with
respect to D iff when forall j # i D(x;) is a singleton, then c is domain consistent
on x; with respect to D.

Mixed consistency can now be defined with a consistency level associated to
each variable of the constraint.

Definition 7. Let & = (¢1,...,¢n) with ¢; € {DC, RC, BC(D), BC(Z), FC}.
The constraint ¢ is @ mixed consistent with respect to D iff ¢ is ¢; consistent on
x; with respect to D.

When @ is a constant tuple, the above definition reduces to the standard
definition of domain consistency or to the other standard levels of consistencies.

Given a cousistency ¢ and a constraint ¢, we associate a filter ¢.(x, D) yield-
ing a domain D’ such that D' € D, cn D = ¢~ D’ (same solutions) and ¢ is ¢;
consistent on x with respect to D’. A filter ¢.(D) is also associated to a tuple
of consistency @. It yields a domain D’ such that D' € D, ¢cn D = c¢n D’ (same
solutions) and ¢ is @ mixed consistent with respect to D’.
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Ezxample 1. Given an array A of integer values, and two variables z,y, the
element(A,x,y) constraint [24] is satisfied whenever A[xz] = y. It is not un-
common for CP-solvers to implement a filter achieving the mixed consistency
(RC,BC(D)) on the two variables (z,y). This kind of filter ensures that all val-
ues in the domain of 2 have a bound(Z) support, and that {b(y) and ub(y) have
a support.

Algorithm [I]is a basic implementation of a filter, parameterized with a tuple
of filters, achieving mixed consistency. This algorithm repeatedly reduces the
domain of each individual variable x; using its associated filter until a fixed point
is reached. Assuming all the filters on the variables are correct, this algorithm
yields a domain D’ such that D’ € D, ¢cn D = ¢ D’ (same solutions) and ¢ is
& mixed consistent with respect to D’.

Algorithm 1: Filter achieving mixed consistency

1 Filter &.((¢1,...,¢n),D)

2 fixedpoint < False ;

3 while /fizedpoint do

4 fixedpoint < True;
5 foreach z; € scope(c) do
6

7

8

9

D, « ¢i(xi, D) ;

if D, .isEmpty() then return Fail ;
fixedpoint « fixedpoint A D(x;) = Dy, ;
D(a:) « Di;

10 return D ;

Generally speaking, a filter of a constraint modifies domains. A filter f. should
be contracting (f.(D) € D) and idempotent, that is a repeated application of
the filter does not further reduce the domain (f.(f.(D)) = f.(D)). In [43],
Schulte and Tack have shown that weak monotony is the minimal necessary
condition that any filter must fulfill in order to guarantee the soundness and
the completeness of constraint propagation. A filter f. is weakly monotonic iff
VD,Yv € D : f.({v}) € fc(D). A correct filter for some constraint c¢ is thus
necessarily weakly monotonic and contracting. The corollary of this property is
that a correct filter behaves as the checker applied to a singleton domain (i.e. an
assignment).

Two filters f1, fo of a given constraint can be compared thanks to their rel-
ative strength. A filter f; is said to be stronger than fo (noted f; & fp) iff
VD : f1(D) € fo(D). Similarly, f; is said to be weaker than fo (f1 2 fo) iff fo
is stronger than fi. Finally, f; and f5 are equivalent whenever both f; & fo and
f1 2 f2 hold.

This paper aims at comparing filters. Therefore, we will say that a filter
realizes a given consistency ¢ if it does not remove any further values than the
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ones required per the consistency definition. That is, we say that a filter realizes
the consistency ¢ iff it is the weakest filter (removing as few values as possibly
can) complying with the definition of ¢. Any other filter also realizing ¢ that
removes additional (non-solution) values is therefore stronger than ¢.

Ezample 2. Tt is clear from definition [2 and [4] that whenever a filter f realizes
DC, it also realizes BC(D). However, f possibly removes more values than a
hypothetical filter g that enforces BC(D) but not DC. Hence, we have f C
g. Thus, f is not the weakest filter realizing BC(D). Therefore, in this paper,
we would not say that f is equivalent to BC(D) — although it realizes that
consistency. Instead, we would say that f is stronger than BC(D).

3 Related work

The purpose of our research differs from the line of work started in the late
‘80s [15I200T4I34128]. Indeed, that rich body of investigations aimed at verifying
whether the CP program (today, one would rather talk about CP model instead)
was correct. SolverCheck, on the other hand, aims at testing the implementation
of a CP solver, which is a different concern by large. It also differs from the
research embodied in FocalTest [I1] which uses CP to define smart generators
for PBT. Instead, SolverCheck provides a PBT library to assess the correctness
and robustness of CP solvers.

Even though the properties to be tested are formally specified, SolverCheck is
a testing library, not a formal verification tool. That distinction typically makes it
simpler to use. Indeed, despite the many advances in the domain, proof-checkers
for general purpose languages either require some human guidance, do not sup-
port all language constructs [I4], or are currently unable to deal with programs
as large and complex as modern CP-solvers [22I2T)26]. Similarly, as of today,
formally certified CP solvers [T9I12] are nowhere close to the state of refinement
and efficiency of state-of-the-art solvers. For instance, these rely on (efficient
but suboptimal) OCaml code extracted from Coq [47] and only support con-
straints of arity greater than 3 through a decomposition into equivalent binary
constraints (using the hidden variable encoding) [18].

Recently, the SAT/SMT/ASP/QBF communities have undertaken a line of
work that closely relates to ours [QI8337]. Just like SolverCheck, these tech-
niques also apply fuzzing in order to ensure the quality of the tools they develop.
However, that body of work ignores the specifics of a CP solver. In particular,
they disregard consistency related issues (mixed or not). Meanwhile, as explained
earlier, this is one of the essential aspects of the reasoning and development of
a CP solver.

As it has already been mentioned, Gecode [46] and Choco [4I] adopt an
original test strategy which allows them to test the consistency (DC, BC(D))
imposed by some of their propagatorsﬂ Their approach, albeit elegant and ef-

2 Actually, both solvers adopt a slightly different approach, but this is not relevant
for our matter as they are based on the same idea. For the full details, see http:
/ /bit.ly /cst-gecode| and http://bit.ly/cst-choco.
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ficient, is unable to deal with mixed consistencies (eg. that of the element [24]
constraint).

Last year, Akgiin et al. proposed at the CP conference an interesting ap-
proach based on metamorphic testing [2] to test the implementation of a solver.
Their goal, as well as their initial intuition is the same as those behind Solver-
Check. Both target the testing of propagators implemented in actual CP solvers,
and both rely on having two distinct implementation of each filter. However, their
approach relies on the table propagator from the target solver and requires the
test-engineer to provide a table with all the solutions of the tested constraint
(the authors of [2] provide a python function to help alleviate that burden).
SolverCheck uses a different approach: it automatically derives a naive alternate
implementation of the propagator which is completely independent from the tar-
get solver. Moreover, SolverCheck sets the focus on mixed consistencies, which
is not the case of [2]. Additionally, the approach used in SolverCheck makes it
easy to test properties that do not depend on a specific consistency level such as
“stronger filtering”. This kind of comparison is particularly well suited to compare
the filtering for NP-hard constraints such as bin-packing [16].

4 What SolverCheck has to offer

We will use the example reproduced in Listing|l.1|as a starting point. The latter
is actually the verbatim copy of a property we specified when writing a test suite
for JaCoP.

Listing 1.1: Example: JaCoP LexOrder(<) must enforce GAC.

1 Q@Test

2 public void statelessLexLE() {

3 assertThat (

4 forAl1(1list0f ("x", jDom())).assertThat(x ->

5 forAll(list0f("y", jDom())).assertThat(y ->

6 a(statelessJacopLexOrder (false))

7 .isEquivalentTo (arcConsistent (lexLE(x.size(), y.size())))
8 .forThePartialAssignment (x, y)

9 )));

10 }

11

12 // Generate a domain respecting JaCoP’s documented limits
13 public GenDomainBuilder jDom() {

14 return domain().withValuesBetween (

15 IntDomain.MinInt,
16 IntDomain.MaxInt);
17}

18 // Discriminate solutions from non-solutions
19 public Checker lexLE(int x_sz, int y_sz) {
20 return assignment -> {

21 var xs = assignment.subList (0, x_sz);

22 var ys = assignment.subList(x_sz, x_sz+y_sz);
23 for (int i=0; i < min(x_sz, y_sz); i++) {

24 if (xs.get(i) < ys.get(i)) return true;

25 if (xs.get(i) > ys.get(i)) return false;

26 }

27 return x_sz <= y_sz;

28  };

29 }

30 // Adapter to expose the actual constraint as a SolverCheck Filter
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31 private Filter statelessJacopLexOrder (final boolean 1lt) {

32 return partialAssignment -> {

33 Store store = new Store();

34 IntVar [J[] vars = componentsToVars(store, partialAssignment);
35 store.impose (new LexOrder (vars[0], vars[1], 1t));

36 if (!store.consistency()) {

37 return PartialAssignment.error(partialAssignment.size());
38 } else {

39 return vars2Partial (vars);

40 }

41 };

42}

4.1 Declarative testing

The declarative aspect of the test code reproduced in Listing [I.1] is obvious. No
mention is ever made in the code about any concrete test case. Instead, that code
snippet uses a declarative style close to that of a domain-specific-language to
express a property, a specification of what the code should do. The details of the
actual tests that are used to validate the implementation are left to the system.
Assuming a basic knowledge of Java, it is clear from Listing[I.I]that any reader —
familiar with SolverCheck or not — will grasp the expressed property (lines 3-9).
In our example, it states that for any two given lists  and y of variables, the
filtering of the domains imposed by the actual LexOrder constraint from JaCoP
should strictly enforce domain consistency.

All the other functions declared in the example are actually utility methods:
jDom() (lines 13-17) provides a means to generate pseudo-random domains E|
having their values in the range of values accepted by JaCoP. The 1lexLE()
method (lines 19-29) returns a Checker for the Lex constraint. That is, it returns
a predicate deciding whether or not an assignment belongs to the constraint
relation. The Checker API is SolverCheck’s mechanism to test constraints that
are not built in the framework. The statelessJacopLexOrder () method (lines
31-42) adapts the actual constraint from JaCoP (LexOrder) and exposes it as a
Filter that SolverCheck can interact with.

4.2 Consistency

Despite its apparent simplicity, the example from Listing[I.1]is a good illustration
of the flexibility provided by SolverCheck. It shows how to parameterize the con-
sistency level used to test a given propagator. It would only take a change of line 8
in the example to modify the property expressed in Listing [I.I] and let it state
that the propagator should enforce BC(Z) rather than DC. For that purpose,
the only change required would be to replace arcConsistent (1exLE(x.size(),
y.size()))) by boundZConsistent (lexLE(x.size(), y.size()))).

Because solvers developers tend to be pragmatic people who favor general
case efficiency over the compliance to pure mathematical consistency definitions,
it is often the case that discrepancies exist between the implemented artifacts

3 sets of pseudo-random int
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and the theoretical framework. To cope with that reality, SolverCheck offers fa-
cilities to express that a filtering should be stronger than (isStrongerThan(-)),
weaker than (isWeakerThan(-)) or equivalent to (isEquivalentTo(-)) a given
consistency level. This is illustrated by line 7 in our illustrating example. How-
ever, a relative positioning wrt a "standard" consistency level might be deemed
too weak. This is why SolverCheck also supports the definition of custom mixed
consistencies. The example of Listing [I.2] illustrates how the exact mixed con-
sistency of a propagator is specified with SolverCheck (line 8). That example
shows that for any array A of integer and pair of variables x and y, MiniCP’s
element(A,x,y) = A[x] = y constraint does not comply with any of the stan-
dard consistencies. Instead, the property states that each value in the domain of
x should have a support in y whereas only the upper and lower bounds of D(y)
should have a support in . Additionally, this example illustrates (line 3) how a
time limit can be set to check a property.

Listing 1.2: A[x] = y has a mixed consistency

1 Q@Test

2 public void elementIsHybridConsistent () {

3 given (TIMELIMIT, TimeUnit.SECONDS).assertThat (

4 forAll (1listOf ("A", integer ())).assertThat (A ->

5 forAll (domain("x")).assertThat (x ->

6 forAll (domain("y")).assertThat(y ->

7 a(minicpElement1D (A))

8 .isEquivalentTo (hybrid(element (A), rangeDomain(), bcDDomain()))
9 .forThePartialAssignment (x, y)

0 )

1

4.3 Extensibility

The example from Listing [T.T] also illustrates how SolverCheck’s capabilities can
be extended to support constraints that were not initially foreseerﬂ To that
end, it suffices to implement a new Checker for the desired constraint. That is a
predicate on assignment which is true iff the assignment belongs to the constraint
relation.

On top of the assertions meant to test the strength of a propagator, Solver-
Check provides several extension points making it possible to check virtually any
property of the tested filter. For instance, in the snippet a(tested) .is(property),
the method is(-) will accept any predicate on partial assignments for its prop-
erty argument. In particular, this is how the checks isContracting(), isIdempotent ()
and isWeaklyMonotonic() have been implemented in the library.

4.4 Dynamic checking

Because there are many cases where existing solvers implement the filtering of
their constraints as incremental propagators, they do not exactly fit the ideal

4 SolverCheck comes with built-in checkers for the usual constraints alldiff,

element, gcc, etc.
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of pure filtering functions having no side effects. Indeed, propagators hold and
manipulate some internal state in order to deliver an efficient filtering in practice.
But the efficiency gains often come at the expense of an increased risk of error.
In order to detect the bugs caused by this internal state handling, SolverCheck
proposes two operating modes.

Static Checking. Pseudo random test cases are fed to the filter. Then, the library
tests if the outcome of one application of the filter delivers the expected result.
This corresponds to the way of using SolverCheck which has been presented until
now.

Dynamic Checking. The tested solver searches through the state-space, making
branch decisions and backtracking, in conditions similar to those of an actual
CSP solving.

Algorithm [2] describes how dynamic checks operate. This algorithm accepts
five parameters: two stateful filters trusted and tested matching the interface of
Listing a property prop that must hold of all executions, a natural number
N and a pseudo-randomly generated partial assignment pa. As opposed to static
checking, dynamic checking considers the partial assignment pa as the root of a
search tree and explores a fraction of that search tree with a series of IV dives.
That is, it dives N times in the search tree until a leaf (assignment or error) is
reached (lines 7-12). At that moment, the library rolls back a few decisions it
made when diving (lines 13-15). Then it starts the exploration of a new branch.
At each visited node of the search tree, the current states of tested and trusted
are compared to check whether the property is verified (line 12).

Algorithm 2: Dynamic checking, the dive algorithm

1 Dive (trusted, tested, prop, N, pa)

2 trusted.initialize(pa); tested.initialize(pa);

3 if not prop.holds(trusted, tested) then fail;
4 for N times do

5 CheckBranch(trusted, tested, prop, pa);
6 L BackJump(trusted, tested);

7 CheckBranch (trusted, tested, prop, pa)

8 while neither trusted nor tested reached a leaf do

9 trusted.saveState(); tested.saveState();
10 decision « RandomDecision(pa);
11 trusted.branchOn(decision); tested.branchOn(decision);
12 if not prop.holds(trusted, tested) then fail;

13 BackJump (trusted, tested)
14 while not trusted.isAtRootLevel() and RandomBool() do
15 L trusted.restoreState(); tested.restoreState();
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Writing dynamic checks, in practice As is made clear by the previous
paragraphs, using the dynamic checking mode requires slightly more work from
the human tester. Indeed, rather than writing a stateless Filter adapter similar
to the one shown in Listing (lines 31-42), the tester must write an adapter
matching the StatefulFilter interface (Listing]|1.3]).

The branchOn() method stands for the addition of usual branching condi-
tions such as #, <, >. The pushState() and popState() methods adopt the
terminology used in trail-based solvers where these methods are at the heart of
the backtracking mechanism (see [35] for further information on that matter).

For the rest, thanks to the declarative nature of SolverCheck, the code re-
mains almost identical to what is required in the static case.

Listing 1.3: Interface of a Stateful Filter in SolverCheck

1 public interface StatefulFilter {

2 void setup(PartialAssignment initialDomains);

3 void pushState();

4 void popState();

5 void branchOn(int variable, Operator op, int value);
6 PartialAssignment currentState();

7

}

5 Implementing SolverCheck

SolverCheck posits that the implementation of current CP solvers have become
incredibly efficient at the expense of an increased code complexity. Therefore,
they no longer fit in Hoare’s “obuviously no deficiencies” category [25]. The idea
behind SolverCheck is then fairly simple: the library tests the behavior of an
actual (complicated) CP filter by simply comparing it with that of a (generated)
implementation that is so outright simple that it is straightforward for anyone
to trust that second implementation to be correct. In SolverCheck parlance, the
filters obtained from a generated implementation are called trusted filters.

5.1 Deriving trusted filters

As explained in Section [£:3] SolverCheck trusted filters rely on a Checker to
decide whether or not an assignment belongs to the tested constraint. On that
basis, a naive but easily trusted filter implementation immediately follows from

the definitions of Section [2] For that matter, one needs to distinguish uniform
consistencies (DC, BC(D), BC(Z), RC, FC) from mized consistencies.

Uniform consistencies. Given a checker ¢, a consistency v and the partial
assignment pa = (D(z1),...,D(x,)) the trusted filter ¢. . proceeds as follows.
It starts by computing the set Dy, = {7 € D* | ¢(7)} of solutions, where D*
stands for either D (when v € {DC, BC(D)}) or D? (when v € {RC, BC(Z)}).
Then it computes a partial assignment pa’ associating the domain D'(z;) =
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U- ¢ p.,, Ti to each variable z;. Finally, it uses pa’ to filter the original domains
in pa according to the rules of . This is the final output of ¢ .

Deriving a trusted filter implementation for the uniform FC consistency is
trivial: when the domains of all but one variable are singletons, the filter behaves
as in the DC case. Otherwise, the original partial assignment is returned.

Mixed consistencies. The trusted filters derived for mixed consistencies are
a direct implementation of Algorithm [I| There the filters ¢; used to filter the
domain of each variable x; simply consist in the application of a uniform trusted
filter which is then projected over z;.

5.2 Generation of pseudo-random test cases

In order to check that a property holds, SolverCheck generates pseudo-random
test cases which are fed to both the trusted and tested filters. Because it is widely
accepted among software engineers that extreme values often exhibit extreme
behaviors, it was decided that SolverCheck would not use a uniform random
distribution to generate its test inputs. Instead, it draws its values from a multi-
modal distribution — the modes being the usually problematic values (zero, min
and max). Doing so, it introduces a bias on the values occurring in the generated
test cases.

6 Experimental results

We conducted a series of experiments, all of which are based on three solversﬂ
Choco [41], JaCoP [27] and MiniCP [35]. These solvers have been chosen because,
on the one hand, they run on the JVM which is our target platform; and on
the other hand, because they have been carefully developed by domain experts.
Among the large panel of possible constraints, we picked seven that were deemed
representative of the kind of constraint typically available in a CP solver.

For each of the selected constraint, we present two distinct experiments. The
first one aimed at evaluating the effectiveness of our library when it comes to
detecting bugs in an actual solver. In practice, this experiment consisted in a
phase of exploratory testing during which we went through the documentation of
solvers/constraints and wrote specifications matching the documented behavior
for each of the tested artifacts. The goal of our second experiment was to assess
the usability of our library in practice. That is, we wanted to make sure Solver-
Check could actually be used and be useful in a continuous integration setup.
To that end, we measured the time it took for our exploratory tests to complete
as well as the code coverage they achieved.

® Experiments were also realized using AbsCon [30]. However, even though we high-
lighted some defects in this solver, we chose not to report on the outcome of these
experiments because we are still discussing some of our findings with the maintainer
of that solver.
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6.1 Exploratory testing

We observed five different kind of outcomes during this experiment and sum-
marize our findings in Table [I} The first possibility occurs when SolverCheck
wasn’t able to detect any mismatch between the tested propagators and their
documented behavior (+in Table . An other possible result is observed when
a propagator prunes more values than announced but never removes any solu-
tion (4%). The defective cases are split in three categories: the cases where a
propagator was weaker than announced (), the cases where it provided an in-
correct answer (X) and those when an undesired behavior happened at runtime
(7). Among others, this covers program crashes (cast errors, memory exhaustion,

..) and infinite loops. All of our findings have been reported to, and accepted
by the solvers maintainers. As of today, the vast majority of the findings we
reported have been fixed.

As shown per Table [I| SolverCheck was remarkably efficient at identifying
discrepancies between the actual and documented behavior of implemented prop-
agators. And that, even though all these propagators had already been carefully
tested by their authors. The biased pseudo-random input generation used to
produce “extreme” values naturally led to the identification of several over- and
under-flows issues that are often counterintuitive for a human being. Table
shows however that it was far from the only type of error identified by our tool.

Table 1: Findings of the exploratory testing phase

Solver Alldiff Element Table Sum GCC Lex Regular
Choco x x

JaCoP x

MiniCP x X N/A N/A N/A

Errors in the state management The exploratory testing outdid our ex-
pectations wrt stateless issues detection. As a consequence, the stateful issues
detection potential of our library remained unknown. Therefore, we conducted a
variation of our exploratory testing experiment and designed it so as to specifi-
cally assess that potential. In practice, we manually introduced bugs in the state
management of the stateful constraints. To that end, we replaced some reversible
integer with its primitive counterpart in the source code. Then we used dynamic
checking to test the properties of the targeted constraints. For all the seeded
bugs, SolverCheck correctly reported a trace where the bug expressed itself.

Similarly, we also checked whether SolverCheck would identify bugs after
we altered the implementation of the reversible structure to let it discard some
modification from the trail. Again, SolverCheck reported a violation trace for all
the cases that have been tested.
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6.2 Effectiveness in practice

The plots from Figure [I] provide a good illustration of the behavior we observed
when SolverCheck is used to test properties with a varying number of variablesﬂ
In particular, Figure [If] plots the time it takes to test that the DC consistent
propagator of each solver actually enforces DC with an increasing number of
variables. While the exact duration of these tests is of little interest, the trend
it indicates is informative. On the one hand, it clearly indicates an exponential
duration blowup becoming significant beyond 12 variables. On the other hand, it
also shows that dynamic checking consistently requires a longer amount of time
to complete than a corresponding static check. The extreme similarity between
the two groups of static and dynamic curves (the same graph with logarithmic y-
axis does not show any major difference either) indicates that the test-completion
time is dominated by SolverCheck rather than by the tested solver.

These observations had to be expected and directly stem from the algorithms
implemented in our library. The need for our trusted filter to explicitly compute
the set Dy, based on a filtering of D* is sufficient to explain the exponential
blowup in its own right. Similarly, the repeated application of filter operations (as
per Algorithm [2) during dynamic checking explains why dynamic tests require
longer to complete. Despite being expected and logically understood, both ob-
servations clearly highlight a limitation in the capabilities of our library: it does
not scale and is not efficient when there are lots of variables to be considered (or
when they have large domains).

That conclusion should nevertheless be contrasted by the information shown
on Figure [b} It plots the line coverage of the tested propagators as measured
during the tests whose runtime are plotted in Figure [[ol From there, we first
observe that the coverage stabilizes very quickly. As soon as three variables are
considered, the coverage reaches a state where it marginally increases, if at all.
We also observe that in most cases, the tests cover about 95% of the lines.
This is quite a high score, and is way above the usual 70-80% target from the
industry. Finally, we observe that dynamic checking either improves or equates
the static checking line coverage for all tests. The gap observed between the static
and dynamic line coverage of JaCoP illustrates one of the benefits of dynamic
checking. That strategy is able to exercise all parts of the propagators, including
the ones related to state restoration of incremental propagators.

7 Conclusions and future work

In this paper we introduced SolverCheck, an open-source property-based testing
library to effectively check the correctness of the propagators of any JVM-based

6 The plots and observations to be made when it is the domain size that varies for
a fixed number of variables are substantially the same as the case presented here
(varying number of variables, fixed domain size). These are therefore omitted.
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Fig. 1: Measuring the efficiency of SolverCheck for testing AlIDiff (DC)

Average time to test 'AlIDiff(vars) must be DC' wrt # variables. Line coverage when testing 'AlIDiff(vars) must be DC' wrt # variables.
Variables domain comprise between 1 and 5 values € [-10; 10]. Variables domain comprise between 1 and 5 values € [-10; 10].
Each property is tested with 100 pseudo random examples. Each property is tested with 100 pseudo random examples.
Dynamic checking perform 10 dives per pseudo random example. Dynamic checking perform 10 dives per pseudo random example.
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solver. We showed how the library can be used to declaratively specify the prop-
erties which must hold for a constraint, and presented the two modes in which
the tests can be operated.

Furthermore, we demonstrated the practical effectiveness of SolverCheck
through an experimental study based on Choco, JaCoP and MiniCP. These
results are promising as they show that our library has been able to identify
bugs in the aforementioned solvers and provide counterexamples for each of the
witnessed property violations. Besides that, we showed that SolverCheck is suc-
cessful at its intended purpose. It can easily be integrated in the test suite of any
JVM-based solver to produce a high quality set of tests (good coverage) that is
easy to maintain. Moreover, given that SolverCheck allows a tester to control
every aspect of how tests are generated, we are also confident that SolverCheck
can be an integral part of the quality assurance process of any solver. In partic-
ular, checking properties with our library can seamlessly be integrated with the
continuous integration of any JVM-based solver.

We envision several extensions of this work in the future. In particular, we
believe that our library can be adapted and extended to cope with the specifics
of scheduling constraints. For instance, it could be extended to generate trusted
filters matching the filtering of an edge-finding propagator [T0J32J48]. Also, it
could be extended to target different classes of bugs. So far, SolverCheck is very
good at finding value-related bugs like over /under-flows and logical errors in the
propagation. We think that it would be interesting to leverage the features of
SolverCheck to target aliasing issues which are also a common source of bugs in
solvers supporting views. Beyond that, our library could benefit from the use of
checkers that operate directly on partial assignments. With these, a trusted filter
would not necessarily need to always test all assignments. Other possible exten-
sions include microbenchmarking and the ability to test solvers outside of the
JVM world through language-agnostic tests using MiniZinc [36] or XCSP3 [7].
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