
Available at: http://hdl.handle.net/2078.1/278691 [Downloaded 2023/11/30 at 10:28:11]

"Boosting Decision Diagram-Based Branch-and-Bound
by Pre-Solving with Aggregate Dynamic Programming"

Coppé, Vianney ; Gillard, Xavier ; Schaus, Pierre

ABSTRACT

Discrete optimization problems expressible as dynamic programs can be solved by branch-and-bound
with decision diagrams. This approach dynamically compiles bounded-width decision diagrams to derive
both lower and upper bounds on unexplored parts of the search space, until they are all enumerated or
discarded. Assuming a minimization problem, relaxed decision diagrams provide lower bounds through
state merging while restricted decision diagrams obtain upper bounds by excluding states to limit their size.
As the selection of states to merge or delete is done locally, it is very myopic to the global problem structure.
In this paper, we propose a novel way to proceed that is based on pre-solving a so-called aggregate version
of the problem with a limited number of states. The compiled decision diagram of this aggregate problem
is tractable and can fit in memory. It can then be exploited by the original branch-and-bound to generate
additional pruning and guide the compilation of restricted decision diagrams toward good solutions. The
results of the numerical study we conducted on three combinatorial optimization problems show a clear
improvement in the performance of DD-based solvers when blended with the proposed techniques. These
results also suggest an approach where the aggregate dynamic programming model could be used in
replacement of the relaxed decision diagrams altogether.

CITE THIS VERSION

Coppé, Vianney ; Gillard, Xavier ; Schaus, Pierre. Boosting Decision Diagram-Based Branch-and-Bound
by Pre-Solving with Aggregate Dynamic Programming.The 29th International Conference on Principles
and Practice of Constraint Programming (Toronto, Canada, du 27/08/2023 au 31/08/2023). http://
hdl.handle.net/2078.1/278691

Le dépôt institutionnel DIAL est destiné au dépôt
et à la diffusion de documents scientifiques
émanant des membres de l'UCLouvain. Toute
utilisation de ce document à des fins lucratives
ou commerciales est strictement interdite.
L'utilisateur s'engage à respecter les droits
d'auteur liés à ce document, principalement le
droit à l'intégrité de l'œuvre et le droit à la
paternité. La politique complète de copyright est
disponible sur la page Copyright policy

DIAL is an institutional repository for the deposit
and dissemination of scientific documents from
UCLouvain members. Usage of this document
for profit or commercial purposes is stricly
prohibited. User agrees to respect copyright
about this document, mainly text integrity and
source mention. Full content of copyright policy
is available at Copyright policy

https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy

Boosting Decision Diagram-Based1

Branch-and-Bound by Pre-Solving with Aggregate2

Dynamic Programming3

Vianney Coppé #4

UCLouvain, Louvain-la-Neuve, Belgium5

Xavier Gillard #6

UCLouvain, Louvain-la-Neuve, Belgium7

Pierre Schaus #8

UCLouvain, Louvain-la-Neuve, Belgium9

Abstract10

Discrete optimization problems expressible as dynamic programs can be solved by branch-and-bound11

with decision diagrams. This approach dynamically compiles bounded-width decision diagrams to12

derive both lower and upper bounds on unexplored parts of the search space, until they are all13

enumerated or discarded. Assuming a minimization problem, relaxed decision diagrams provide14

lower bounds through state merging while restricted decision diagrams obtain upper bounds by15

excluding states to limit their size. As the selection of states to merge or delete is done locally, it16

is very myopic to the global problem structure. In this paper, we propose a novel way to proceed17

that is based on pre-solving a so-called aggregate version of the problem with a limited number of18

states. The compiled decision diagram of this aggregate problem is tractable and can fit in memory.19

It can then be exploited by the original branch-and-bound to generate additional pruning and guide20

the compilation of restricted decision diagrams toward good solutions. The results of the numerical21

study we conducted on three combinatorial optimization problems show a clear improvement in the22

performance of DD-based solvers when blended with the proposed techniques. These results also23

suggest an approach where the aggregate dynamic programming model could be used in replacement24

of the relaxed decision diagrams altogether.25

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization26

Keywords and phrases Discrete Optimization, Decision Diagrams, Aggregate Dynamic Programming27

Digital Object Identifier 10.4230/LIPIcs.CP.2023.2228

1 Introduction29

On top of their use for Boolean encodings [27], formal verification [25], model checking30

[15], computer-aided design [29] and much more, decision diagrams (DDs) have recently31

emerged as a tool for discrete optimization. They provide a compact way to encode a set32

of solutions to a problem. Still, for large problems, DDs representing the whole solution33

space – called exact DDs – can quickly become intractable to compute. Two variants of34

DDs can be used instead: restricted [10] and relaxed [1, 8] DDs that respectively encode a35

subset and superset of the set of solutions. When compiled based on a dynamic programming36

(DP) model, these approximate DDs allow to compute bounds on the objective function for37

any subproblem while controlling the size of the DD compiled. Restricted DDs aim to find38

good admissible solutions by iteratively extending a bounded set of promising candidates39

while dropping others, in a beam search fashion. On the other hand, relaxed DDs rely40

on a problem-dependent state merging scheme to maintain an acceptable DD size while41

preserving all solutions of the problem. In [9], Bergman et al. presented a branch-and-bound42

algorithm solely based on these two ingredients, thus introducing a new general-purpose43

discrete optimization framework and solver.44

© Vianney Coppé, Xavier Gillard and Pierre Schaus;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vianney.coppe@uclouvain.be
https://orcid.org/0000-0001-5050-0001
mailto:xavier.gillard@uclouvain.be
https://orcid.org/0000-0002-4493-6041
mailto:pierre.schaus@uclouvain.be
https://orcid.org/0000-0002-3153-8941
https://doi.org/10.4230/LIPIcs.CP.2023.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Boosting DD-Based Branch-and-Bound with Aggregate Dynamic Programming

In addition to exploiting the compactness of DP models, the main novelty of this45

approach is its unique way of deriving lower and upper bounds. In the last few years, some46

algorithmic improvements have been suggested to further strengthen these bounds. Assuming47

a minimization problem, Gillard et al. [19] showed how user-defined lower bound formulas48

can be integrated to prune DDs during their compilation and thus concentrate the search49

on promising parts of the search space. They also proposed a way to compute tighter lower50

bounds for all nodes contained in a relaxed DD through local bounds. Rudich et al. [30]51

introduced a peeling operator that splits a relaxed DD in two: one part containing all paths52

traversing a selected exact node and the other containing all remaining paths. It allows both53

to warm-start the compilation of subsequent relaxed DDs and to strengthen the bounds of54

the nodes inside the relaxed DD on which the peeling has been performed. More recently, [16]55

generalized the ideas of [19] and introduced the use of a cache storing new thresholds that56

further enhance the pruning power of the solver. Other factors impacting the quality of the57

bounds provided by relaxed DDs have been studied, including variable orderings [7, 11, 26]58

and alternative compilation schemes [24]. Yet, all these approaches rely on a problem-specific59

state merging operator at the heart of the relaxation, which does not yield tight relaxations60

for all problems, as our computational experiments show.61

After covering the necessary background about DD-based optimization, this paper presents62

an alternate relaxation scheme for deriving good bounds by incorporating ideas from aggregate63

dynamic programming [2, 3] to the DD-based discrete optimization framework. The underlying64

idea of the approach is to deduce information about an original problem instance by creating65

and solving an aggregate – relaxed – version of it. This is achieved by aggregating the66

states of the DP model as to obtain a much smaller DP state space. If this aggregation is67

adequately specified, one can compute a lower bound for any original subproblem by finding68

the optimal solution of its aggregate version. Furthermore, this optimal aggregate solution69

can be disaggregated and transposed in the original problem to find good heuristic solutions.70

In practice, the aggregation-based lower bounds are used as additional pruning within the71

compilation of relaxed and restricted DDs. Moreover, aggregate solutions are translated72

into node selection heuristics to steer the compilation of restricted DDs toward resembling73

solutions to the original problem, which are thus expected to be good.74

Throughout the paper, the framework is illustrated on three different combinatorial75

problems: the Talent Scheduling Problem, the Pigment Sequencing Problem and the Aircraft76

Landing Problem. They are then used for the experimental evaluation of the framework,77

the results of which show that the aggregation-based bound brings additional pruning and78

enables solving more instances. Furthermore, the aggregation-based node selection heuristic79

improves the quality of the solutions found early in the search and thus contributes to80

speeding up the overall resolution. Finally, we show that a DD-based solver using only the81

aggregation-based bound as relaxation performs almost equally well, which is a promising82

direction for problems for which defining a merging operator is difficult or inefficient.83

Although this paper is – to the best of our knowledge – the first to combine aggregate84

dynamic programming with the DD-based branch-and-bound paradigm proposed by Bergman85

et al, there has already been some hybridization work to combine discrete optimization with86

DDs and other methods. For instance, in [12], Cappart et al. propose to use reinforcement87

learning to guess the variable ordering that should be used to derive the best possible bounds88

from the compiled approximate DDs. Other attempts combined DDs with Lagrangian89

relaxation [13, 23] or MIP [5, 22, 31, 32]. On a slightly different note, a method has90

been proposed where restricted DDs are used to generate good neighborhoods in a large91

neighborhood search framework [20].92

V. Coppé, X. Gillard and P. Schaus 22:3

2 Preliminaries93

2.1 Discrete Optimization94

A discrete optimization problem P involves finding the best possible solution x∗ from a95

finite set of feasible solutions Sol(P) = D ∩ C. This set is determined by the domain96

D = D0 × · · · ×Dn−1 from which the variables x = ⟨x0, . . . , xn−1⟩ each take on a value, i.e.97

xj ∈ Dj , and by a set of constraints C imposed on the value assignments. The quality of98

the solutions is evaluated according to an objective function f(x) that must be minimized.99

Formally, the problem is defined as min {f(x) | x ∈ D ∩ C} and any optimal solution x∗ must100

satisfy x∗ ∈ Sol(P) and ∀x ∈ Sol(P) : f(x∗) ≤ f(x). We describe below three optimization101

problems that will be utilized in the paper as illustrations for the aggregation-based framework.102

Talent Scheduling Problem The Talent Scheduling Problem (TalentSched) is a film shoot103

scheduling problem that considers a set N = {0, . . . , n− 1} of scenes and a set A =104

{0, . . . , m− 1} of actors. Each scene i ∈ N involves a required set Ri ⊆ A of actors for105

a duration Di ∈ N. Moreover, each actor k ∈ M has a pay rate Ck and is paid without106

interruption from their first to their last scheduled scene. The objective of TalentSched is to107

find a permutation of the scenes that minimizes the total cost of the film shoot.108

Pigment Sequencing Problem The Pigment Sequencing Problem (PSP) is a single-machine109

production planning problem that aims to minimize the stocking and changeover costs while110

satisfying a set of orders. There are different item types I = {0, . . . , n− 1} with a given111

stocking cost Si to pay for each time period between the production and the deadline of112

an order. For each pair i, j ∈ I of item types, a changeover cost Cij is incurred whenever113

the machine switches the production from item type i to j. Finally, the demand matrix Q114

contains all the orders: Qi
p ∈ {0, 1} indicates whether there is an order for item type i ∈ I at115

time period p with 0 ≤ p < H and H the time horizon.116

Aircraft Landing Problem The Aircraft Landing Problem (ALP) requires to schedule the117

landing of a set of aircrafts N = {0, . . . , n− 1} on a set of runways R = {0, . . . , r − 1}.118

The aircrafts have a target Ti and latest Li landing time. Moreover, the set of aircrafts119

is partitioned in disjoint sets A0, . . . , Ac−1 corresponding to different aircraft classes in120

C = {0, . . . , c− 1}. For each pair of aircraft classes a, b ∈ C, a minimum separation time121

Sa,b between the landings is given. The goal is to find the schedule that minimizes the total122

waiting time of the aircrafts – the delay between their target time and scheduled landing123

time – while respecting their latest landing time.124

2.2 Dynamic Programming125

Dynamic programming (DP) is a divide-and-conquer strategy introduced by Bellman [4]126

for solving discrete optimization problems with an inherent recursive structure. It works127

by recursively decomposing the problem in smaller and overlapping subproblems. The128

cornerstone of the approach is the caching of intermediate results that allows each distinct129

subproblem to be solved only once. A DP model of a discrete optimization problem P can130

be defined as a labeled transition system consisting of:131

the control variables xj ∈ Dj with j ∈ {0, . . . , n− 1}.132

a set of state-spaces S = {S0, . . . , Sn} among which one distinguishes the initial state r,133

the terminal state t and the infeasible state 0̂.134

CP 2023

22:4 Boosting DD-Based Branch-and-Bound with Aggregate Dynamic Programming

a set t of transition functions s.t. tj : Sj ×Dj → Sj+1 for j = 0, . . . , n − 1 taking the135

system from one state sj to the next state sj+1 based on the value d assigned to variable136

xj , or to ⊥ if assigning xj = d is infeasible. These functions should never allow one to137

recover from infeasibility, i.e. tj(0̂, d) = 0̂ for any d ∈ Dj .138

a set h of transition value functions s.t. hj : Sj ×Dj → R representing the immediate139

reward of assigning some value d ∈ Dj to the variable xj for j = 0, . . . , n− 1.140

a root value vr.141

On that basis, the objective function f(x) of P is formulated as follows:142

minimize f(x) = vr +
n−1∑
j=0

hj(sj , xj)

subject to sj+1 = tj(sj , xj), for all j = 0, . . . , n− 1, with xj ∈ Dj

sj ∈ Sj , j = 0, . . . , n and x ∈ C. (1)143

TalentSched A DP model for TalentSched was introduced in [17] that we slightly adapt144

here to make it suitable for the relaxation discussed in Section 2.3.1. States of this model145

are pairs (M, P) where M and P are disjoint sets of scenes that respectively must or might146

still be scheduled. The only case where P is non-empty happens when a state is relaxed.147

Control variables: xj ∈ N with 0 ≤ j < n decides which scene is shot in j-th position.148

State spaces: S = {(M, P) |M, P ⊆ N, M ∩ P = ∅}. The root state is r = (N, ∅) and149

the terminal states are of the form (∅, P).150

Transition functions:151

tj(sj , xj) =


(sj .M \ {xj} , sj .P \ {xj}) if xj ∈ sj .M,

(sj .M \ {xj} , sj .P \ {xj}), if xj ∈ sj .P and |sj .M | < n− j,

0̂, otherwise.
152

A scene from P can only be selected if there are more spots left than scenes in M .153

Transition value functions: let a(Q) = ∪i∈QRi be the required set of actors for a set154

of scenes Q. Given a state s = (M, P), the set of actors that are guaranteed to be155

on-location is computed as o(s) = a(s.M)∩ a(N \ (s.M ∪ s.P)) because they are required156

both for a scene that must still be scheduled and for another that is guaranteed to be157

scheduled. In the transition value functions, we add all the actors from Rxj
to this set158

and sum the individual costs: hj(sj , xj) = Dxj

∑
k∈o(sj)∪Rxj

Ck.159

Root value: vr = 0.160

PSP The PSP was already tackled with a DD-based approach in [16, 20]. We hereby recall161

the DP model from [16] that allows the machine to be idle at some time periods. In this162

model, the decisions are made backwards – this allows to define transition functions that only163

lead to feasible production schedules. If variable xj decides the type of item to produce at164

period j, the reverse variable ordering xH−1, . . . , x0 is thus used. To simplify the transition165

functions, let us denote by P i
r the time period at which the r-th item of type i must be166

delivered, i.e. P i
r = min{0 ≤ q < H |

∑q
p=0 Qi

p ≥ r} for all i ∈ N, 0 ≤ r ≤
∑

0≤p<H Qi
p.167

Moreover, we define a dummy item type ⊥ used for idle periods and N ′ = N ∪ {⊥}.168

States are pairs (i, R) with i the item type that the machine is currently set to produce169

and R a vector that gives the remaining number Ri of demands to satisfy for each type i.170

Control variables: xj ∈ N ′ with 0 ≤ j < H decides the item type to produce at period j.171

V. Coppé, X. Gillard and P. Schaus 22:5

State space: S = {s | s.i ∈ N ′,∀i ∈ N, 0 ≤ s.Ri ≤
∑

0≤p<H Qi
p}. The root state is given172

by r = ⟨⊥, (
∑

0≤p<H Q0
p, . . . ,

∑
0≤p<H Qn−1

p)⟩ and the terminal states are of the form173

⟨i, (0, . . . , 0)⟩ with i ∈ N ′.174

Transition functions:175

tj(sj , xj) =


〈
ti
j(sj , xj), tR

j (sj , xj)
〉

, if xj ̸= ⊥ and sj .Rxj
> 0 and j ≤ P

xj

sj .Rxj
,〈

ti
j(sj , xj), tR

j (sj , xj)
〉

, if xj = ⊥ and
∑

i∈N sj .Ri < j + 1,

0̂, otherwise.
176

where

ti
j(sj , xj) =

{
xj , if xj ̸= ⊥
sj .i, otherwise.

tR
j (sj , xj) =

{
(sj .R0, . . . , sj .Rxj − 1, . . . , sj .Rn−1), if xj ̸= ⊥
sj .R, otherwise.

In the transition function, the first condition ensures that there remains at least one177

item to produce for the chosen type and that the current time period j is earlier than its178

deadline. The second condition ensures that idle periods cannot be scheduled when the179

remaining quantity to produce is equal to the number of periods left.180

Transition value functions: the changeover and stocking costs are computed as:181

hj(sj , xj) =
{

Cxjsj .i, if xj ̸= ⊥ and sj .i ̸= ⊥
0, otherwise.

}
+

{
Sxj
· (j − P

xj

sj .Rxj
), if xj ̸= ⊥

0, otherwise.

}
182

Root value: vr = 0.183

ALP We reproduce here the DP model presented in [28] where states are pairs (Q, ROP),184

with Q a vector that gives the remaining number of aircrafts of each class to schedule and185

ROP a runway occupation profile: a vector containing pairs (l, c) that respectively give the186

time and aircraft class of the latest landing scheduled on each runway. Similarly to the PSP187

modeling, we denote by ⊥ either a dummy aircraft class or a dummy runway.188

Control variables: we use pairs of variables (xj , yj) ∈ (C ×R) ∪ {(⊥,⊥)} with 0 ≤ j < n189

that represent the decision to place an aircraft of class xj on runway yj , or to schedule190

nothing at all in case of (⊥,⊥).191

State spaces: S = {(Q, ROP) | ∀i ∈ C : Qi ≥ 0,∀k ∈ R : ROPk.l ≥ 0, ROPk.c ∈ C ∪ {⊥}}.192

The root state is r = (⟨|A0|, . . . , |Ac−1|⟩ , ⟨(0,⊥), . . . , (0,⊥)⟩) and the terminal states are193

of the form (⟨0, . . . , 0⟩ , ROP).194

Transition functions: if Ak
i gives the aircraft from class i that must be scheduled when195

there are k aircrafts left from this class, we can define the function computing the earliest196

landing time given a state s, a class x and a runway y:197

E(s, x, y) =


TAs.Qx

x
, if s.ROPy.l = 0 and s.ROPy.c = ⊥,

max(s.ROPy.l + mini∈C Si,x, TAs.Qx
x

), if s.ROPy.l > 0 and s.ROPy.c = ⊥,
max(s.ROPy.l + Ss.ROPy.c,x, TAs.Qx

x
), otherwise.

198

This allows us to define the transition functions as:199

tj(sj , xj , yj) =


(tQ

j (sj , xj , yj), tROP
j (sj , xj , yj)),

if xj ̸= ⊥ and sj .Qxj
> 0

and E(sj , xj , yj) ≤ L
A

sj .Qxj
xj

,

(tQ
j (sj , xj , yj), tROP

j (sj , xj , yj)), if xj = ⊥ and
∑

i∈C sj .Qi = 0,

0̂, otherwise.

200

CP 2023

22:6 Boosting DD-Based Branch-and-Bound with Aggregate Dynamic Programming

where201

tQ
j (sj , xj , yj) =

{ 〈
sj .Q0, . . . , sj .Qxj

− 1, . . . , sj .Qc−1
〉

, if xj ̸= ⊥
sj .Q, otherwise.

tROP
j (sj , xj , yj) =

{ 〈
sj .ROP0, . . . , (E(sj , xj , yj), xj), . . . , sj .ROPr−1

〉
, if xj ̸= ⊥

sj .ROP, otherwise.

202

The first condition of the transition function ensures that there remains at least one203

aircraft of the chosen class and that its earliest landing time is not greater its latest204

landing time. The second condition only allows us to schedule dummy aircrafts when205

there are no aircrafts left to schedule.206

Transition value functions: the waiting time of the aircraft is computed as:

hj(sj , xj , yj) =

 E(sj , xj , yj)− T
A

sj .Qxj
xj

, if xj ̸= ⊥

0, otherwise.

Root value: vr = 0.207

Because the runways are identical and independent, there are many symmetries in this model.208

This can be mitigated by sorting the ROP of every state by increasing latest landing time,209

breaking ties according to the previous aircraft class scheduled.210

2.3 Decision Diagrams211

When used to manipulate the DP model of a discrete optimization problem P, DDs are212

graphical encodings that represent a set of solutions of the problem. More precisely, a213

DD B = (U, A, σ, l, v) is a layered directed acyclic graph composed of a set of nodes U214

interconnected by a set of arcs A. Starting from a single node ur corresponding to a DP state215

given by the function σ(ur), the process of iteratively extending a set of partial solutions is216

called the compilation of a DD and is described by Algorithm 1. Note that the highlighted217

portions concern the ingredients introduced in Section 3 and can be ignored for now. The218

algorithm begins by initializing a layer Li that only contains the root node ur, assuming its219

state σ(ur) belongs to the i-th stage of the DP model. The subsequent layers of the DD are220

then constructed sequentially by applying each valid transition of the DP model to every221

node of the last completed layer at lines 8–16. Each layer thus corresponds to a stage of222

the DP model and contains a single node for each state reached in order to preserve the223

compactness of the model. The arcs a ∈ A materialize the transitions that exist between224

the states of consecutive stages. In particular, the arc a = (u d−→ u′) connecting nodes225

u ∈ Lj , u′ ∈ Lj+1 represents the transition between σ(u) and σ(u′). The decision associated226

with this transition is stored by the label l(a) = d ∈ Dj and the transition value is given by227

the arc value v(a).228

The algorithm completes when the last layer Ln is generated, constituted by a single229

node t called the terminal node. The DD thus constructed contains a set of ur ⇝ t230

paths that can be combined with any previously discovered r ⇝ ur path, connecting231

the root of the problem to ur. Any r ⇝ t path p = (a0, . . . , an−1) represents a solution232

given by x(p) = (l(a0), . . . , l(an−1)). The objective value of such solution can also be233

retrieved from the sequence of arcs by accumulating their values, and adding the root234

value: v(p) = vr +
∑n−1

j=0 v(aj). The set of solutions contained in the DD is denoted as235

Sol(B) = {x(p) | ∃p : r ⇝ t, p ∈ B}. A DD rooted at a node ur is exact if it perfectly236

represents the set of solutions of the corresponding subproblem P|ur
, i.e. Sol(B) = Sol(P|ur

)237

and v(p) = f(x(p)),∀p ∈ B. The best value among the u1 ⇝ u2 paths in B is denoted238

v∗(u1 ⇝ u2 | B), and in particular v∗(u | B) = v∗(r ⇝ u | B).239

V. Coppé, X. Gillard and P. Schaus 22:7

Algorithm 1 Compilation of DD B rooted at node ur with maximum width W .
1: i← index of the layer containing ur

2: Li ← {ur}
3: P̃ ← ∆(p̃) with p̃ the optimal solution for π(σ(ur)) // retrieve disaggregate solution
4: for j = i to n− 1 do
5: if |Lj | > W then
6: restrict or relax the layer to get W nodes with Algorithm 2
7: Lj+1 ← ∅
8: for all u ∈ Lj do
9: vrlb(σ(u))← max

{
vrlb(σ(u)), vagg(π(σ(u)))

}
// inject aggregation-based bound

10: if v∗(u | B) + vrlb(σ(u)) ≥ v then // rough lower bound pruning w.r.t. incumbent
11: continue
12: for all d ∈ Dj do
13: create node u′ with state σ(u′) = tj(σ(u), d) or retrieve it from Lj+1

14: create arc a = (u d−→ u′) with v(a) = hj(σ(u), d) and l(a) = d

15: score(a)← 1 if l(a) ∈ P̃j , 0 otherwise
16: add u′ to Lj+1 and add a to A

▶ Example 1. Let us define a TalentSched instance with 4 scenes with durations D =240

⟨3, 5, 2, 4⟩ and 4 actors with pay rates C = ⟨10, 20, 30, 40⟩. The actor requirements for each241

scene are given by R = ⟨{0, 3} , {0, 1, 3} , {0, 2, 3} , {0, 1, 2, 3}⟩. Figure 1 shows the exact DD242

compiled for this instance with the DP model recalled in Section 2.2. Note that for each243

state s = (M, P) corresponding to a node in the DD, we only show the set M since P is244

always empty in exact nodes. An optimal solution of the problem is ⟨0, 2, 3, 1⟩, which gives245

an objective value of 106.246

As the reader might have guessed, the compilation of an exact DD for a combinatorial247

optimization problem suffers from the curse of dimensionality as much as the corresponding248

DP model. This is why DD-based discrete optimization rarely relies on exact DDs but rather249

on restricted and relaxed DDs. These two variants follow two distinct compilation schemes250

that allow to maintain the number of nodes of each layer – called the width – under a given251

parameter W . In Algorithm 1, this logic is performed at line 5 where the width of the current252

layer is compared with W . If needed, the layer is then either restricted or relaxed at line 6253

by calling Algorithm 2.254

2.3.1 Approximate Decision Diagrams255

As stated by Algorithm 2, restricted DDs simply remove surplus nodes from the layer until it256

is reduced to W nodes. A heuristic is used to evaluate the nodes and drop the least promising257

ones. Restricted DDs thus generate a subset of the solutions of the corresponding problem,258

i.e. Sol(B) ⊆ Sol(P) and v(p) = f(x(p)),∀p ∈ B for a restricted DD B. They thus provide259

upper bounds on the objective value.260

As opposed to restricted DDs, a relaxed DD B yields lower bounds by representing261

a superset of the solutions of the corresponding problem: Sol(B) ⊇ Sol(P) and v(p) ≤262

f(x(p)),∀p ∈ B. This is achieved through a problem-specific state merging operator ⊕(σ(M))263

that defines an approximate representation that includes all states σ(M) = {σ(u) | u ∈M}264

corresponding to the merged nodes M and preserves all their outgoing transitions, although265

CP 2023

22:8 Boosting DD-Based Branch-and-Bound with Aggregate Dynamic Programming

r{0, 1, 2, 3}0

a1{0, 2, 3}35 a2{1, 2, 3}15 a3{0, 1, 2}40 a4{0, 1, 3}16

b1{2, 3}50 b2{0, 2}75 b3{1, 2}55 b4{0, 3}55 b5{1, 3}31 b6{0, 1}56

c1{2}90 c2{3}70 c3{0}91 c4{1}71

t∅106

1,35 0,15 3,40 2,16

0,21

3,40

2,20
1,35

3,40

2,16

1,50

0,30

2,20

1,50

0,24

3,40

3,40

2,20

0,24

2,161,50

2,20

0,30

3,40 1,50 3,40 1,35

0,21

2,16 3,40 0,15 1,35

Figure 1 The exact DD for the TalentSched instance given in Example 1. Nodes are annotated
with their state and the best prefix value. Arcs are labeled with the associated decision in bold and
transition value. The arcs constituting one of the optimal solutions are highlighted in bold.

Algorithm 2 Restriction or relaxation of layer Lj with maximum width W .
1: while |Lj | > W do
2: M← select nodes from Lj according to their score
3: Lj ← Lj \M
4: create node µ with state σ(µ) = ⊕(σ(M)) and add it to Lj // for relaxation only
5: for all u ∈M and arc a = (u′ d−→ u) incident to u do
6: replace a by a′ = (u′ d−→ µ) and set v(a′) = ΓM(v(a), u)

it may also introduce infeasible transitions. In Algorithm 2, a meta-node is created for this266

merged state at line 4 and the arcs pointing to the deleted nodes are redirected to this267

merged node at line 6. The operator ΓM permits to adjust the value of these arcs if needed.268

In all three formulations given below, this operator is the identity function.269

TalentSched The merging operator is defined by ⊕(M) = (⊕M (M),⊕P (M)) where270

⊕M (M) =
⋂

s∈M s.M and ⊕P (M) = (
⋃

s∈M s.M ∪ s.P) \ (
⋂

s∈M s.M). The definition of271

⊕P (M) ensures that the resulting set of scenes that might be scheduled contains any scene272

that must or might be scheduled in any of the states, except those that still must be scheduled273

for all states.274

PSP A valid merging operator is ⊕(M) = (⊥, ⟨mins∈M s.R0, . . . , mins∈M s.Rn−1⟩). The275

configuration of the machine is always reset to the dummy item type ⊥ as there is little chance276

that merged states agree on it. For each item type, the remaining number of demands is277

computed by taking the minimum value among all merged states, meaning that any demand278

satisfied by at least one state is considered satisfied in the merged state.279

V. Coppé, X. Gillard and P. Schaus 22:9

r{0, 1, 2, 3}0

a1{0, 2, 3}35 a2{1, 2, 3}15 a4{0, 1, 3}16

b1{2, 3}50 b3{1, 2}55 b5{1, 3}31

c1{2}90 c2{3}70 c4{1}71

t∅106

1,35 0,15 2,16

0,21 1,35 3,40 2,16 0,24

3,40

2,20

1,50 2,20

1,50

3,40

2,16 3,40 1,35

r{0, 1, 2, 3}0

a1{0, 2, 3}35 a4{0, 1, 3}16 a3{0, 1, 2}40 a2{1, 2, 3}15

b246
{0}

{1, 2, 3}
55 b1{2, 3}50 b3{1, 2}55 b5{1, 3}31

c5
∅

{1, 2, 3}70 c6
{0}

{1, 3}
71 c134

∅
{0, 1, 2, 3}71 c2{3}70

t∅86

1,35 0,153,402,16

0,21

1,35

3,40
2,16

0,30

0,24

3,40

2,20

1,503,400,15 2,16

1,35 0,15

2,16

3,40

1,50
2,20

3,403,40

2,16

3,40
2,20

3,40

1,50

0,15
1,35

1,50

2,20

3,40

1,35

Figure 2 Respectively on the left and the right, a restricted and relaxed DD for the TalentSched
instance given in Example 1, compiled with W set to 3 and 4. Merged nodes are circled twice.

ALP The merging operator is again defined separately for each component of the states:280

⊕(M) = (⊕Q(M),⊕ROP (M)). First, the minimum remaining quantity of aircrafts for281

each class is stored in the merged state: ⊕Q(M) = ⟨mins∈M s.Q0, . . . , mins∈M s.Qc−1⟩. For282

the ROP, the minimum latest landing time on each runway is kept and the last aircraft classes283

scheduled are reset to⊥: ⊕ROP (M) = ⟨(mins∈M s.ROP0.l,⊥), . . . , (mins∈M s.ROPr−1.l,⊥)⟩.284

▶ Example 2. Figure 2 shows approximate DDs for the TalentSched instance introduced285

in Example 1. Despite having a maximum width of 3, the best solution contained in the286

restricted DD is the optimal solution previously found. With a maximum width of 4, the287

relaxed DD provides a global lower bound of 86. The path corresponding to this lower bound288

is given by the assignment ⟨0, 2, 3, 0⟩, which is infeasible because scene 0 is scheduled twice.289

2.3.2 Branch-and-Bound290

In [9], a branch-and-bound algorithm based only on restricted and relaxed DDs was introduced.291

It maintains a queue of open nodes that represent the set of subproblems that remain to292

process. For each of them, a restricted DD is compiled in an attempt to improve the293

incumbent solution. Then, a relaxed DD is constructed in order to both decompose the given294

subproblem into even smaller ones and to compute a lower bound for each of them. These295

nodes are then added to the branch-and-bound queue for further exploration, unless the296

lower bound permits their direct elimination. Ultimately, the optimality of the best solution297

discovered during the search is confirmed once the queue has been emptied.298

CP 2023

22:10 Boosting DD-Based Branch-and-Bound with Aggregate Dynamic Programming

2.3.3 Rough Lower Bound299

The rough lower bound (RLB) [19] is an additional optional modeling component that can300

be specified to speed up the resolution of any optimization problem. For any node u, the301

RLB gives a lower bound on the best value one can obtain when solving the corresponding302

subproblem σ(u), i.e. vrlb(σ(u)) ≤ v∗(u⇝ t | B) with B the exact DD for the problem. It is303

used at line 10 of Algorithm 1 to filter nodes a priori by comparing this lower bound with304

the incumbent value v. Since the RLB is computed for each node of the approximate DDs305

compiled throughout the branch-and-bound, it needs to be computationally cheap.306

The RLB has the potential both to focus the compilation of restricted DDs on promising307

parts of the search space and to strengthen the bounds obtained through relaxed DDs.308

Furthermore, the branch-and-bound algorithm uses the RLB to make pruning decisions, if it309

happens to be tighter than the bound obtained with relaxed DDs.310

Example problems In our computational experiments, we use the lower bound given by311

Theorem 1 in [17] for TalentSched and the same RLB as in [20] for the PSP. We do not detail312

them in this article for the sake of conciseness.313

3 Aggregate Dynamic Programming for Decision Diagrams314

As stated in the introduction, optimizations techniques based on DP and DDs can prove315

highly effective [6, 13, 14, 18, 19]. In some cases, however, the state space of the DP models316

is simply too large and the bounds derived from restricted and relaxed DDs are of little317

to no use. This can be imputed either to the node selection heuristic or to the relaxation318

scheme. The MinLP heuristic traditionally used favors keeping nodes with the best prefix319

values. This locally-optimal selection policy may result in the elimination of all nodes that320

lead to the optimal solution, or even to any feasible solution, particularly in cases of highly321

constrained problems. In the latter case, the compilation of a restricted DD is a pure waste322

of time: no feasible solution is found at the end of the compilation, and not even a bound on323

the objective value can be exploited to reduce the optimality gap. The same phenomenon324

is detrimental to the usefulness of compiled relaxed DDs whose bounds might be of low325

quality when the node selection heuristic is oblivious to the global structure of the problem.326

Indeed, the merging operator yields a loose representation when applied to an arbitrary set327

of nodes for most problems. In the absence of a perfect heuristic, this situation will occur328

under certain conditions. It inspired our pursuit of a more globally-focused approach that329

could enhance the usefulness of the compiled DDs. This section presents a framework for330

integrating aggregate dynamic programming ideas with DD-based optimization that aims to331

address some of these shortcomings. Instead of relaxing the original problem by reasoning332

on merged states, it proposes to use problem instance and state aggregation operators that333

yield a simpler and relaxed version of the problem, which can be solved exactly. Solutions334

of the aggregated problem can provide bounds that capture the global problem structure,335

as well as guidance for the compilation of restricted DDs. This section details the role and336

meaning of the components of the framework one by one.337

3.1 Preprocessing: Problem Instance Aggregation338

The goal of this preprocessing step is to create an aggregate and simpler problem instance by339

reducing one or more dimensions of the problem. The instance aggregation operator Π must340

be defined such that the aggregate problem instance P ′ = Π(P) is a relaxation of the original341

V. Coppé, X. Gillard and P. Schaus 22:11

problem instance P. In practice, assuming the problem reasons over a set of elements, a342

clustering algorithm can be used to create clusters of such elements. Then, the aggregate343

problem instance can be obtained by considering aggregate elements that encompass all344

elements in a given cluster and by adapting the instance data accordingly. Formally, if a345

set E of elements is clustered into K clusters, we define two mapping functions: Φ : E →346

{0, . . . , K − 1} that gives the cluster for each original element and Φ−1 : {0, . . . , K − 1} → 2E
347

that gives the set of original elements for a given cluster.348

TalentSched In [17], it is proved that there always exists an optimal solution to the349

problem in which scenes with the same set of actors are scheduled together. This gives us the350

opportunity to aggregate the problem by creating K clusters of scenes that require a similar set351

of actors, which is plausible to occur in real film shoots. Scenes belonging to the same clusters352

can then be aggregated by taking the intersection of their actor requirements and adding up353

their durations. Formally, we write Π(P = (N, A, R, D, C)) = (ΠN (N), A, ΠR(R), ΠD(D), C)354

with ΠN (N) = {0, . . . , K − 1}. The aggregate actor requirements are computed as ΠR(R) =355

R′ with R′
i = ∩j∈Φ−1(i)Rj for all i ∈ ΠN (N) and the aggregate durations as ΠD(D) = D′

356

with D′
i =

∑
j∈Φ−1(i) Dj for all i ∈ ΠN (N).357

PSP The number of item types considered in a PSP instance dramatically impacts the358

size of the state space – for instance, the case with only one item type can be solved359

greedily. Therefore, and because it is not unlikely that the machine will produce several360

sets of similar items, we propose to cluster item types that have similar stocking and361

changeover costs. The instance aggregation operator is thus Π(P = (I, S, C, H, Q)) =362

(ΠI(I), ΠS(S), ΠC(C), H, ΠQ(Q)), where the aggregate set of item types is given by ΠI(I) =363

{0, . . . , K − 1}. Their stocking costs are computed as ΠS(S) = S′ with S′
k = mini∈Φ−1(k) Si364

for all k ∈ ΠI(I) and the changeover costs as ΠC(C) = C ′ with C ′
kl = mini∈Φ−1(k),j∈Φ−1(l) Cij365

for all k, l ∈ ΠI(I). The aggregate demand matrix is defined as ΠQ(Q) = Q′ with Q′k
p =366 ∑

i∈Φ−1(k) Qi
p. However, as the demand matrix is only supposed to contain unit demands,367

one must redistribute surplus demands in Q′ to the left.368

ALP Similarly to the item types of the PSP, the aircraft classes can be aggregated to369

reduce the complexity of the problem. We thus propose to cluster them based on their370

minimum separation time with other classes and define the instance aggregation operator as371

Π(P = (N, R, C, A, S, T, L)) = (N, R, ΠC(C), ΠA(A), ΠS(S), T, ΠL(L)). The set of aircrafts,372

their target landing time and the number of runways is kept. The aggregate set of classes is373

given by ΠC(C) = {0, . . . , K − 1} and their corresponding set of aircrafts is computed as374

ΠA(A) = A′ with A′
i = ∪j∈Φ−1(i)Aj for all i ∈ ΠC(C). The smallest separation times between375

aggregate classes are kept, as formalized by ΠS(S) = S′ with S′
kl = mini∈Φ−1(k),j∈Φ−1(l) Si,j376

for all k, l ∈ ΠC(C). Finally, the aggregation operator adapts the latest landing times of all377

the aircrafts so that any aircraft with a given target landing time has a greater latest landing378

time than all other aircrafts of the same class with a smaller target landing time: ΠL(L) = L′
379

with L′
i = max {Lj | Φ(i) = Φ(j), Ti ≤ Tj} for all i ∈ A. This property is assumed to hold380

for the original problem instance, and must be preserved so that aircrafts from the same381

class can be scheduled sequentially in the DP model.382

▶ Example 3. Let us apply the problem instance aggregation to our running example by383

creating K = 2 aggregate scenes. Assuming the following clustering is found: Φ(0) = 0, Φ(1) =384

1, Φ(2) = 0, Φ(3) = 1 or equivalently Φ−1(0) = {0, 2} , Φ−1(1) = {1, 3}. We thus compute385

CP 2023

22:12 Boosting DD-Based Branch-and-Bound with Aggregate Dynamic Programming

the aggregate scene durations as: D′ = ⟨D0 + D2, D1 + D3⟩ = ⟨5, 9⟩ and the aggregate actor386

requirements as: R′ = ⟨{0, 3} ∩ {0, 2, 3} , {0, 1, 3} ∩ {0, 1, 2, 3}⟩ = ⟨{0, 3} , {0, 1, 3}⟩.387

3.2 State Aggregation and Lower Bound388

A second mapping function accompanies the problem instance aggregation operator: the389

state aggregation operator π : S → S′ that projects each state of the state space S of the390

original problem in the aggregate state space S′. The role of this operator is to translate each391

original state to its aggregate version by adapting the state information to fit the aggregate392

problem data. Let us denote by B and B′ the exact DD for problem P and Π(P), respectively.393

If the aggregation operators Π and π are defined such that v∗(u⇝ t | B) ≥ v∗(u′ ⇝ t′ | B′)394

for all u ∈ B, u′ ∈ B′ with π(σ(u)) = σ(u′) and π(σ(t)) = σ(t′), then v∗(u′ ⇝ t′ | B′) can be395

used as a lower bound in the original problem, which we will denote by vagg(π(σ(u))).396

Assuming the aggregate problem can be pre-solved exactly and the solution of each397

subproblem is stored, this aggregation-based lower bound can be retrieved very quickly. One398

way to exploit it is to incorporate it in the RLB as shown at line 9 of Algorithm 1 so that it399

is used as often as possible. Another possibility would be to use the aggregate state space to400

replace the state merging scheme in relaxed DDs. Once a layer with greater width than W is401

reached, all the states contained in the nodes of the layer could be mapped to the aggregate402

state space to pursue the compilation in a lower dimensional space.403

TalentSched The state compression operator for TalentSched is somewhat complex because404

we can only map to states where complete aggregate scenes have yet to be scheduled. As a405

result, if a state s contains scenes in s.P that can optionally be scheduled, we map it to a406

dummy aggregated state. The same logic is applied when s.M only contains a subset of the407

scenes that compose an aggregate scene.408

π(s) =


(∅, ∅), if s.P ̸= ∅,
(∅, ∅), if ∃i ∈ ΠN (N) : (Φ−1(i) ∩ s.M) ̸= ∅ ∧ Φ−1(i) ⊈ s.M ,
(M ′, ∅), otherwise, with M ′ =

{
i ∈ ΠN (N) | Φ−1(i) ⊆ s.M

}
.

409

PSP If we extend the definition of Φ such that Φ(⊥) = ⊥, the state aggregation operator410

can be defined as π(s) = (Φ(s.i), R) with Ri =
∑

j∈Φ−1(i) s.Rj for all i ∈ ΠI(I). The item411

type is projected to its corresponding aggregate type, and the remaining number of items to412

produce for each type is separately accumulated within each cluster.413

ALP Again, assuming Φ(⊥) = ⊥, the state aggregation operator is defined by π(s) =414

(Q′, ROP ′) with the remaining quantities of aircrafts aggregated as Q′
i =

∑
j∈Φ−1(i) s.Qj for415

all i ∈ ΠC(C). For the ROP, one only needs to adapt the class of the last aircraft scheduled416

on each runway ROP ′
i = (s.ROP0.l, Φ(s.ROP0.c)) for all i ∈ R.417

If lower bounds for original states are obtained only by pre-solving the aggregate problem,418

it is unlikely that the solution of an aggregate subproblem mapped with the state aggregation419

operator will be available, since the aggregate separation times between aircraft classes lead to420

very different landing times. However, a lower bound for an aggregate state s1 = (Q1, ROP 1)421

can be provided by the solution of any state s2 = (Q2, ROP 2) such that Q1 = Q2 and422

ROP 1
i .c = ROP 2

i .c and ROP 1
i .l ≥ ROP 2

i .l for all i ∈ R.423

▶ Example 4. Let us compute the aggregation-based lower bound for the root state of424

the running example r = ({0, 1, 2, 3} , ∅) given its aggregate version π(r) = ({0, 1} , ∅) and425

V. Coppé, X. Gillard and P. Schaus 22:13

the clustering performed in Example 3. The aggregate version is trivial to solve since the426

objective function is symmetrical and there are only two scenes to schedule. We thus have427

vagg(r) = D′
0 × (C0 + C3) + D′

1 × (C0 + C1 + C3) = 5× (1 + 4) + 9× (1 + 2 + 4) = 88, which428

is a slightly better lower bound than the one obtained with the relaxed DD of Example 2.429

3.3 Solution Disaggregation and Node Selection Heuristic430

In order to exploit the solution of the aggregate version of a subproblem to find good heuristic431

solutions for the original subproblem, we need to specify the correspondence between decisions432

in the aggregate problem with decisions in the original problem. We therefore define a last433

modeling component, called the decision disaggregation operator δ(d) : D′
k → 2Di × · · · × 2Dj434

that maps the instantiation of a variable x′
k in the aggregate problem to a vector of possible435

corresponding assignments for variables xi, . . . , xj in the original problem.436

Finally, we define the path disaggregation operator that transforms a sequence of decisions437

in the aggregate problem to a sequence of sets of possible decisions in the original problem:438

∆(p = (ak, . . . , an′−1)) = δ(l(ak)) · . . . · δ(l(an′−1)) where n′ is the supposed number of439

aggregate variables and · denotes the concatenation of two vectors. Using this operator,440

we can compute a score for each decision made during the compilation of restricted DDs.441

At line 3 of Algorithm 1, we first retrieve the optimal value assignment of the aggregate442

subproblem and apply the path disaggregation operator on it. Then, a binary score is443

attributed to each arc at line 15, depending on its compatibility with the disaggregated444

solution. At line 2 of Algorithm 2, the maximum score obtained along any path up to each445

node can then be used to order nodes from most to least promising, favoring nodes with446

incoming paths that are highly compatible with the disaggregated solution. By doing so, the447

width of restricted DDs is controlled in the same way as before, enabling the preference of448

solutions even when no feasible solution with the maximum possible score is available.449

TalentSched Each aggregate scene corresponds to a set of original scenes, we thus need to450

map each aggregate decision to a sequence of original decisions: δ(i) = V where Vj = Φ−1(i)451

for all 0 ≤ j < |Φ−1(i)|. It corresponds to any of the scenes from the cluster i, duplicated452

|Φ−1(i)| times so that they are all scheduled one after another, preferably.453

PSP The operator is much simpler to define for the PSP, since each decision concerns the454

production of one unit of a chosen aggregate item type. It can thus be interpreted as the455

decision of producing one unit of any item type in the corresponding cluster: δ(i) =
〈
Φ−1(i)

〉
.456

ALP The only difference with the PSP is that decisions also contain the runway on which457

the aircraft is scheduled to land, which remains the same: δ(a, r) =
〈{

(a′, r) | a′ ∈ Φ−1(a)
}〉

.458

▶ Example 5. As computed in Example 4, the schedule ⟨0, 1⟩ is optimal for the aggregate459

problem. By disaggregating this solution, we get ⟨{0, 2} , {0, 2} , {1, 3} , {1, 3}⟩. We can notice460

that the optimal schedule ⟨0, 2, 3, 1⟩ found in Example 1 is compatible with the disaggregated461

solution and would thus be favored by the aggregation-based node selection heuristic.462

4 Computational Experiments463

The impact of the aggregation-based bounds and heuristics was evaluated experimentally by464

extending the generic DD-based solver DDO [21] and injecting the modeling of the three465

discrete optimization problems presented throughout the paper. The version of DDO used466

CP 2023

22:14 Boosting DD-Based Branch-and-Bound with Aggregate Dynamic Programming

0 100 200 300 400 500 600
time (s)

100

200

300

400

500

600

in
st

an
ce

s s
ol

ve
d

to
 o

pt
im

al
ity

TALENTSCHED

0 100 200 300 400 500 600
time (s)

0

50

100

150

200

250

300

in

st
an

ce
s s

ol
ve

d
to

 o
pt

im
al

ity

PSP

0 100 200 300 400 500 600
time (s)

200

250

300

350

in

st
an

ce
s s

ol
ve

d
to

 o
pt

im
al

ity

ALP

DDO DDO+AggB DDO+AggB+AggH rDDO rDDO+AggB rDDO+AggB+AggH

Figure 3 Number of instances solved over time for each configuration and problem studied.

includes the improvements introduced in [16, 19]. For each problem, random instances were467

generated with the following main parameters:468

TalentSched: number of scenes n ∈ {20, 22, 24, 26, 28}, number of actors m ∈ {10, 15}469

and average fraction of actors required for each scene ρ ∈ {0.3, 0.4}.470

PSP: number of item types n = 10, horizon H ∈ {100, 150, 200} and fraction of time471

periods with a demand ρ ∈ {0.9, 0.95, 1}.472

ALP: number of aircrafts n ∈ {25, 50, 75, 100}, number of runways r ∈ {1, 2, 3, 4}, number473

of aircraft classes c = 4 and mean inter-arrival time 40/r for generating the target landing474

times according to a Poisson arrival process.475

Furthermore, the instance generation tries to emulate an increasing number of groups of actor476

requirements, item types and aircraft classes that lend themselves more or less to aggregation.477

Each instance was presolved in its aggregate state space after aggregating its data according478

to k-means clustering for PSP and ALP and a custom hierarchical clustering for TalentSched479

that tries to maximize the remaining costs induced by the actor requirements. TalentSched480

instances can be presolved exactly with 20 aggregate scenes and PSP instances similarly with481

5 aggregate item types. On the other hand, not all ALP instances reduced to 2 aggregate482

aircraft have a reasonable number of states so we employ a relaxed DD with maximum width483

10000 for the presolving part instead. Note that the present approach does not compete484

with the state-of-the-art for TalentSched as it lacks much of the custom symmetry-breaking485

logic introduced in [17] and similarly for ALP regarding the dominance-breaking constraints486

presented in [28]. Six different configurations were created by combining the default DD-based487

solved DDO on one hand and a version using only restricted DDs and no relaxed DDs,488

denoted rDDO, on the other hand, with the aggregation-based bounds (AggB) and heuristics489

(AggH). Ten minutes were allotted for each configuration to solve each instance.490

Figure 3 presents the cumulative number of instances solved with respect to the solving491

time. For TalentSched, it appears that any configuration of rDDO performs better than any492

of DDO. This suggests that the bounds provided by the relaxed DDs are looser than the RLB493

while being more expensive to compute. It confirms our intuition that the state merging494

scheme yields bounds with a limited impact for some problems, probably because the state495

information gets very dilute when many states are merged together. In this case, the RLB496

computation is also quite involved – see [17]. Still, adding the AggB and the AggH to either497

configurations improves the results by a small margin, although not that significant. This498

can be contrasted with the results obtained for the two other problems, which show a clear499

improvement when the AggB and the AggH are added to either configurations. Furthermore,500

in cases where rDDO alone yields the worst results, incorporating AggB leads to results that501

are similar to or better than those achieved by DDO. Combining it with the AggH performs502

better than DDO in both cases and almost equally well than DDO+AggB+AggH.503

V. Coppé, X. Gillard and P. Schaus 22:15

0.0 0.1 0.2
DDO

0.00

0.05

0.10

0.15

0.20

0.25

DD
O+

Ag
gB

+A
gg

H

TALENTSCHED

0.00 0.25 0.50 0.75 1.00
DDO

0.0

0.2

0.4

0.6

0.8

1.0

DD
O+

Ag
gB

+A
gg

H

PSP

0.00 0.25 0.50 0.75 1.00
DDO

0.0

0.2

0.4

0.6

0.8

1.0

DD
O+

Ag
gB

+A
gg

H

ALP

Figure 4 Comparison of the end gap obtained for each instance by DDO and DDO+AggB+AggH.

0 25000 50000 75000 100000
DDO

0

20000

40000

60000

80000

100000

DD
O+

Ag
gB

+A
gg

H

TALENTSCHED

0 1 2 3
DDO 1e7

0

1

2

3

DD
O+

Ag
gB

+A
gg

H

1e7
(a) Value of first sol.

PSP

0 10000 20000
DDO

0
5000

10000
15000
20000
25000
30000

DD
O+

Ag
gB

+A
gg

H

ALP

0.0 0.3 0.6 0.9 1.2 1.5
DDO

0.0
0.3
0.6
0.9
1.2
1.5

DD
O+

Ag
gB

+A
gg

H

1e6

1e6

(b) Iteration of first sol.
ALP

Figure 5 Comparison of the value of the first solution found by DDO and DDO+AggB+AggH,
and of the iteration at which the solution is found for ALP.

The impact of the AggB and the AggH can also be measured in terms of end gap UB−LB
UB .504

Figure 4 compares the end gap obtained for each instance by DDO and DDO+AggB+AggH.505

It shows that except for a few instances, DDO+AggB+AggH is always closer to terminating506

the search than DDO, especially for PSP. To validate the relevance of the AggH, we also507

compare the value of the first solution found by DDO and DDO+AggB+AggH on Figure 5(a).508

For TalentSched and PSP, the quality of the first solution is always better when using the509

AggH. However, there is no clear trend for the ALP. Unlike TalentSched and PSP, for which510

a solution is always found at the first iteration, the landing time windows of ALP make it511

difficult to find a feasible solution. This explains both the end gaps close to one in Figure 4512

and the ∞ values in Figure 5(a), which represent the absence of a feasible solution. We thus513

compare on Figure 5(b) the iteration at which the first solution is found. We observe that514

DDO+AggB+AggH finds a feasible solution much earlier than DDO in most cases. This515

showcases well the benefits of a node selection heuristic with a more global awareness.516

5 Conclusion517

This paper explained how ideas from aggregate dynamic programming can be incorporated518

in DD-based optimization solvers. We proposed to derive lower bounds and node selection519

heuristics from a pre-solved aggregate version of the original problem at hand, and explained520

how these can be seamlessly added to the DD-based optimization framework. Computational521

experiments on three different problems showed that they provide lower bounds that further522

strengthen the current approach, and that could even be used as a replacement for relaxed523

DDs in some cases. Furthermore, the aggregation-based node selection heuristics were shown524

very valuable as they manage to steer the compilation of relaxed DDs toward better solutions525

earlier in the search. When applying this idea to a highly constrained problem, the heuristics526

proved to quickly lead to feasible solutions that were hard to find otherwise. These results527

suggest that aggregation-based bounds and heuristics capture global problem structures well,528

as opposed to the greedy MinLP heuristic traditionally used to compile approximate DDs.529

CP 2023

22:16 Boosting DD-Based Branch-and-Bound with Aggregate Dynamic Programming

References530

1 Henrik Reif Andersen, Tarik Hadzic, John N Hooker, and Peter Tiedemann. A constraint531

store based on multivalued decision diagrams. In International Conference on Principles and532

Practice of Constraint Programming, pages 118–132. Springer, 2007.533

2 Sven Axsäter. State aggregation in dynamic programming—an application to scheduling of534

independent jobs on parallel processors. Operations Research Letters, 2(4):171–176, 1983.535

3 James C Bean, John R Birge, and Robert L Smith. Aggregation in dynamic programming.536

Operations Research, 35(2):215–220, 1987.537

4 Richard Bellman. The theory of dynamic programming. Bulletin of the American Mathemat-538

ical Society, 60(6):503–515, 11 1954. URL: https://projecteuclid.org:443/euclid.bams/539

1183519147.540

5 David Bergman and Andre A. Cire. On finding the optimal bdd relaxation. In Domenico541

Salvagnin and Michele Lombardi, editors, Integration of AI and OR Techniques in Constraint542

Programming, volume 10335 of LNCS, pages 41–50. Springer, 2017.543

6 David Bergman, Andre A Cire, Ashish Sabharwal, Horst Samulowitz, Vijay Saraswat, and544

Willem-Jan van Hoeve. Parallel combinatorial optimization with decision diagrams. In Integ-545

ration of AI and OR Techniques in Constraint Programming: 11th International Conference,546

CPAIOR 2014, Cork, Ireland, May 19-23, 2014. Proceedings 11, pages 351–367. Springer,547

2014.548

7 David Bergman, Andre A Cire, Willem-Jan van Hoeve, and John N Hooker. Variable ordering549

for the application of bdds to the maximum independent set problem. In International550

conference on integration of artificial intelligence (AI) and operations research (OR) techniques551

in constraint programming, pages 34–49. Springer, 2012.552

8 David Bergman, Andre A Cire, Willem-Jan van Hoeve, and John N Hooker. Optimization553

bounds from binary decision diagrams. INFORMS Journal on Computing, 26(2):253–268,554

2014.555

9 David Bergman, Andre A Cire, Willem-Jan van Hoeve, and John N Hooker. Discrete556

optimization with decision diagrams. INFORMS Journal on Computing, 28(1):47–66, 2016.557

10 David Bergman, Andre A Cire, Willem-Jan van Hoeve, and Tallys Yunes. Bdd-based heuristics558

for binary optimization. Journal of Heuristics, 20(2):211–234, 2014.559

11 Quentin Cappart, David Bergman, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and560

Augustin Parjadis. Improving variable orderings of approximate decision diagrams using561

reinforcement learning. INFORMS Journal on Computing, 34(5):2552–2570, 2022.562

12 Quentin Cappart, Emmanuel Goutierre, David Bergman, and Louis-Martin Rousseau. Improv-563

ing optimization bounds using machine learning: Decision diagrams meet deep reinforcement564

learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages565

1443–1451, 2019.566

13 Margarita P Castro, Andre A Cire, and J Christopher Beck. An mdd-based lagrangian567

approach to the multicommodity pickup-and-delivery tsp. INFORMS Journal on Computing,568

32(2):263–278, 2020.569

14 Margarita P Castro, Chiara Piacentini, Andre Augusto Cire, and J Christopher Beck. Solving570

delete free planning with relaxed decision diagram based heuristics. Journal of Artificial571

Intelligence Research, 67:607–651, 2020.572

15 Edmund M Clarke, Orna Grumberg, and David E Long. Model checking and abstraction.573

ACM transactions on Programming Languages and Systems (TOPLAS), 16(5):1512–1542,574

1994.575

16 Vianney Coppé, Xavier Gillard, and Pierre Schaus. Decision diagram-based branch-and-bound576

with caching for dominance and suboptimality detection, 2023. arXiv:2211.13118.577

17 Maria Garcia de la Banda, Peter J Stuckey, and Geoffrey Chu. Solving talent scheduling with578

dynamic programming. INFORMS Journal on Computing, 23(1):120–137, 2011.579

https://projecteuclid.org:443/euclid.bams/1183519147
https://projecteuclid.org:443/euclid.bams/1183519147
https://projecteuclid.org:443/euclid.bams/1183519147
http://arxiv.org/abs/2211.13118

V. Coppé, X. Gillard and P. Schaus 22:17

18 Xavier Gillard. Discrete optimization with decision diagrams: design of a generic solver,580

improved bounding techniques, and discovery of good feasible solutions with large neighborhood581

search. PhD thesis, UCL-Université Catholique de Louvain, 2022.582

19 Xavier Gillard, Vianney Coppé, Pierre Schaus, and André Augusto Cire. Improving the filtering583

of branch-and-bound mdd solver. In International Conference on Integration of Constraint584

Programming, Artificial Intelligence, and Operations Research, pages 231–247. Springer, 2021.585

20 Xavier Gillard and Pierre Schaus. Large neighborhood search with decision diagrams. In586

International Joint Conference on Artificial Intelligence, 2022.587

21 Xavier Gillard, Pierre Schaus, and Vianney Coppé. Ddo, a generic and efficient framework588

for mdd-based optimization. In Proceedings of the Twenty-Ninth International Conference on589

International Joint Conferences on Artificial Intelligence, pages 5243–5245, 2021.590

22 Jaime E Gonzalez, Andre A Cire, Andrea Lodi, and Louis-Martin Rousseau. Integrated591

integer programming and decision diagram search tree with an application to the maximum592

independent set problem. Constraints, pages 1–24, 2020.593

23 John N. Hooker. Improved job sequencing bounds from decision diagrams. In Thomas Schiex594

and Simon de Givry, editors, Principles and Practice of Constraint Programming, volume595

11802 of LNCS, pages 268–283. Springer, 2019.596

24 Matthias Horn, Johannes Maschler, Günther R Raidl, and Elina Rönnberg. A∗-based construc-597

tion of decision diagrams for a prize-collecting scheduling problem. Computers & Operations598

Research, 126:105125, 2021.599

25 Alan J. Hu. Techniques for efficient formal verification using binary decision diagrams. PhD600

thesis, Stanford University, Department of Computer Science, 1995.601

26 Anthony Karahalios and Willem-Jan van Hoeve. Variable ordering for decision diagrams: A602

portfolio approach. Constraints, 27(1):116–133, 2022.603

27 C.-Y. Lee. Representation of switching circuits by binary-decision programs. The Bell System604

Technical Journal, 38(4):985–999, 1959.605

28 Alexander Lieder, Dirk Briskorn, and Raik Stolletz. A dynamic programming approach for606

the aircraft landing problem with aircraft classes. European Journal of Operational Research,607

243(1):61–69, 2015.608

29 Shin-ichi Minato. Binary decision diagrams and applications for VLSI CAD, volume 342.609

Springer Science & Business Media, 1995.610

30 Isaac Rudich, Quentin Cappart, and Louis-Martin Rousseau. Peel-And-Bound: Generating611

Stronger Relaxed Bounds with Multivalued Decision Diagrams. In Christine Solnon, editor,612

28th International Conference on Principles and Practice of Constraint Programming (CP613

2022), volume 235 of Leibniz International Proceedings in Informatics (LIPIcs), pages 35:1–614

35:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.615

31 Christian Tjandraatmadja. Decision Diagram Relaxations for Integer Programming. PhD616

thesis, Carnegie Mellon University Tepper School of Business, 2018.617

32 Christian Tjandraatmadja and Willem-Jan van Hoeve. Target cuts from relaxed decision618

diagrams. INFORMS Journal on Computing, 31(2):285–301, 2019. doi:10.1287/ijoc.2018.619

0830.620

CP 2023

https://doi.org/10.1287/ijoc.2018.0830
https://doi.org/10.1287/ijoc.2018.0830
https://doi.org/10.1287/ijoc.2018.0830

	1 Introduction
	2 Preliminaries
	2.1 Discrete Optimization
	2.2 Dynamic Programming
	2.3 Decision Diagrams
	2.3.1 Approximate Decision Diagrams
	2.3.2 Branch-and-Bound
	2.3.3 Rough Lower Bound

	3 Aggregate Dynamic Programming for Decision Diagrams
	3.1 Preprocessing: Problem Instance Aggregation
	3.2 State Aggregation and Lower Bound
	3.3 Solution Disaggregation and Node Selection Heuristic

	4 Computational Experiments
	5 Conclusion

