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Abstract
Regionalization is a crucial spatial analysis technique used for partitioning a map divided into
zones into k continuous areas, optimizing the similarity of zone attributes within each area. This
technique has a variety of applications in fields like urban planning, environmental management, and
geographic information systems. The REDCAP algorithm is a well-known approach for addressing
the regionalization problem. It consists of two main steps: first, it generates a spatially contiguous
tree (SCT) representing the neighborhood structure of the set of spatial objects using a contiguity-
constrained hierarchical clustering method. Second, it greedily removes k − 1 edges from the SCT to
create k regions. While this approach has proven to be effective, it may not always produce the
most optimal solutions. We propose an alternative method for the second step, an exact dynamic
programming (DP) formulation for the k-1 edges removal problem. This DP is solved using a
multi-valued decision diagram (MDD)-based branch and bound solver leading to a more optimal
solution. We compared our proposed method with the REDCAP state-of-the-art technique on
real data and synthetic ones, using different instances of the regionalization problem and different
supervised and unsupervised metrics. Our results indicate that our approach provides higher quality
partitions than those produced by REDCAP at acceptable computational costs. This suggests
that our method could be a viable alternative for addressing the regionalization problem in various
applications.
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1 Introduction

Spatial analysis plays a crucial role in comprehending and managing intricate spatial relation-
ships [13]. A fundamental challenge in spatial analysis involves determining homogeneous
regions based on similarity computed from shared attributes.

Given a geographical map divided into zones that partition the space, each zone is
associated with a set of attributes (e.g., population density, land use, socio-economic factors,
etc.) as represented on Figure 1a where the colors represent the attributes. The regionalization
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45:2 Partitioning a Map into Homogeneous Regions: A BnB Approach Using DD

problem studied in this paper, involves grouping these zones into k contiguous areas (also
referred to as regions), optimizing the similarity of attributes within each area. The contiguity
constraint requires that each grouping forms a single, connected area without any isolated
parts or exclaves.

Solving the regionalization problem can be computationally complex, even for a moderate
number of zones and areas, as it often entails searching for an optimal solution within a
large combinatorial search space. The state-of-the-art method called REDCAP [12] involves
solving the problem in a two-step approach as illustrated on Figure 1. In the first step, a
spatially contiguous (spanning) tree is created using a hierarchical clustering strategy. In
the second step, k − 1 edges are greedily deleted from the tree. The final contiguous areas
are defined by the k remaining connected components of the tree, ensuring both attribute
similarity and contiguity.

(a) (b) (c) (d)

Figure 1 Steps for solving a regionalization problem to cluster four areas: (a) Input of the
problem where colors represent the attributes of each zone. (b) Create a spatially contiguous tree
that connects all the zones. (c) Remove three edges from the tree. (d) The output areas are then
formed.

2 Related Work

The regionalization problem has been a well-studied combinatorial problem since the 1970s
[5]. Regionalization methods can be broadly classified as spatially implicit or spatially explicit
models, depending on how they represent the spatial contiguity constraints of the formed
regions [9]. Implicit methods initially apply traditional or non-spatial clustering methods to
obtain a preliminary solution, which is then adjusted to enforce spatial constraints [16, 17].
Conversely, explicit models enforce spatial contiguity constraints from the outset [9].

Exact methods provide an optimal guarantee for the solutions. However, they are
considered computationally intensive and still limited to small problems [8], meaning they
are suited for situations with a low number of zones and regions. In contrast, heuristic
approaches, which are more scalable, do not guarantee optimal solutions.

Among heuristic approaches with spatially explicit constraints, tree-based methods such
as SKATER [14, 2] and REDCAP [12] are widely used and have been demonstrated to
generate near-optimal partitions with acceptable computational costs [1, 6]. Both SKATER
and REDCAP employ a two-step approach that first constructs a spatially contiguous tree
connecting all the zones, then greedily splits it to create the desired number of regions.

Certain spatially explicit regionalization methods, such as those described by [7] and [18],
do not require a predetermined number of regions. Instead, these methods aim to identify
underlying regions while imposing constraints related to these regions.

It is worth noting that the regionalization problem can be viewed as a variant of the
optimal graph partitioning problem [4]. The main difference is that, in graph partitioning,
the dissimilarities between non-adjacent pairs of nodes are not considered by the objective
function.
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3 Proposed Approach

We start by stating formally the problem. Let us denote by V = {1, 2, . . . , n} the zones of our
map or more generally the zones. Let G = (V, E) represent the contiguity graph of the map,
where edges (i, j) ∈ E exist if and only if zones i and j share a common border on the map. G

must be connected. Let P = {V1, V2, . . . , Vk} represent a partition (areas) of the zones V into
k regions, with 1 ≤ k ≤ n. A partition P is considered feasible if all areas are disjoint, cover the
original set of zones, and the induced subgraphs G(Vu) are connected for all u ∈ {1, 2, . . . , k}.
Let (ai,1, ai,2, . . . , ai,m) denote the m numerical attributes of zone i. The quadratic distance or
dissimilarity between zones based on the set of numerical attributes is di,j =

∑m
l=1(ai,l −aj,l)2.

The heterogeneity of a region Vu is defined as h(Vu) = 1
|Vu|

∑
i<j|i,j∈Vu

di,j . It can be shown
that the heterogeneity can equivalently be computed as the sum of squared distances to
the mean of attributes h(Vu) =

∑
i∈Vu

∑m
l=1(ai,l − āl)2 with āl = 1

|Vu|
∑

i∈Vu
ai,l. The

regionalization problem is to find a feasible k-partition minimizing the overall heterogeneity
H(P ) =

∑k
u=1 h(Vu).

3.1 The REDCAP Two-Step Approach
REDCAP [12] is a state-of-the-art method for solving the regionalization problem. This
approach consists of two consecutive steps. First, it identifies a spanning tree, T , of graph G

(also referred to as a spatially contiguous tree (SCT) in this context) using a hierarchical
clustering approach. Second, it identifies k − 1 edges that partition the tree into a forest of k

subtrees, each of which constitutes the final cluster of the regionalization problem.

Step1. Starting initially with a set of n clusters C, each one containing one of the zones
C = {c1 = {1}, c2 = {2}, . . . , cn = {n}}, the hierarchical clustering approach merges at each
step, the two closest contiguous clusters cI and cJ until one single cluster regroups all the
zones. Two clusters cI and cJ are considered contiguous if there is an edge in the connectivity
graph G linking two zones from each cluster cI and cJ . The distance between two clusters cI

and cJ denoted as D(cI , cJ) and can be computed with different variants. The variant that
generally yields the best results is called full-order complete linkage (Full-Order-CLK) defined
as D(cI , cJ ) = max

i∈cI ,j∈cJ

di,j . Initially empty, one edge is thus added to the SCT T each time
two clusters cI and cJ are merged. This edge e ∈ E is the one of the original connectivity
graph with minimal cost i.e. argmin(i,j)∈E|i∈cI ,j∈cJ

di,j . At the end of the procedure, T

contains n − 1 edges connecting all the nodes. Overall, the computational complexity for
building T using the aforementioned method is O(n2 log n).

Step2. The second step of REDCAP [12] to obtain k homogeneous regions is to identify
k − 1 edges to remove from T as illustrated in Figure 1c. The remaining components form
the final k regions. Due to the inherent complexity of finding an optimal solution for the
second-step tree partitioning problem [14], this problem is solved in REDCAP using a greedy
heuristic. Let us denote by F = {T1, T2, . . . , Tk} the spanning forest obtained after the
removal of k − 1 edges from T . The set of nodes and edges of each tree Tu are denoted by
Vu and Eu.

At each iteration, one edge is taken out, splitting one tree of the forest into two trees.
Notice that a subtree can possibly contain a single node in case a leaf-edge is removed. The
edge that results in the greatest decrease in heterogeneity (or in other words, the highest
homogeneity gain) is chosen to be eliminated.

CP 2023
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For a tree Tu = (Vu, Eu), the homogeneity gain hg(e) obtained by the removal of an
edge e ∈ Eu, dividing the tree into two trees Tu1 and Tu2 is defined as hg(e) = h(Vu) −
h(Vu1) − h(Vu2) where Vu1 , Vu2 are the nodes in the corresponding sub-trees Tu1 and Tu2 .
The complexity of this greedy algorithm is O(k · n2) but as k is usually much smaller than
n, it can be ignored. We propose to replace this second-step greedy algorithm for the tree
partitioning problem by an exact formulation using dynamic programming and MDD-based
optimization as explained in the next section.

3.2 Edge Removal using MDD-based Optimization
We express the problem of the optimal removal of k − 1 edges from the spanning tree
T = (VT , ET ) to minimize the heterogeneity as a Dynamic Programming Problem. We use a
sequence of k − 1 decision variables xi representing the edges that are successively removed
from the SCT. The domain of each of these variables is the set of edges ET of the tree.
The search-space can be described as Layered Transition Diagram, also called Multivalued
Decision Diagrams (MDD) [3]. Let us denote by Fi the set of possible forests obtained by
removing exactly i edges from T . This set of forests

⋃
0≤i≤k−1 Fi constitutes the state space

and the corresponding nodes of the MDD. A state (forest) is denoted by f = (Vf , Ef ). Since
we always remove edges on the transitions, but not nodes, the set of nodes of each forest of the
state space remains the one of the original contiguity graph Vf = V, ∀f ∈ Fi, ∀0 ≤ i ≤ k − 1.
Let us now describe the important nodes, the transition function and cost functions for the
MDD:

The set of state-spaces F = {F0, . . . , Fk−1} forms the layers, where Fi corresponds to all
the states formed by removing exactly i edges from T .
The root of the MDD is denoted as r and corresponds to the state f0 ∈ F0, with f0 = T ,
and its initial value is vr = −h(VT ), representing the heterogeneity of the entire original
map.
The terminal states are denoted by t and regroup every state fk−1 ∈ Fk−1.
The set τ of transition functions s.t. τi : Fi × E → Fi+1 for i = 0, . . . , k − 2 taking the
system from one state f i to the next state f i+1 based on the edge removed.
The set c of transition cost functions ci : Fi × E → R s.t. ci(f, e) is the homogeneity gain
hg(e) of making the decision for xi to remove the edge e from the forest f at the level i.

The objective function is then to maximize vr +
∑k−2

i=0 ci(f i, xi) so that f i+1 = τi(f i, xi)
and xi ∈ ET , ∀i ∈ {0, . . . , k − 2}; f i ∈ Fi, ∀i ∈ {0, . . . , k − 1}. The optimal solution can be
obtained by searching the longest path from the root r to one of the terminal nodes t.

3.3 Branch-and-Bound with MDD
The number of states in the MDD augments rapidly with k and n (n − 1 choose k − 1). For
such a situation, Bergman et al. [3] have introduced a branch-and-bound (BnB) framework
to explore the state space of the MDD without generating it completely upfront and keeping
the memory requirement limited. In BnB based on MDDs, relaxed and restricted MDDs,
obtained by limiting the width of the MDDs, are used to efficiently explore and prune the
solution space. A relaxed MDD is obtained by state-merging. It is an over-approximation of
the solution space, where some infeasible solutions might be included. The optimal path of a
relaxed MDD provides an upper-bound, which can be used to prune the search space. A
restricted MDD, on the other hand, is an under-approximation of the solution space. It is
obtained by discarding the less promising states. Some feasible solutions might be excluded
but it can nevertheless be used to get lower bounds (similarly to a beam-search). MDD based
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BnB enqueues nodes of the original MDD in the queue. When a node is popped, a restricted
and a relaxed MDD are compiled from this node to hopefully improve the incumbent solution
and prune the search by upper-bounding. This combination of dynamic compilation of
restricted and relaxed MDD allows for a more effective exploration of the solution space of
the MDD and helps to find the optimal solution in a computationally efficient manner. The
nodes can also be pruned by computing a (cheap) upper-bound [11]. We describe next the
state-merging procedure and the cheap upper-bound for the optimal edge removal problem.

3.3.1 State Merging
As opposed to restricted MDD, a relaxed MDD encodes a superset of the solutions of the
original MDD and thus leads to an upper-bound. Its construction is limited to a given width
by applying a problem-specific merge operator. In the context of the edge-removal problem,
the merge operator applied to two nodes at a same level simply consists in taking the union
of the edges in the two forests: merge(fA = (V, EfA

), fB = (V, EfA
)) = (V, EfA

∪ EfB
). The

costs of the arcs leading to the merged nodes remain unchanged. Notice that in a relaxed
MDD, it is no longer true that the forests f i at level i have exactly i + 1 components. One
can be convinced that this merging definition correctly includes a superset of the possible
paths. It also guarantees an upper-bound on the optimal homogeneity gain that would be
obtained without compression. This is a direct consequence of the following property.

▶ Lemma 1. For a tree T = (V, E) and a super-tree of T denoted T ′ = (V ′, E′) with V ⊆ V ′

and E ⊆ E′, let e be an edge present in both E and E′. The homogeneity gain of this edge
removal in T denoted hg(e) is lower than h′

g(e) i.e. when this edge is removed from T ′.

Proof. Assuming e connects the two sub-trees T1 = (V1, E1) and T2 = (V2, E2) of T and
T ′

1 = (V ′
1 , E′

1) and T ′
2 = (V ′

2 , E′
2) of T ′. The homogeneity gain in T is hg(e) = h(V ) −

h(V1) − h(V2) which can equivalently be computed as hg(e) =
∑

i∈V1

∑
j∈V2

di,j . Similarly
h′

g(e) =
∑

i∈V ′
1

∑
j∈V ′

2
di,j . Therefore h′

g(e) − hg(e) =
∑

i∈V ′
1 \V1

∑
j∈V ′

2 \V ′
1

di,j ≥ 0. ◀

3.3.2 Cheap Upper-Bound
To efficiently compute an upper-bound for a state forest f i at level i, one can assume that
the k − i − 1 remaining edges that will be removed induce sub-trees that are perfectly
homogeneous (null heterogeneity). The upper-bound on the total homogeneity gain starting
from f i can then be calculated as :

∑min(k−i−1,|fi|)
l=1 h(V ∗

l ) where V ∗
1 , . . . , V ∗

k−i−1 are the
k − i − 1 trees of f i having the highest heterogeneity value. Notice that the count of trees in
f i may be fewer than k − i − 1. Should this occur, the formula accounts for the heterogeneity
of all present trees in the state.

4 Experiments

To assess the effectiveness of our MDD-based method for partitioning spatially contiguous
trees, we carried out experiments that compare our approach to REDCAP using both real-life
datasets and synthetic datasets with known ground-truth regions.

Real-life datasets. We use a set of 5 real-life regionalization datasets varying in size,
geometry and number of attributes. Since comparing the absolute value of heterogeneity is
meaningless, we use the Rescaled Overall Heterogeneity Hr. That corresponds to the ratio
between the overall heterogeneity of the MDD approach and the one of REDCAP.

CP 2023
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Economic and demographic indicators in NUTS zones: We collected economic
and demographic data on the NUTS areas of Europe to create several datasets that can
be used as instances of the regionalization problem. Using the Eurostat database, we
gathered data on the density, median age, average GDP per inhabitant, and migration
rate for each NUTS-1, NUTS-2, and NUTS-3 European zones in 2019. We constructed one
regionalization dataset for each level of NUTS classification, which we refer to as Ecodemo
NUTS1, Ecodemo NUTS2, and Ecodemo NUTS3. After removing the unconnected NUTS
zones, we are left with 94 zones for the Ecodemo NUTS1 dataset, 236 for the Ecodemo
NUTS2 dataset, and 1,155 for the Ecodemo NUTS3 dataset, each having four attributes.
Education in Belgium: We collected data on the level of education in each municipality
in Belgium for the year 2017 from the StatBel Open Data. Using this data, we created a
regionalization dataset named Education BE, where the Belgian municipalities serve as
the zones, and their attributes include the share of low, medium, and highly educated
inhabitants living in their respective territories. This dataset comprises a total of 563
zones, each having three attributes.
USA Ecoregions: Ecoregions are geographic regions of ecological systems based
on vegetation, climate conditions, and land cover [15]. They are frequently used in
conservation ecology for planning urban and agricultural development while preserving
biodiversity. We use the same dataset as [1] to evaluate our regionalization model. The
dataset gathers climatic and land-cover measurements from 1994 in 186 zones of the USA
territory. Once the isolated zones are removed, our Ecoregions USA dataset includes 172
zones, each one having 15 different ecological attributes.

Synthetic Maps. We evaluate the performance of regionalization models in recovering the
original regions on synthetic maps using supervised-learning metrics. Our synthetic maps are
generated following the methodology proposed in [1], and are parameterized by the number
of zones (cells of a square grid), number of regions, region fuzziness, and region geometries.

We created 3 different classes of synthetic maps obtained for different settings of the
parameters of the generation process. Each class describes a different level of complexity for
regionalization methods. The family A regroups maps with 100 zones divided in 5 regions
with simple concentric geometries and well-delimited attribute values. The family B consists
of synthetic maps of 400 zones distributed in 10 regions, with more complex and different
geometries, and less pronounced frontiers between regions due to their more similar mean
values. Finally, the family C comprises maps with 900 zones divided in 20 regions having
more complex geometries and more diverse sizes but similar fuzziness than family B. An
example of map for each family is represented on Figure 2.

In the case of synthetic datasets, we have access to the original partition, or the ground-
truth. Consequently, the optimization problem can be reframed as a machine learning
problem, with the goal of recovering the original partition. By comparing the assigned
regions with the ground truth, we can calculate various machine learning metrics to assess
the performance of the regionalization models. We use the pairwise comparison to evaluate
the regionalization algorithms. Each pair of zones is labeled as positive if they belong in
the same original region and as negative if they come from different ones. One can then
compute the classical True Positive (TP), True Negative (TN), False Positive (FP), False
Negative (FN) rates and evaluate the precision, recall and F1 score metrics to evaluate the
regionalization methods on the synthetic maps. In addition to these 3 supervised metrics,
we also calculate the ratio between the overall heterogeneity of the partition generated by
the regionalization algorithm with the one of ground-truth partition. We name this metric
the True Overall Heterogenity Ratio HT .
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Figure 2 Examples of ground-truth regions for each synthetic map class. From left to right, we
have an example of the regions’ geometry of a synthetic map from family A, family B and family C.
The zones belonging to the same region are colored in the same color.

Table 1 Comparison of MDD and REDCAP approaches on real-life regionalization problems. The
table presents the rescaled overall heterogeneity for each dataset and partition size (k ∈ 5, 10, 15, 20).

Number of regions k

Dataset 5 10 15 20
Ecodemo NUTS1 1.00 0.98 0.96 0.965
Ecodemo NUTS2 0.989 0.97 0.958 0.935
Ecodemo NUTS3 0.997 1.00 1.00 1.00
Education BE 0,956 0.861 0.887 0.916
Ecoregions USA 1.00 0.997 0.963 0.953

5 Results

For each regionalization problem, we construct the corresponding SCT using REDCAP’s
hierarchical clustering. In the second step, we compare the greedy edge removal of REDCAP
with the one computed using MDD-based optimization. We employ the DDO solver [10]
with a width of 50 for both restricted and relaxed DDs and set a timeout of 100 seconds to
identify the final k regions. Before the regionalization process, we normalize the attributes of
the zones within a range between 0 and 1 using a MinMax scaler.

5.1 Real-life Instances
We assessed the performance of the MDD approach and REDCAP in generating 5, 10, 15,
and 20 regions for each dataset described. The comparison between the two methods on the
real-life regionalization problems is presented in Table 1. The table provides insights into
the quality of the methods’ partitions by displaying the rescaled overall heterogeneity for
each dataset and for the partition sizes k = 5, 10, 15, 20.

Regardless of the requested number of regions, our experimental results show that
the MDD approach consistently matches or outperforms REDCAP in terms of overall
heterogeneity for each regionalization dataset. This indicates that the partitions generated by
the MDD approach are of higher quality. However, the degree of difference varies depending
on the dataset. For instance, in the case of the Education BE dataset, the MDD approach
reduces the heterogeneity of the partition by almost 15% for 10 regions compared to REDCAP.
In contrast, for the Ecodemo NUTS3 dataset, the two algorithms produce similar partitions
for all values of k. Although the MDD approach only achieved optimality for the Ecodemo
NUTS1 dataset when k = 5, it outperformed REDCAP for all datasets.

CP 2023
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Table 2 Number of seconds taken by the MDD approach to find the first solution for each real-life
regionalization problem. The time at which it discovers the best solution is presented in parentheses
in the cases where it is not equivalent to the first solution founded.

Number of regions k

Dataset 5 10 15 20
Ecodemo NUTS1 <1 <1 <1 <1
Ecodemo NUTS2 <1 <1 2 2 (28)
Ecodemo NUTS3 6 13 19 21
Education BE 2 (18) 3 (85) 5 (97) 6
Ecoregions USA <1 <1 <1 (21) 2 (24)

Table 3 Comparison of our MDD approach with REDCAP on synthetic datasets

A B C
Metric MDD REDCAP MDD REDCAP MDD REDCAP

Precision 0,988 0,944 0,966 0,912 0,956 0,954
Recall 0,989 0,962 0,949 0,891 0,951 0,908
F1 Score 0,988 0,952 0,956 0,903 0,954 0,928
HT 0,99 1,19 0,978 1,108 1,015 1,078

Regarding performance, there is a significant difference between the MDD approach and
REDCAP. REDCAP takes, on average, between 0.01 and 0.3 seconds to produce a partition
depending on the dataset and the number of regions requested, while the MDD approach is
allowed to use up to 100 seconds to obtain the best possible solution. However, for the most
part, the first partition discovered by the MDD approach is also the best one obtained within
the 100-seconds timeframe. Table 2 presents the amount of time the MDD approach searched
before finding the first valid partition for each regionalization problem. It is noteworthy
that this first partition found by the MDD approach has always a lower or equal overall
heterogeneity than the partition found by REDCAP. Additionally, if this first solution is not
the best one found within the 100-seconds timeframe, Table 2 reports in parentheses the time
taken by the MDD approach to discover the partition with the lowest overall heterogeneity.

5.2 Synthetic Maps
We evaluated both the REDCAP and MDD approaches on various synthetic maps of different
sizes and complexities (families A, B, and C). For each family, we generated and assessed 20
maps using both methods. Table 3 displays the mean Precision, Recall, F1 Score, and True
Overall Heterogeneity Ratio for each method, computed using the ground-truth values. The
MDD approach was able to prove the optimal solution for the edge removal problem only for
instances belonging to family A.

We can see that using the MDD-based approach for the second step of REDCAP improves
the solution in all metrics for the three synthetic map families. Comparing the results of
the MDD approach, it can be seen that the precision and recall are lower for families B and
C. Both of these families share a characteristic in that their region boundaries are more
fuzzy than those of family A. This suggests that our method encounters more difficulty in
recovering the initial partition when the attributes between two neighboring regions are more
similar, i.e. when the delimitations between regions are less pronounced. The number of
zones, the number of regions and their geometric complexity seem to have a lesser impact on
the capacity of our model to recover the original regions.
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Moreover, for families A and B, the MDD approach generates regions with a lower overall
heterogeneity than the ground-truth partition on average. This implies that the original
partition is not always the optimal one in terms of overall heterogeneity. Thus, it can
be concluded that for the first two families, the regions generated by the MDD approach
deviate from the ground-truth ones simply because it discovered partitions with lower overall
heterogeneity than the original ones.

6 Conclusion

In this paper, we have proposed a novel approach for the regionalization problem, an essential
clustering task in a variety of spatial analysis domains. We have improved upon the second step
of the well-established REDCAP algorithm by introducing an exact dynamic programming
formulation for the edge removal problem solved using a multi-valued decision diagram
(MDD)-based branch and bound solver. We have provided comprehensive experiments on
both real-life datasets and synthetic ones to illustrate the efficacy of our method. Our
comparison with the REDCAP algorithm using a wide range of supervised and unsupervised
metrics demonstrated that our approach consistently produces partitions of higher quality.
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