
Revisiting the soft global cardinality constraint

Pierre Schaus1, Pascal Van Hentenryck1,2, Alessandro Zanarini1

1Dynadec, 2Brown University
{pschaus,pvh,alessandro.zanarini}@dynadec.com

Abstract. The Soft Global Cardinality Constraint (softggc) relaxes
the Global Cardinality Constraint (gcc) by introducing a violation vari-
able representing unmet requirements on the number of value occur-
rences. A first domain consistent filtering algorithm was introduced by
Van Hoeve et al. in 2004 using a minimum cost flow algorithm. A simpler
and more efficient filtering algorithm was introduced in 2006 by Zanarini
et al. using matchings in bipartite graphs. While the consistency check
introduced in the second algorithm is correct, we show that the algorithm
may not achieve domain consistency when cardinality requirements con-
tain zeroes. We give new domain consistent conditions and show how to
achieve domain consistency within the same time bounds. The softggc
constraint was implemented in Comet.

1 Introduction

Régin et al. [3] suggested to soften global constraints by introducing a cost vari-
able measuring the violation of the constraints. This has the advantage that
over-constrained satisfaction problems can be turned into a constrained opti-
mization problem solvable by traditional CP solvers; furthermore specialized
filtering algorithms can be employed to filter the variables involved in soft con-
straints. One of the most used global constraints to solve practical problems is
the Global Cardinality Constraint (gcc) introduced in [2]:

Definition 1.

gcc(X, l, u) = {(d1, . . . , dn) | di ∈ Di, ld ≤ |{di | di = d}| ≤ ud ,∀d ∈ DX}

A soft version of this constraint (softggc) was introduced in [4]:

softggc(X, l, u, Z) = {(d1, . . . , dn) | di ∈ Di, dz ∈ DZ , viol(d1, . . . , dn) ≤ dz} where

viol(d1, . . . , dn) =
∑

d∈DX

max(0, |{di | di = d}| − ud, ld − |{di | di = d}|).

The violation represents the sum of excess or shortage for each value. For space
reasons, we only consider the value-based violation version of the constraint in
this paper as the extension to variable violation follows directly (as in [5]).

The domain filtering algorithm for softggc introduced in [5] exploits match-
ing theory and we use the same notation for consistency and clarity. The consis-
tency check and the filtering of the violation variable Z are briefly summarized

in Section 2. The main contribution of the paper is in Section 3 where the cor-
rected filtering algorithm for the X variables is presented. Please refer to [5] for
some basic notions about matching theory.

2 Consistency Checking and Filtering of Zmin [5]

Let G(X ∪ D,E) be an undirected bipartite graph (also known as the value
graph) such that one partition represents the variable set and the other one the
value set. There is an edge {xi, d} ∈ E if and only if d ∈ Di. Two specialized
versions of G were introduced in [5]: They differ only by the capacity of value
vertices, where vertex capacity is the maximum number of edges belonging to
the matching that share the vertex.

Definition 2. Let Go (the overflow graph) be a value graph such that the ca-
pacities of value-vertices are set to c(d) = ud. Analogously let Gu (the under-
flow graph) be a value graph such that the capacities of value vertices are set to
c(d) = ld. In both Go and Gu, variable vertices have unit capacities.

The violation is expressed in terms of overflows and underflows. They are are
characterized by Theorem 1 which specifies how to find

– a valid assignment (d1, . . . , dn) that minimizes the total overflow :∑
d∈DX

max(0, |{di | di = d}| − ud),

– a valid assignment (d1, . . . , dn) that minimizes the total underflow :∑
d∈DX

max(0, ld − |{di | di = d}|).

Theorem 1 ([5]). Given a maximum matching Mo in the graph Go, it is not
possible to find an assignment with a total overflow less than BOF = |X|− |Mo|
(best overflow). Given a maximum matching Mu in the graph Gu, it is not
possible to find an assignment with a total underflow less than BUF =

∑
d∈D ld−

|Mu| (best underflow).

Theorem 2 ([5]). Given a softggc constraint and two maximum matchings
Mo and Mu , respectively in Go and Gu , it is possible to build a class of
assignments with overflow equal to BOF = |X| − |Mo| (best overflow) and
BUF =

∑
d∈D ld − |Mu| (best underflow).

In other words, Theorem 2 tells us that it is possible to find an assignment
with a violation equal to BOF + BUF . The violation variable can be filtered as
Zmin ← max(Zmin, BOF + BUF). If BOF + BUF > Zmax, then the constraint
is inconsistent. The algorithm to find an assignment with a violation equal to
BOF +BUF starts from a matching Mu in Gu (having by definition a underflow

2

of BUF and an overflow of 0 but not representing a complete assignment). This
matching is then increased in Go using a classical augmenting-path algorithm.
Since the augmenting-path algorithm never decreases the degree of a vertex,
the underflow cannot increase (it remains constant). At the end, the overflow is
equal to BOF . The final assignment has a violation equal to BOF + BUF . See
[5] for further details.

3 Filtering of X

While the consistency check is correct, the original paper [5] overlooked the case
in which the lower or upper bounds of the value occurrences are zeroes and it
does not characterize the conditions to achieve domain consistency in such cases
(see Example 1 below). In this section, we review and correct the theorems on
which the filtering algorithm is built upon. Theorem 3 shows the properties for
which a vertex x is matched in every maximum matching.

Theorem 3. A variable vertex x is matched in every maximum matching of Gu

(Go) iff it is matched in a maximum matching Mu (Mo) and there does not exist
an M -alternating path starting from a free variable vertex and finishing in x.

Proof. ⇒ Suppose there exists an even M -alternating path P starting from a
free variable vertex x′ such that P = {x′, . . . , x}; the alternating path is even as
x and x′ belong to the same vertex partition furthermore x must be matched as
P is an alternating path and x′ is free. Then M ′ = M ⊕ P ′ is still a maximum
matching in which x is free.
⇐ Suppose there exists a maximum matching M ′ in which x is free. Any of
the adjacent vertices of x are matched otherwise M ′ is not maximum. We can
build an even alternating path starting from x by choosing one of the adjacent
vertices of x and then by following the edge belonging to M ′. By using such
an even alternating path, it is possible to build a new maximum matching in
which x is matched and there exists an M -alternating path starting from a free
variable-vertex.

Theorem 4 gives the conditions under which forcing an assignment x← v leads
to a unit increase in the best underflow.

Theorem 4. Forcing the assignment x ← v leads to decrease the size of the
maximum matching in Gu by one and thus increasing the underflow by one if
and only if lv > 0 and e = {x, v} does not belong to a maximum matching in
Gu, or lv = 0 and the vertex x is matched in every maximum matching in Gu.

Proof. If lv > 0, then there exists a matching (maybe not maximum) using
the edge x ← v. Consequently, if e = {x, v} does not belong to any maximum
matching of Gu, the size of a maximum matching would decrease by one forcing
the assignment x ← v. Now if lv = 0, then the edge x ← v belongs to no
matching of Gu so the size of the maximum matching decreases only if the
vertex x is matched in every maximum matching. ut

3

Example 1. Assume D1 = {1, 2}, D2 = {1, 3}, D3 = {1, 3} with l1 = 0, l2 =
1, l3 = 1 (upper bounds are all equal to |X|). A maximum underflow matching
is M = {{X1, 2}, {X2, 3}} that does not incur in any violation. The wrong
assumption made in [5] was to consider that values with capacity equal to zero
would not cause any sort of underflow increase. However, in some cases, this
assumption is incorrect as we now show.

Forcing the assignment X2 = 1 (or equivalently X3 = 1) does not cause
an increment of violation; X2 belongs to an M -alternating path starting from
a free variable vertex, i.e., P = (X3, 3, X2) therefore there exists a maximum
matching M ′ in which X2 is free (M ′ = {{X1, 2}, {X3, 3}}). Then, X2 can take
the value 1 without increasing the underflow. The assignment X = (2, 1, 3) has
total violation equal to zero. However, forcing the assignment X1 = 1 causes
an increment of violation; there is no M -alternating path starting from a free
variable vertex and ending in X1 thus X1 is matched in every maximum matching
and it is not free to take the value 1 without increasing the underflow. The best
assignment would then have a unit underflow (e.g., X = (1, 3, 3)) as only X1 can
take the value 2.

Similarly, Theorem 5 gives the conditions under which forcing an assignment
x← v leads to a unit increase to the best overflow.

Theorem 5. Forcing the assignment x ← v leads to decrease the size of the
maximum matching in Go by one and thus increasing the overflow by one if and
only if uv > 0 and e = {x, v} does not belong to a maximum matching in Go, or
uv = 0 and the vertex x is matched in every maximum matching in Go.

Proof. Similar to proof of theorem 4

Example 2. Assume D1 = {1, 4}, D2 = {1, 2, 3}, D3 = {1, 3}, D4 = {3}, D5 =
{1, 2, 4} with u1 = 1, u2 = 2, u3 = 1, u4 = 0 (all lower bounds are null). A
maximum overflow assignment is X = (1, 2,−, 3, 2) (unit violation). Variable
X1 belongs to an M -alternating path starting from a free variable-vertex P =
(X3, 1, X1), therefore there exists a maximum matching in which X1 is free to
take any value without increasing the best overflow (e.g., the full assignment X =
(4, 2, 1, 3, 2) has still an overflow equal to 1). For the arc (X5, 4), the situation is
different: in fact X5 is matched in every maximum matching. Therefore, forcing
this assignment would increase the overflow to 2; the best assignment we could
get is for instance X = (1, 2, 1, 3, 4).

Theorem 6 gives the conditions to reach domain consistency.

Theorem 6. Let Go and Gu be the value graphs with respectively upper and
lower bound capacities and let Mo and Mu be maximum matching respectively
in Go and Gu ; let BOF and BUF be respectively BOF = |X| − |Mo| and
BUF =

∑
d∈D ld−|Mu|. The constraint softggc(X, l, u, Z) is domain consistent

on X if and only if min DZ ≤ BOF + BUF and either:

1. BOF + BUF < (max DZ − 1) or

4

2. if BOF + BUF = (max DZ − 1) and for each edge e = {x, v} either
– it belongs to a maximum matching in Gu, or lv = 0 and the vertex x is

not matched in every maximum matching in Gu or
– it belongs to a maximum matching in Go, or uv = 0 and the vertex x is

not matched in every maximum matching in Go or
3. if BOF + BUF = max DZ and for each edge e = {x, v} we have that

– it belongs to a maximum matching in Gu, or lv = 0 and the vertex x is
not matched in every maximum matching in Gu and

– it belongs to a maximum matching in Go, or uv = 0 and the vertex x is
not matched in every maximum matching in Go .

Proof. Common to the proof of all the cases is the fact that there exists an
assignment with violation BOF + BUF . If BOF + BUF > max DZ then the
constraint is inconsistent since BOF + BUF is a lower bound on the violation.

1. Forcing the assignment of one variable cannot increase BUF by more than
one and cannot increase BOF by more than one. So in the worst case the
assignment of a variable to a value results in BUF ′ = BUF +1 and BOF ′ =
BOF + 1. By Theorem 2 it is possible to build an assignment for all the
variables with violation BUF ′+BOF ′ = BUF +BOF +2 ≤ max DZ which
is thus consistent.

2. Since BOF + BUF = (max DZ − 1) and because of Theorem 2, at most
one of BUF or BOF can increase by one by forcing the assignment x← v.
Theorems 4 and 5 tell us the conditions say Cu and Co under which the
assignment leads to increase respectively BUF and BOF by one. At most
one of these conditions can be satisfied. Hence the condition expressed is
nothing else than ¬(Cu ∧ Co) ≡ ¬Cu ∨ ¬Co.

3. This is similar to previous point except that neither BUF nor BOF can
increase by one. Hence the condition expressed is ¬Cu ∧ ¬Co. ut

Note that once we compute the alternating paths to detect edges belonging to a
maximum matching, we get for free also the variable vertices that are matched in
every maximum matching (Theorem 3). Therefore the complexity of the filtering
algorithm remains unchanged w.r.t. [5].

The algorithm described in this paper is implemented in the constraints
softAtLeast, softAtMost and softCardinality of Comet [1].

References

1. Comet 2.0. www.dynadec.com.
2. J-C. Régin. Generalized arc consistency for global cardinality constraint. AAAI-96,

pages 209–215, 1996.
3. J.C. Régin, T. Petit, C. Bessière, and J.-F. Puget. An original constraint based

approach for solving over constrained problems. Sixth International Conference on
Principles and Practice of Constraint Programming (CP 2000), 1894, 2000.

4. Willem Jan van Hoeve, Gilles Pesant, and Louis-Martin Rousseau. On global warm-
ing: Flow-based soft global constraints. J. Heuristics, 12(4-5):347–373, 2006.

5. Alessandro Zanarini, Michela Milano, and Gilles Pesant. Improved algorithm for
the soft global cardinality constraint. In CPAIOR, pages 288–299, 2006.

5

	Revisiting the soft global cardinality constraint
	Pierre Schaus1, Pascal Van Hentenryck1,2, Alessandro Zanarini1

