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Abstract. In Large Neighborhood Search (LNS) [14], a problem is solved
by repeatedly exploring (via tree search) a neighborhood of an incum-
bent solution. Whenever an improving solution is found, this replaces the
current incumbent. LNS can improve dramatically the scalability of CP
on large real world problems, provided a good neighborhood selection
heuristic is available. Unfortunately, designing a neighborhood heuristic
for LNS is still largely an art and on many problems beating a random
selection requires a considerable amount of both cleverness and domain
knowledge. Recently, some authors have advocated the idea to include in
the neighborhood the variables that are most directly affecting the cost
of the current solution. The proposed approaches, however, are either
domain dependent or require non-trivial solver modifications. In this pa-
per, we rely on constraint propagation and basic solver support to design
a set of simple, cost based, domain independent neighborhood selection
heuristics. Those techniques are applied on Steel Mill Slab problems il-
lustrating the superiority of some of them over pure random relaxations.

1 Introduction

Large Neighborhood Search (LNS) is a powerful hybrid method that employs
ideas from Local Search to dramatically improve the scalability of Constraint
Programming (CP) on large scale optimization problems. Specifically, LNS is an
iterative approach that starts from an incumbent solution and tries to improve
it by using CP to explore a neighborhood. This neighborhood is usually defined
by freezing a subset of variables, which are left assigned to the value they had
in the incumbent solution. The remaining variables are instead relazed, meaning
that their domain is restored to its initial content. Typically, the neighborhood is
explored under some search limit (e.g. maximum number of backtracks or time),
to avoid spending too much time in a single iteration. If an improving solution
is found, it becomes the new incumbent.

Formally, let P = (z, X, D, C) be a Constraint Optimization Problem, where
X is the set of variables, D is the set of the variable domains (with D; being
the domain of z;), and z is a cost variable. Without loss of generality we assume
that z has initial domain [—o00, 0] and must be minimized. The set C' contains
the problem constraints. Each constraint ¢; is defined over a subset of variables
S(¢;), known as its scope. The scope can include both the X and the z variables.



We view a (partial) assignment 7 as a particular constraint that forces each
variable x; in its scope S(7) to assume a specific value v; = 7(x;). An assignment
T is a solution if S(7) = X and the problem P, = (z, X, D,C U T) is consistent
(none of the constraints detected an infeasibility). We use the special notation
o to refer to solutions.

In each LNS iteration we start from a solution o, then we select a subset of
variables to relax Xz and we build a partial assignment 7 such that:

— the scope includes the variables to freeze, i.e. S(7) = X \ Xgr
— 7(z;) = o(z;) for each z; € S(71)

then we try to find a solution for P, with an improving cost. More precisely,
let the notation b, (x;) refer to the lower bound of the domain of x; after the
propagation has reached a fix point on P;. Similarly, we use the notation ub, (z;)
for the upper bound. Then a solution o’ has better cost than o iff ib,/ (z) < b, ().

The choice of the variables X g to relax is crucial for the effectiveness of the
approach. Currently, most of the best selection heuristics are domain specific and
require a great deal of both expertise and knowledge to be formulated. While
several researchers have addressed the topic of independent black-box search
for CP [11,15,8,2], much less effort has been dedicated to make neighborhood
selection in LNS problem independent. Some of the most relevant attempts in
this direction are summarized in Section 2.

In this paper, we propose a novel cost driven, domain independent neighbor-
hood selection method, based on the information collected by the progressive
re-application of the current incumbent solution (a.k.a. a dive). The method is
described in Section 3. In Section 4 we report results for the Steel Mill Slabs
problem and in Section 5 we offer some concluding remarks.

2 Related work

This section describes existing domain independent and cost based approaches
for neighborhood selection in LNS. The discussion does not include adaptive
approaches, where the goal is to automatically learn the best neighborhood (from
a given pool) or the best parameters for a selection method. The interested reader
is invited to check [5,3,12,6] for more details. As a remark, the integration of
domain independent neighborhood selection and adaptive schemes offers a lot of
opportunities and represents a very interesting topic for future research.

2.1 Propagation Guided LNS (PGLNS)

This approach is introduced in [10], where the authors define two neighborhood
selection methods relying on information coming from constraint propagation.
The first method defines the set of variable to freeze by incrementally building
a partial assignment 7, starting from an empty scope. In particular:

1. First, a variable is selected at random from X and inserted in S(7)



2. The fix point for P; is reached

3. Then the next variable is selected at random among the 10 with the largest
(non-zero) impact (defined as in [11]). If the list is empty the selection is
done at random from X \ S(7).

4. The process goes back to step 2, until the size of the search space of P,
(actually, an approximation of that) is small enough.

The underlying idea is that of freezing related variables.

The second method, name Reversed PGLNS also follows an incremental
scheme, but performs no propagation and relies on the availability of a closeness
measure between pairs of variables. The method builds incrementally the set X
of variables to relax by always choosing the next variable among the 10 with the
largest (non-zero) closeness to the ones in Xpg. The choice is made at random
if the list is empty. As one can see, this approach is based on the idea of re-
laxing related variables. In their implementation, the authors interleave PGLNS
and Reversed PGLNS and use the impacts from PGLNS to obtain the closeness
scores. The Reversed PGLNS approach performed best in their experimentation.

2.2 Cost Based Neighborhoods for Scheduling Problems

As a major drawback, the PGLNS approach makes no effort to exploit the con-
nection between variable assignment and the cost variable z. In [3], the authors
propose a cost driven neighborhood selection method for scheduling problems.
The main underlying idea is to include in the set X the variables that are
most directly affecting the cost of the current solution. The authors successfully
apply this idea to Job-Shop Scheduling by choosing the start variables to be re-
laxed among those having the smallest slack. Activities with a larger slack start
to be considered only after a certain number of non-improving LNS iterations.
Unfortunately, this approach cannot be considered really problem independent.

2.3 Generic adaptive heuristics for LNS

Several cost driven and domain independent neighborhood selection methods are
proposed in [7], the most successful ones being based on the so-called dynamic
impact of a variable. The dynamic impact tries to capture the effect that relaxing
a variable would have on the problem cost. Specifically, let o be the incumbent
solution and let 7; , be an assignment that is identical to o, except that 7; ,(x;) =
v. Then the impact of the pair (z;,v) is defined as:

IHzi,0,0) = b, (2) — by (2) (1)
Note that 7, is not guaranteed to be a solution, since it may make the prob-

lem infeasible. To avoid this problem, during the impact evaluation the authors
disregard all constraints that are not needed for the cost computation.



The authors obtain their best results by selecting the variables to be relaxed
with a probability proportional to their mean dynamic impact, defined as:

— 1
Id(xi,a): 5 Z T4z, v, 0) (2)
| Z‘ veD;,
oo (@)

which requires to compute the dynamic impact for each value in the original
domain D;. The author evaluated the neighborhood selection heuristic by per-
forming a single LNS iteration starting from several reference solutions. The
method based on mean impact was able to improve the solution more frequently
than a random selection. This evaluation approach, although sound, may be bi-
ased by the choice of the reference solutions (e.g. improving a solution with loose
constraints is very different improving one with tight constraints). The described
approach has furthermore some drawbacks:

— Ignoring problem constraints (except for those needed for the cost computa-
tion) does not account for the indirect cost impact that a variable may have
due to other constraints.

— Automatically detecting the constraints needed for the cost computation
may not be doable. In such situation, the user would need to manually
specify them, requiring a custom extension in the modeling interface.

— It is not necessarily true that measuring the cost impact of a variable under
the assumption that it is the last to be assigned leads to a reliable evaluation.

3 Cost Impact Guided LNS

In this work we extend the idea introduced in [3] that an effective LNS neigh-
borhood heuristics should be cost based. Our goal is to make this principle
independent of the problem, by relying on the propagation over the cost vari-
able, similarly to [7]. At the same time, however, we wish to avoid the drawbacks
that we have identified in the previous section.

Our method relies on a cost impact metric based on the variation of the lower
bounds of the cost variable!. Unlike [7], however, we collect those variations
by incrementally re-applying the current solution in rearranged order, i.e. by
performing a dive.

Specifically:

Definition 1. Let m be a permutation of the variables in X and let k be the
position of x; in w. Then the cost impact of x; w.r.t. a solution o is the quantity:

I* (x4, 0,m) = lby_, (2) = 1br,_,(2) (3)
where:

S(Tep) ={2x; | 7 =0...k} (4)

Treg(xi) = 0(x) Vo, € S(Tr k) (5)

! There is some similarity with the idea of pseudo-costs for MIP [1].



i.e., T i forces the first k+ 1 variables in w to assume the value they have in o.

In other words, our impact measure is simply the variation of the cost lower
bound recorded when adding the k-th assignment, during the re-application of
the current solution ¢ in the order specified by . It is possible to aggregate the
cost impacts over a set of dives II via their average, in this case we have:

1
T (z3,0,1T) = i > T (ai,0,m) (6)
well

A permutation-independent measure could be obtained by aggregating the cost
impacts for every possible permutation. Since this would be prohibitive to ob-
tain exactly, we propose to use the average impacts over a finite set of dives
as an approximation. How often to perform the dives and how to choose the
permutation 7 for each of them are some of the decisions that must be taken in
order to design an actual neighborhood selection heuristic. Specifically, we have
experimented with:

— For the diving frequency: 1) n dives per LNS iteration and 2) diving every
n LNS iterations (which incurs less overhead).

— For the choice of the permutation: 1) uniformly randomized permutations
and 2) decreasing-impact permutations (the variables are sorted in 7 by
decreasing impact in an attempt to spread the cost variations).

Since the cost impacts depend on the incumbent solution, the accumulated im-
pacts must be reinitialized whenever an improving solution is discovered. If no
improving solution is found, each dive will add to the aggregated cost impacts,
so that they will converge to the real average.

We experimented with different neighborhood selection strategies based on
this information. Our most successful approach exploits the impacts for biasing
the choice probability of the variables to be relazed. The method is described in
Algorithm 3 and consists in drawing a fixed number of variables from X, without
replacement. The drawing probabilities are given by a score (see line 1), that in
our case is a convex combination of the cost impact and a uniform quantity:

1
si:a~Iz(a:i,a,H)+(1—a)-m ZIZ(acj,a,H) (7)
r;€X

The presence of a uniform term ensures that even variables with zero impact have
a chance to be relaxed. The strategy has a single additional parameter « € [0, 1]
(with @ = 0 corresponding to a pure random selection). In our experiments,
we use a = 0.5. We dive every 10 (failed) LNS attempts and every time an
improving solution is found.

4 Experiments

The ability to diversify is one of the main reasons why on some benchmarks
a pure random relaxation obtains very good results. For instance, on the Steel



Algorithm 1 Cost Impact Based Probability

1: assign a score s; to each variable (see Equation 7)
2: let r = Zzl Si
3: while not enough variables selected for relaxation do

4:  pick a random value v in [0, 7]
5:  for all not selected x; do

6: V=0 —S;

7 if v <0 then

8: r=r—s;

9:

select z; for relaxation and continue at line 2

Mill Slab problem, a pure random relaxation was the best performer in [4,13].
Mairy et al. also concluded in [6] that their advanced reinforcement based learn-
ing strategy does not obtain better results than a random neighborhood on car
sequencing problems. Given that our experimentation targets the Steel Mill Slab
problem, it was natural to choose a pure random relaxation as a baseline for a
comparison. Furthermore, we decided to include in our evaluation an implemen-
tation of the Reversed PGLNS from [10], because the strategy was demonstrated
to be better than random relaxation on the car sequencing problem.

From the Steel Mill Slabs benchmarks most commonly employed in the lit-
erature?, we selected the instances with 2,3,4 and 5 slab capacities (80 instances
in total), because they were found to be the most difficult in [13]. We limited
the number of LNS iterations per run to 1,000, so that the best solution was
stable enough for each of the 3 considered relaxation strategies. The size of the
neighborhood is 5 (i.e. we relax five variables) and each LNS iteration is stopped
after 50 backtracks, as in [13]. All experiments were performed using the OscaR
solver [9]. We report detailed results on Table 1.

As it can be seen in Table 1, the Cost Impact based relaxation dominates the
Random and Reversed PGLNS on most of the instances. Surprisingly PGLNS
seems inferior to Random on this problem?. For all of our benchmarks, we used
the Student’s t-test to check the statistical significance of the performance differ-
ences. On 75 over 80 instances the Cost Impact based relaxation obtains smaller
average costs at a 5% significance level.

The results we obtained with other Cost Impact based relaxation strategies
(not reported due to lack of space), confirmed that retaining some diversification
ability is a key feature to obtain a good performance on the Steel Mill Slabs
Problem. This is achieved by the proposed neighborhood selection method via
the inclusion of a uniform term in the variable scores. This set of experiments
confirmed also how beating a pure random relaxation strategy is far from trivial
on this problem, which stresses the relevance of our results.

? The instances and best known results are available at http://becool.info.ucl.
ac.be/steelmillslab.

3 However, the description of the PGLNS approach from [10] lacks some details, hence
implementation differences may exist.



Table 1. Results obtained on the instances from [13] with 2,3,4 and 5 capacities aver-
ages over 100 executions with different seeds.

F£capal|instance 0 1 2 3 4 5 6 7 8 9
Random 52.98 74.1| 177.62] 100.02 36.4| 86.32| 96.87| 77.47 531| 114.34
2[PGLNS 55.24] 75.76 178] 99.64| 38.75| 97.06] 151.72[ 77.82 531 110.1
Cost Impact| 45.67 71.4(176.83| 98.59| 33.02| 72.02| 93.12| 72.32 531(107.46
Random 18.05| 74.11| 30.38 63.6 23| 67.58| 67.59| 78.98| 118.84| 235.38
3[PGLNS 26.01] 79.74] 36.45| 65.64| 18.98] 75.35| 69.67 86.4| 133.56| 236.59
Cost Impact| 13.92| 69.11 24.8 55.1| 18.32[64.59| 49.48| 71.63|116.86(227.57
Random 38.32| 40.94| 33.64| 32.31| 16.16| 22.1| 21.78| 26.59| 16.03| 27.25
4|PGLNS 39.36| 40.12| 41.33 32.2| 16.36| 22.25| 24.05] 29.25| 18.14 27.5
Cost Impact| 38.03| 38.43| 42.59| 28.01| 13.64|16.56] 14.25| 20.16| 11.81| 23.44
Random 5.93| 32.07| 15.68| 10.19] 21.19| 18.83 9.09] 17.34| 14.63| 27.43
5[PGLNS 7.25] 32.51| 16.32[ 13.23] 21.25] 21.34[ 12.57| 18.58[ 13.21 28.4
Cost Impact| 4.51] 31.38] 15.28 8.64| 17.99(17.72 5.96| 15.52| 11.54| 20.95
#capal|instance 10 11 12 13 14 15 16 17 18 19
Random 97.13| 118.26| 58.03| 166.16(159.63| 296| 160.08| 196.14| 65.04| 45.09
2[PGLNS 112.54| 134.58] 53.98] 199.56] 182.39[296.06] 194.66] 195.73] 71.67| 45.41
Cost Impact| 92.69[123.66 47.2[157.81| 172.67]|296.06/159.72[195.46| 60.64 45
Random 51.28| 50.65| 20.93| 84.39| 28.99| 47.52| 53.99| 28.27 63.6 48.9
3[PGLNS 49.5| 54.52| 25.73| 84.52| 37.49| 48.4] 55.85| 30.89| 65.42| 56.51
Cost Impact| 49.01| 40.26| 15.53| 85.34| 23.64|47.05| 47.74| 24.58| 54.31| 38.93
Random 27.09| 26.46| 19.35| 42.47| 11.45| 29.55| 43.89| 19.62| 27.35| 14.07
4/PGLNS 32.54| 33.84| 20.99] 42.02| 19.08] 30.89| 45.84| 19.47| 27.53] 14.76
Cost Impact| 25.1| 22.81| 9.72| 36.43| 11.06|25.88| 36.06| 9.02| 20.81| 13.9
Random 15.97| 18.05| 35.21| 24.97 8.2 26.81| 12.12| 20.61| 31.89| 10.21
5[PGLNS 17.54] 18.72] 38.09] 28.29 7.92| 29.46] 12.49] 22.03| 33.52| 11.68
Cost Impact| 14.02] 14.61| 32.54] 23.16 5.68]22.07 9.21| 19.77] 29.94 8.51

5 Conclusion

In this paper, we have introduced the Cost Impact, a measure of the propagation
on the cost variable obtained when replaying the incumbent solution in a random
or customized order. Obtaining Cost Impacts is easy and requires only basic
support from the solver. In particular, our technique still allows to treat the
problem constraints as black-boxes. A second contribution, we have described a
simple and effective relaxation strategy based on Cost Impacts.

Our contribution can be seen as a mix of the ideas presented in [3], [10]
and [7]. As in [7], we rely on the solver propagation to measure the impact on
the cost. We also recognize that variables affecting the most the cost should
be relaxed similarly to [3]. Finally as for PGLNS [10], our approach is problem
independent and does not require to disable the propagation of any constraint
when diving.

Our results have illustrated the superiority of the approach on the Steel Mill
Slabs problem over a pure random relaxation and an implementation of Reversed
PGLNS. Such outcome proves the potential of the proposed technique, providing
motivation for future research.

Our method has been explained by representing solutions as assignments of
decision variables, but it could easily be extended to more complex branching
decisions (such as ordering activities in scheduling). As future work we plan
to experiment the method on a broader set of problems, including scheduling
variants.
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