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Abstract. This paper revisits the Self-Adaptive Large Neighborhood
Search introduced by Laborie and Godard. We propose a variation in
the weight-update mechanism especially useful when the LNS operators
available in the portfolio exhibit unequal running times. We also propose
some generic relaxations working for a large family of problems in a
black-box fashion. We evaluate our method on various problem types
demonstrating that our approach converges faster toward a selection of
efficient operators.

1 Introduction

Back in 2004, Puget [1] said that CP technology was too complex to use and more
research efforts should be devoted to make it accessible to a broader audience. A
lot of research effort has been invested to make this vision become true. Efficient
black-box complete search methods have been designed [2–8] and techniques
such as the embarrassingly parallel search are able to select the best search
strategy with almost no overhead [9]. For CP, Puget argued that the model-and-
run approach should become the target to reach. The improvements went even
beyond that vision since for some applications, the model can be automatically
derived from the data [10, 11].

This work aims at automating the CP technology in the context of Large
Neighborhood Search (LNS) [12]. This technique consists in iteratively applying
a partial relaxation followed by a reconstruction in order to gradually improve
the solution to the problem. The relaxation determines constraints to impose to
restrict the problem based on the current best solution. Then, the reconstruction
(or search) heuristic guides the search in the resulting search space by assigning
values to the remaining variables in order to find one or more new solution(s).

Example 1. For example, a random relaxation heuristic selects randomly a per-
centage of the variables to relax and fix the other ones to their assignment in the
current best solution. This heuristic can be parametrized by choosing the per-
centage to relax in a set of values such as {10%, 20%, 50%}. A first fail heuristic
with a fixed limit on the number of backtracks can be used as a reconstruction
heuristic which can also be parametrized by choosing a limit on the number of
backtracks in a set of values such as {50 bkts, 500 bkts, 5000 bkts}.



The relaxation and reconstruction process continues until some limit in terms
of iterations or time is reached. From a local search point of view, CP is thus used
as a slave technology for exploring a (large) neighborhood around the current
best solution. LNS has been successfully used on various types of problems: bin-
packing [13, 14], vehicle-routing [15, 16], scheduling [17–19], etc. Designing good
relaxation and reconstruction heuristics with the right parameters is crucial for
the efficiency of LNS. Unfortunately this task requires some experience and
intuition on the problem to solve.

In order to design an automated LNS, two approaches can be envisioned. A
first one would be to recognize the structure of the model in order to select the
most suited heuristic from a taxonomy of heuristics described in the literature.
This approach, which is used in [20] for scheduling problems, has two disadvan-
tages: 1) some problems are hybrids and thus difficult to classify or recognize,
2) it requires a lot of effort and engineering to develop the problem inspector
and to maintain the taxonomy of operators. Therefore, we follow a different ap-
proach called Adaptive LNS (ALNS) introduced in [21] which uses a portfolio
of heuristics and dynamically learns on the instance which ones are the most
suitable. At each iteration, a pair of relaxation and reconstruction heuristics is
selected and applied on the current best solution. The challenge is to select the
pair having the greatest gradient of the objective function over time (evaluated
on the current best solution) based solely on the past executions.

We expand the usage of the Self Adaptive LNS (SA-LNS) framework pro-
posed in [22] on different optimization problems by considering the model as
a black-box. Our solver uses a set of generic preconfigured methods (opera-
tors) that hypothesize specificities in the problem and leverage them in order
to efficiently perform LNS iterations. Given that the operators available in the
portfolio are well diversified, we hope to provide a simple to use yet efficient
framework able to solve a broad range of discrete optimization problems.

Our contributions to the ALNS framework are: 1) An adaptation of the
weight update mechanism able to better cope with unequal running times of the
operators. 2) A portfolio of operators easy to integrate and implement in any
solver for solving a broad range of problems.

We first explain in Section 2 the principles of the ALNS framework. Then, in
Section 3 we present the heuristics implemented as part of our ALNS portfolio.
We present the experiments that we conducted and their results in Section 4.
Finally, we provide a few concluding remarks and evoke our further research
prospects in Section 5.

2 Adaptive Large Neighbourhood Search

Each ALNS operator as well as its possible parameters is associated to a weight.
These weights allow to dynamically reward or penalize the operators and their
parameters along the iterations to bias the operator selection strategy. Algo-
rithm 1 describes the pseudo-code for an ALNS search. ∆c ≥ 0 is the objective
improvement and ∆t is the time taken by the operator.



Algorithm 1 Adaptive Large Neighborhood Search For a minimization problem

s∗ ← feasible solution
repeat
relax← select relaxation operator
search← select search operator
(s′,∆t)← search(relax(s∗))
∆c← cost(s∗)− cost(s′)
weightrelax ← updateWeight(relax)
weightsearch ← updateWeight(search)
if ∆c > 0 then
s∗ ← s′

end if
until stop criterion met
return s∗

Roulette Wheel selection We use the Roulette Wheel selection mechanism as in
[22, 23]. It consists in selecting the operators with probabilities proportional to
their weight. The probability P (i) of selecting the i-th operator oi with a weight
wi among the set of all operators O is P (i) = wi∑|O|

k=1 wk

Weight evaluation In [22], the authors evaluate the operators ran at each iter-
ation using an efficiency ratio r defined as: r = ∆c

∆t . This ratio is then balanced
with the previous weight of the operator wo,p using a reaction factor α ∈ [0, 1]:
wo = (1−α) ·wo,p+α ·r. While the reaction factor is important to accommodate
the evolving efficiency of the operators during the search, this method does not
cope well with operators having different running times. Indeed, operators with
a small execution time will evolve faster as they will be evaluated more often.
This can lead less efficient operators to be temporally considered better as their
weight will decrease slower.

Example 2. Let us consider two operators A and B with running times of re-
spectively 2 and 4 seconds. Both operators start with an efficiency ratio of 10 but
after some time in the search, A has an efficiency of 1

2 and B of ( 1
4 ). If each oper-

ator is separately run for 4 seconds, under a reaction factor of α = 0.9; as A will
be evaluated twice, its weight will decrease to 0.595 (0.1·(0.1·10+0.9· 12 )+0.9· 12 ).
Over the same duration B would be evaluated once and its weight would become
1.225 (0.1 · 10 + 0.9 · 14 ). While both operators will eventually converge towards
their respective efficiency, for a short amount of time, B will have a higher score
than A and thus a higher probability to be selected.

This induces a lack of reactivity in the operator selection. In the following,
we propose a variation of the weight update rule, more aligned with the expected
behavior in case of different runtimes among the operators.

Evaluation window We evaluate the operator based on its performances obtained
in a sliding evaluation window [t∗ − w, now] where t∗ is the time at which the



last best solution was found and w is the window size meta-parameter. The
window thus adapts itself in case of stagnation to always include a fixed part of
the search before the last solution was found. This ensures that the operator(s)
responsible for finding the last solution(s) will not have their score evaluated to
0 after a while in case of stagnation.

For each LNS iteration i, we record the operator used oi, the time ti at which
it was executed, the difference ∆ci of the objective and the duration of execution
∆ti. We define the local/total efficiency ratio L(o)/T (o) of an operator and the
local/total efficiency L/T of all the operators as:

L(o) =

∑
i|oi=o∧ti∈[t∗−w,now]∆ci∑
i|oi=o∧ti∈[t∗−w,now]∆ti

T (o) =

∑
i|oi=o∧ti∈[0,now]∆ci∑
i|oi=o∧ti∈[0,now]∆ti

(1)

L =

∑
i|ti∈[t∗−w,now]∆ci∑
i|ti∈[t∗−w,now]∆ti

T =

∑
i|ti∈[0,now]∆ci∑
i|ti∈[0,now]∆ti

(2)

Intuitively, the local efficiency corresponds to estimating the gradient of the
objective function with respect to the operator inside the evaluation window. If
the operator was not selected during the window, its local efficiency is 0 which
might be a pessimistic estimate. Therefore we propose to smooth the estimate
by taking into account T (o) normalized by the current context ratio L/T . The
evaluation of an operator o is computed as:

weight(o) = (1− λ) · L(o) + λ · L
T
· T (o) (3)

with λ ∈ [0, 1] a balance factor between the two terms. As we desire to evaluate
the operator mainly based on its local efficiency, we recommend that λ < 0.5.

3 Operator portfolio

In this section, we present the relaxation and search operators that we propose to
be part of the portfolio. All of them operate on a vector of integer decision vari-
ables. This list is based on our experience and the features available in the solver
used for our experiments. Therefore it should not be considered as exhaustive.

Relaxation Heuristics

– Random: Relaxes randomly k variables by fixing the other ones to their value
in the current best solution. This heuristic brings a good diversification and
was demonstrated to be good despite its simplicity [24].

– Sequential: Relaxes randomly n sequences of k consecutive variables in the
vector of decision variables. This heuristic should be efficient on problems
where successive decision variables are related to each other, for instance in
Lot sizing problems [25, 26].



– Propagation Guided and Reversed Propagation Guided: Those heuristics
are described in [27]. They consist of exploiting the amount of propagation
induced when fixing a variable to freeze together sets of variables whose
values are strongly dependent on each other.

– Value Guided: This heuristic uses the values assigned to the variables. We
have five different variants: 1) Random Groups: Relaxing together groups of
variables having the same value. This variant should be efficient on problems
where values represent resources shared between variable such as bin-packing
problems. 2) Max Groups: This variant relaxes the largest groups of vari-
ables having the same values. It can be useful for problems such as BACP
or Assembly line balancing [28, 29]. 3) Min Groups: This method relaxes
the smallest groups of variables having the same value (which can be sin-
gle variables). 4) Max Values: It consists in relaxing the k variables having
the maximum values. We expect this heuristic to be efficient with problems
involving a makespan minimization. 5) Min Values: This heuristic relaxes
the k variables having the minimum values. It should be efficient in case of
maximization problems.

– K Opt: This heuristic makes the hypothesis that the decision variables form
a predecessor/successor model (where variable values indicate the next or
previous element in a circuit). It is inspired by the k-opt moves used in local
search methods for routing problems. The principle is to relax k edges in
the circuit by selecting k variables randomly. The remaining variables have
their domain restricted to only their successor and their predecessor in the
current best solution in order to allow inversions of the circuit fragments.

– Precedency Based: This relaxation is useful for scheduling problems and
hypothesizes that the decision variables corresponds to starting times of
activities. It imposes a partial random order schedule as introduced in [17].

– Cost Impact: This operator was described in [24]. The heuristic consists in
relaxing the variables that impact most the objective function when fixed.

Search Heuristics A search heuristic explores the search space of the remaining
unbounded variables by iteratively selecting a variable and one of its values to
branch on. They can be separated into two components: a variable heuristic and
a value heuristic. Here are the variable heuristics used:

– FirstFail tries first variables that have the most chances to lead to failures
in order to maximize propagation during the search.

– Conflict Ordering proposed in [4] reorders dynamically the variables to select
first the ones having led to the most recent conflicts.

– Weighted Degree introduced in [30] associates a weight to each variable. This
weight is increased each time a constraint involving that variable fails.

In combination with these variable heuristics, we used different value heuris-
tics which select the minimum/maximum/median/random value in the domain
plus the value sticking [31] which remembers the last successful assigned values.
We also permit a binary split of the domain into ≤, > branching decisions.



4 Experiments

As in [9] we use an oracle baseline to compare with ALNS. Our baseline consists
of a standard LNS with for each instance the best combination of operators
(the one that reached the best objective value in the allocated time), chosen a
posteriori. Notice that this baseline oracle is not the best theoretical strategy
since it sticks with the same operator for all the iterations.

We implemented our framework in the OscaR constraint programming solver
[32] where it is available in open-source. We tested our framework on 10 differ-
ent constraint optimization problems with two arbitrarily chosen medium-sized
instances per problem. We compare: 1) The original implementation from [22]
(denoted Laborie here after) with a reaction factor α of 0.9. 2) The variant of [22]
proposed in this article (denoted Eval window) with a sliding window w = 10
seconds and a balance factor λ of 0.05. 3) The oracle baseline.

Each approach was tested from the same initial solution (found for each
instance using a first-fail, min-dom heuristic) with the same set of operators.
We used relaxation sizes of {10%, 30%, 70%} and backtracks limits of {50 bkts,
500 bkts, 5000 bkts}. We generated a different operator for each parameter(s)
value(s) combination but kept the relaxation and reconstruction operators sep-
arated. We have 30 relaxation and 36 reconstruction operators, which yields a
total of 1080 possible combinations to test for the baseline. Each ALNS variant
was run 20 times with different random seeds on each instance for 240 seconds.
We report our results in terms of cost values of the objective function for each
instance. In order to compare the anytime behavior of the approaches, we define
the relative distance of an approach at a time t as the current distance from
the best known objective (BKO) divided by the distance of the initial solution:
(objective(t) − BKO)/(objective(0) − BKO). A relative distance of 0 thus in-
dicates that the optimum has been reached.

We report the final results in Table 1. For each instance, we indicate the best
known objective (BKO) and the results of the evaluated approaches after 240
seconds of LNS. For each approach, we report the average objective value (obj),
the standard deviation (std) if applicable and the relative distance to the best
known solution (rdist). The best results between the two evaluated approaches
are displayed in bold. Figure 2 plots the average relative distance to the best
known solution in function of the search time.

The results seem to indicate (at least on the tested instances) that the weight
estimation based on an evaluation window tends to improve the performances
of the original ALNS as described in [22]. The average relative distance to the
best known solution is of 0.12 at the end of the search using the evaluation
window, while it is of 0.18 using our implementation of [22]. None of the ALNS
approaches is able to compete with the baseline (except on a few instances), but
they obtain reasonably good solutions in a short amount of time. Furthermore,
their any-time behavior is good when compared to the baseline and tends to get
closer towards the end of the search.

Figure 1 shows a heat map of the relative selection frequency of the relaxation
operators for each problem in the Eval window approach. The darker an entry,



Table 1. Experimental results

Instance Problem BKO
Baseline Eval window Laborie

obj rdist obj std rdist obj std rdist

la13 JobShop 1150.00 1150.00 0.00 1157.65 12.06 0.00 1195.65 156.4 0.01
la17 (Lawrence-84) 784.00 784.00 0.00 784.05 0.22 0.00 784.00 0.00 0.00

chr22b QAP 6194.00 6292.00 0.01 6517.80 115.16 0.04 6626.60 135.71 0.06
chr25a (Christofides-89) 3796.00 3874.00 0.00 4682.00 393.52 0.04 4982.30 342.88 0.06

j120 11 3 RCPSP 188.00 228.00 0.08 420.75 129.61 0.48 399.55 62.88 0.43
j120 7 10 (Kolisch-95) 111.00 374.00 0.49 160.60 113.23 0.09 127.70 1.42 0.03

bench 7 1 Steel 1.00 6.00 0.03 30.65 11.69 0.18 49.75 8.92 0.29
bench 7 4 (CSPLib) 1.00 9.00 0.04 24.30 5.83 0.12 42.05 8.05 0.21

kroA200 TSP 29368.00 31466.00 0.01 50022.35 11159.91 0.06 156239.10 12097.24 0.37
kroB150 (Krolak-72) 26130.00 26141.00 0.00 28596.20 872.77 0.01 61658.70 6051.92 0.14

C103 VRPTW 82811.00 82814.00 0.00 105876.10 5553.99 0.07 137749.30 17371.97 0.17
R105 (Solomon-87) 137711.00 137261.00 0.00 140162.30 1593.46 0.02 144273.05 2051.77 0.05

t09-4 Cutstock 73.00 73.00 0.00 76.65 3.38 0.10 77.10 1.73 0.11
t09-7 (XCSP) 161.00 161.00 0.00 161.00 0.00 0.00 161.00 0.00 0.00

qwhopt-o18-h120-1 Graph colouring 17.00 17.00 0.00 17.00 0.00 0.00 17.00 0.00 0.00
qwhopt-o30-h320-1 (XCSP) 30.00 30.00 0.00 541.40 51.90 0.59 653.20 32.46 0.72

PSP 100 4 Lot sizing 8999.00 9502.00 0.03 11796.85 1204.18 0.18 14682.45 847.30 0.36
PSP 150 3 (Houndji-2014) 14457.00 16275.00 0.23 18236.15 569.80 0.48 19482.20 339.11 0.63

cap101 Warehouse 804126.00 804126.00 0.00 804599.55 428.34 0.00 804556.50 430.50 0.00
cap131 (XCSP) 910553.00 910553.00 0.00 913147.60 2701.98 0.00 913240.40 3197.29 0.00

Average 0.05 1246.05 0.12 2156.88 0.18
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Fig. 1. Heat map of the relaxation operators selection for the Eval window approach
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Fig. 2. Average relative distance to BKO during the search

the more frequently this operator was selected for the problem instance. Two
interesting observations can be made. First, a subset of operators emerges more
frequently for most of the problems. Second, this set varies between problems
of different types, but is correlated between instances of the same problem. For
some problems this set of operators is more uniform than others. For example,
on the warehouse location and the cutting stock problems the operators are se-
lected rather uniformly. The job shop has a strong preference for the max-val
and precedency operators. On the contrary, cost-impact is almost useless for
the makespan objective of the job shop. Not surprisingly the RCPSP, also a
scheduling problem, selects the same two operators as the job shop. The random
operator is generally good except for scheduling problems. Due to space limita-
tions, the heat map for Laborie is not given. The selection frequency obtained by
the approach of [22] is more uniform, except for scheduling problems for which
the same two operators emerge.

The results highlighted by the heat map confirm our intuition and a priori
experience, of which operator would be the most successful on each problem.
This comforts us that self-adaptive LNS could reach the performances of an
expert that would select the operators manually for each problem.

5 Conclusion and future work

The weight update mechanism based on an evaluation window seems a promis-
ing adaptation for the original ALNS. In the future we would like to continue
researching new relaxation operators for other types of problems (time-tabling,
planing, etc) and experiment on a broader set of problems and instances. Par-
allelizing ALNS would also be an interesting challenge. We believe that ALNS
would perform well in solver competitions such as [33, 34] where the set of prob-
lems is very broad.
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