
The Weighted Arborescence Constraint

Vinasetan Ratheil Houndji1,2, Pierre Schaus1, Mahouton Norbert
Hounkonnou2 and Laurence Wolsey1

1Université catholique de Louvain, Louvain-la-Neuve, Belgium
2Université d’Abomey-Calavi, Abomey-Calavi, Benin

{vinasetan.houndji, pierre.schaus, laurence.wolsey}@uclouvain.be
{ratheil.houndji}@ifri.uac.bj and {norbert.hounkounnou}@cipma.uac.bj

Abstract. For a directed graph, a Minimum Weight Arborescence (MWA)
rooted at a vertex r is a directed spanning tree rooted at r with the min-
imum total weight. We define the MinArborescence constraint to solve
constrained arborescence problems (CAP) in Constraint Programming
(CP). A filtering based on the LP reduced costs requires O(|V |2) where
|V | is the number of vertices. We propose a procedure to strengthen the
quality of the LP reduced costs in some cases, also running in O(|V |2).
Computational results on a variant of CAP show that the additional
filtering provided by the constraint reduces the size of the search tree
substantially.

1 Introduction

In graph theory, the problem of finding a Minimum Spanning Tree (MST) [13]
is one of the most known problem for undirected graphs. The corresponding
version for directed graphs is called Minimum Directed Spanning Tree (MDST)
or Minimum Weight Arborescence (MWA). It is well known that the graphs
are good structures to model some real life problems. The MWA problem has
many practical applications in telecommunication networks, computer networks,
transportation problems, scheduling problems, etc. It can also be considered as a
subproblem in many routing and scheduling problems [9]. For example, Fischetti
and Toth ([8]) used MWA problem as a relaxation of Asymmetric Travelling
Salesman Problem (ATSP).

Let us formally define the MWA problem. Consider a directed graph G =
(V,E) in which V = {v1, v2, . . . , vn} is the vertex set and E = {(i, j) : i, j ∈ V } is
the edge set. We associate a weight w(i, j) to each edge (i, j) and we distinguish
one vertex r ∈ V as a root. An arborescence A rooted at r is a directed spanning
tree rooted at r. So A is a spanning tree of G if we ignore the direction of
edges and there is a directed path in A from r to each other vertex v ∈ V .
An MWA A(G)? of the graph G is an arborescence with the minimum total
cost. Without loss of generality, we can remove any edge entering in the root
r. Consider a subset of vertices S ⊆ V . Let δinS be the set of edges entering
S: δinS = {(i, j) ∈ E : (i ∈ V \ S) ∧ (j ∈ S)}. For a vertex k ∈ V , δink is the

set of edges that enter in k. Let V ′ be the set of vertices without the root r:
V ′ = V \ {r}. The MWA problem can be formulated as follows [10]:

w(A(G)?) = min
∑

(i,j)∈E

w(i, j) · xi,j (1)

(MWA)
∑

(i,j)∈δinj

xi,j = 1,∀j ∈ V ′ (2)

∑
(i,j)∈δinS

xi,j ≥ 1,∀S ⊆ V ′ : |S| ≥ 2 (3)

xi,j ∈ {0, 1},∀(i, j) ∈ E (4)

in which xi,j = 1 if the edge (i, j) is in the optimal arborescence A(G)? and
xi,j = 0 otherwise. The first group of constraints imposes that exactly one edge
enters in each vertex j ∈ V ′ and the constraints (3) enforce the existence of a path
from the root r to all other vertices. Without loss of generality [9], we assume
that w(i, i) = ∞,∀i ∈ V and w(i, j) > 0,∀(i, j) ∈ E. Then the constraints (4)
can be relaxed to xi,j ≥ 0,∀i, j(5) and the constraints (2) become redundant
(see [6]).

Here, we address the Constrained Aborescence Problem (CAP) - that re-
quires one to find an arborescence that satisfies other side constraints and is of
minimum cost - and show how one can handle them in CP. After some theo-
retical preliminaries, we define the MinArborescence constraint and show how
to filter the decision variables. Then we describe how Linear Programming (LP)
reduced costs can be improved. Finally, we show some experimental results and
conclude.

2 Background

Algorithms to compute an MWA A(G)? of a given graph G were proposed inde-
pendently by Chu and Liu ([3]), Edmonds ([6]) and Bock ([2]). A basic implemen-
tation of that algorithm is in O(|V ||E|). The associated algorithm is often called
Edmonds’ Algorithm. An O(min{|V |2, |E| log |V |}) implementation of the Ed-
monds’ algorithm is proposed by [23]. More sophisticated implementations exist
(see for example [12,19]). Fischetti and Toth [9] proposed an O(|V |2) implemen-
tation to compute an MWA and also the associated linear programming reduced
costs. We rely on this algorithm for filtering the MinArborescence constraint.

An MWA has two important properties that are used to construct it [16].

Proposition 1. A subgraph A = (V, F) of the graph G is an arborescence rooted
at r if and only if A has no cycle, and for each vertex v 6= r, there is exactly one
edge in F that enters v.

Proposition 2. For each v 6= r, select the cheapest edge entering v (breaking
ties arbitrarily), and let F ? be this set of n−1 edges. If (V, F ?) is an arborescence,
then it is a minimum cost arborescence, otherwise w(V, F ?) is a lower bound on
the minimum cost arborescence.

The LP dual problem DMWA of MWA is [9]:

max
∑
S⊆V ′

uS

(DMWA) w(i, j)−
∑

(i,j)∈δinS ,∀S⊆V ′

uS ≥ 0,∀(i, j) ∈ E

uS ≥ 0,∀S ⊆ V ′

in which uS is the dual variable associated to the subset of edges S ⊆ V ′.
Let rc(i, j) be the LP reduced cost associated to the edge (i, j). The necessary

and sufficient conditions for the optimality of MWA (with primal solution x?i,j)
and DMWA (with dual solution u?S) are [9]:

1. primal solution x?i,j satisfies the constraints (3) and (5)
2. u?S ≥ 0 for each S ⊆ V ′
3. reduced cost rc(i, j) = w(i, j)−

∑
(i,j)∈δinS ,∀S⊆V ′ u?S ≥ 0 for each (i, j) ∈ E

4. rc(i, j) = 0 for each (i, j) ∈ E such that x?i,j > 0
5.

∑
(i,j)∈δinS

x?i,j = 1 for each S ⊆ V ′ such that u?S > 0

Algorithm 1 [9] describes the global behavior of algorithms for computing an
MWA A(G)? for a graph G rooted at a given vertex r. Note that the optimality
condition 5. implies that: for each S ⊆ V ′, u?S > 0 =⇒

∑
(i,j)∈δinS

x?i,j = 1 and∑
(i,j)∈δinS

x?i,j > 1 =⇒ u?S = 0 (because u?S ≥ 0). The different values of dual

variables uS ,∀S ⊆ V ′ are obtained during the execution of Edmonds algorithm.
Actually, for each vertex k ∈ V : u?k = arg min(v,k)∈δink w(v, k) (line 8 of Algo-

rithm 1). If a subset S ⊆ V ′ : |S| ≥ 2 is a strong component1, then u?S is the min-
imum reduced cost of edges in δinS . Only these subsets can have u?S > 0. All other
subsets (S ⊆ V ′ : |S| ≥ 2 and S is not a strong component) have u?S = 0. So there
are O(|V |) subsets S ⊆ V ′ : |S| ≥ 2 that can have u?S > 0. A straightforward al-
gorithm can compute rc(i, j) = w(i, j)−

∑
(i,j)∈δinS ,∀S⊆V ′ u?S ,∀(i, j) in O(|V |3) by

considering, for each edge, the O(|V |) subsets that are directed cycles. Fischetti
and Toth [9] proposed an O(|V |2) algorithm to compute rc(i, j),∀(i, j) ∈ E.

Consider the graph G1 = (V1, E1) in Fig. 1 with the vertex 0 as root. Figures
2, 3 and 4 show the different steps needed to construct A(G1)?.

Related works in CP. Many works focused on filtering the Minimum Spanning
Tree (MST) constraints on undirected weighted graphs (see for examples [22],
[21], [5], [4]). About directed graphs, Lorca ([17]) proposed some constraints
on trees and forests. In particular, the tree constraint [1,17] is about anti-
arborescence on directed graph. By considering a set of vertices (called resource),

1 A strong component of a graph G is a maximal (with respect to set inclusion) vertex
set S ⊆ V such that (i) |S| = 1 or (ii) for each pair of distinct vertices i and j in S,
at least one path exists in G from vertex i to vertex j [9].

Algorithm 1: Computation of a minimum weight arborescence A(G)?

rooted at vertex r

Input: G = (V,E) ; r ∈ V ; w(e),∀e ∈ E
// all primal and dual variables x?i,j and u?

S are assumed to be zero

1 foreach each edge (i, j) ∈ E do
2 rc(i, j)← w(i, j)

3 A0 ← ∅; h← 0
// Phase 1:

4 while G0 = (V,A0) is not r-connected do
// A graph is r-connected iff there is a path from the vertex r

to each other vertex v in V.

5 h← h+ 1

6 Find any strong component Sh of G0 such that r 6∈ Sh and A0 ∩ δinSh = ∅
// If |Sh| > 1, then Sh is a directed cycle

7 Determine the edge (ih, jh) in δinSh such that rc(ih, jh) ≤ rc(e), ∀e ∈ δinSh
8 u?

Sh
← rc(ih, jh) // dual variable associated to Sh

9 x?ih,jh ← 1; A0 ← A0 ∪ {ih, jh}
10 foreach each edge (i, j) ∈ δinSh do
11 rc(i, j)← rc(i, j)− u?

Sh

// Phase 2:

12 t← h
13 while t ≥ 1 do

// Extend A0 to an arborescence by letting all but one edge of

each strong component S
14 if x?it,jt = 1 then
15 foreach each q < t such that jt ∈ Sq do
16 x?iq,jq ← 0

17 A0 ← A0 \ {(iq, jq)}

18 t← t− 1

0

1 2

3 4

5

35 38

8

20

33

33

45

10
6

6

20

5

15

11

41

Fig. 1. Initial graph G1

0

1 2

3 4

5

29 23

2

15

18

22 39

5
0

0

14

0

0

0

30

Fig. 2. Computation of A(G1)?: Phase 1, after selection of all single vertices. A0 =
{(2, 1), (4, 2), (4, 3), (2, 4), (3, 5)}.

0

1

3

5

S1 = {2, 4}

2→ 0

18→ 16

0

0

14→ 12

0

Fig. 3. Computation of A(G1)?: Phase 1, after the detection of the size 2 strong com-
ponent {2, 4}. A0 = {(2, 1), (4, 2), (4, 3), (2, 4), (3, 5), (0,4)}.

0

1 2

3 4

5
86

5

15

11

Fig. 4. Computation of A(G1)?: Phase 2. A0 = {(2, 1), (4, 2), (4, 3), (3, 5), (0, 4)}. (2, 4)
is removed.

the tree constraint partitions the vertices of a graph into a set of disjoint anti-
arborescences such that each anti-arborescence points to a resource vertex. The
author proposed a GAC filtering algorithm in O(|E||V |) that is in O(|V |3).
Further, Lorca and Fages [18] propose an O(|E| + |V |) filtering algorithm for
this constraint.

Here, we focus on an optimization oriented constraint for MWA mentioned
in [11]. The authors consider MWA as a relaxation of the Traveling Salesman
Problem (TSP) and use LP reduced costs to filter inconsistent values. In this
paper, we formally define the optimization constraint for MWA and propose an
algorithm to improve the LP reduced costs of MWA.

3 The MinArborescence Constraint

To define the MinArborescence constraint, we use the predecessor variable rep-
resentation of a graph. The arborescence is modeled with one variable Xi for
each vertex i of G representing its predecessor. The initial domain of a variable
Xi is thus the neighbors of i in G: j ∈ D(Xi) ≡ (j, i) ∈ E. The constraint
MinArborescence(X, w, r, K) holds if the set of edges {(Xi, i) : i 6= r} is a
valid arborescence rooted at r with

∑
i 6=r w(Xi, i) ≤ K.

The consistency of the constraint is achieved by computing an exact MWA
A(G)? rooted at r and verifying that w(A(G)?) ≤ K. The value w(A(G)?) is an
exact lower bound for the variable K: K ≥ w(A(G)?). The filtering of the edges
can be achieved based on the reduced costs. For a given edge (i, j) 6∈ A(G)?, if
w(A(G)?) + rc(i, j) > K, then Xi ← j is inconsistent. In section 4, we propose a
procedure to strengthen the quality of the LP reduced costs in O(|V |2) in some
cases.

Note that, a GAC filtering would require exact reduced costs, that to the best
of our knowledge can only be obtained by recomputing an MWA from scratch
in O(|E||V |2) which is in O(|V |4).

The basic decomposition of the MinArborescence constraint does not scale
well due to the exponential number of constraints in equation (3). We propose a
light constraint (called the Arborescence constraint) to have a scalable baseline
model for experiments.

Decomposing MinArborescence. The constraint Arborescence(X, r) holds if
the set of edges {(Xi, i) : ∀i ∈ V ′} is a valid arborescence rooted at r. We
introduce an incremental forward checking like incremental filtering procedure
for this constraint in Algorithm 2. Our algorithm is inspired by the filtering
described in [20] for enforcing a Hamiltonian circuit. During the search, the
bound variables form a forest of arborescences. Eventually when all the variables
are bound, a unique arborescence rooted at r is obtained. The filtering maintains
for each node:

1. a reversible integer value localRoot[i] defined as localRoot[i] = i if Xi is not
bound, otherwise it is recursively defined as localRoot[Xi], and

2. a reversible set leafNodes[i] that contains the leaf nodes of i in the forest
formed by the bound variables.

The filtering prevents cycles by removing from any successor variable Xv all the
values corresponding to its leaf nodes (i.e. the ones in the set leafNodes[v]). Al-
gorithm 2 registers the filtering procedure to the bind events such that bind(i)
is called whenever the variable Xi is bind. This bind procedure then finds the
root lr of the (sub) arborescence at line 15. Notice that j is not necessarily the
root as vertex j might well have been the leaf node of another arborescence that
is now being connected by the binding of Xi to value j. This root lr then inherits
all the leaf nodes of i. None of these leaf nodes is allowed to become a successor
of lr, otherwise a cycle would be created.

Algorithm 2: Class Arborescence

1 X: array of |V | variables;
2 localRoot: array of |V | reversible int;
3 leafNodes: array of |V | reversible set of int;

4 Method init()
5 Xr ← r ; // self loop on r
6 foreach each vertex v ∈ V ′ do
7 leafNodes[v].insert(v) ;
8 Xv.removeV alue(v) ; // no self loop

9 if Xv.isBound then
10 bind(v);

11 else
12 Xv.registerOnBindChanges() ;

13 Method bind(i: int)
14 j ← Xi ; // edge (j, i) ∈ arborescence

15 lr ← localRoot[j] ; // local root of j
16 foreach each v ∈ leafNodes[i] do
17 localRoot[v]← lr ;
18 leafNodes[lr].insert(v) ;
19 Xlr.removeV alue(v) ;

The MinArborescence(X, w, r, K) constraint can be decomposed as the
Arborescence(X, r) constraint plus

∑
i 6=r w(Xi, i) ≤ K, a sum over element

constraints. .

4 Improved Reduced Costs

Let A(G)?i→j be an MWA of the graph G when the edge (i, j) is forced to be
in it. We know that the LP reduced cost rc(i, j) gives a lower bound on the

associated cost increase: w(A(G)?i→j) ≥ w(A(G)?)+rc(i, j). However, this lower
bound on w(A(G)?i→j) can be improved in some cases.

Let us use the following notation to characterize an MWA A(G)?.
Let pred[v],∀v ∈ V ′, be the vertex in V such that the edge (pred[v], v) ∈ A(G)?:
x?pred[v],v = 1. For example, in the graph G1, pred[1] = 2 and pred[5] = 3.

Let parent[S] be the smallest cycle strictly containing the subset S ⊆ V ′:
parent[S] is the smallest subset > |S| such that

∑
(i,j)∈δin

parent[S]
x?i,j = 1 and

S ⊂ parent[S]. In other words, parent[S] is the first directed cycle that includes
the subset S found during the execution of the Edmonds’ algorithm. We assume
that parent[S] = ∅ if there is no such cycle and parent[∅] = ∅. In the graph G1,
parent[1] = parent[3] = parent[5] = ∅ and parent[2] = parent[4] = {2, 4}. Here,
parent[parent[k]] = ∅,∀k ∈ V ′.

The next three properties give some information to improve the LP reduced
costs when all vertices involved do not have a parent.

Property 1. Assume that there is a path P = (j, . . . , i) from the vertex j to
vertex i in A(G)? such that ∀k ∈ P : parent[k] = ∅. If the edge (i, j) is forced to
be in A(G)?, then the cycle c = (k : k ∈ P) will be created during the execution
of Edmonds’ algorithm.

Proof. parent[k] = ∅means that pred[k] is such that w(pred[k], k) = min{w(v, k) :
(v, k) ∈ δink } and then pred[k] will be first selected by Edmonds’ algorithm
∀k ∈ P \ {j}. On the other hand, if the edge (i, j) is forced into the MWA
it implies that all other edges entering j are removed. Consequently, the cycle
c = (k : k ∈ P) will be created. ut

Let us use the following notations to evaluate the improved reduced costs. Let
min1[k] = arg min(v,k)∈δink w(v, k) be the minimum cost edge entering the vertex
k. If there is more than one edge with the smallest weight, we choose one of them
arbitrarily. Also, let min2[k] = arg min(v,k)∈δink ∧(v,k)6=min1 w(v, k) be the second

minimum cost edge entering k. For each vertex k ∈ V , let bestTwoDiff [k] be
the difference between the best two minimum costs of edges entering the vertex
k: ∀k ∈ V, bestTwoDiff [k] = w(min2[k]) − w(min1[k]). For instance, in the
graph G1: min1[5] = (3, 5), min2[5] = (1, 5) and bestTwoDiff [5] = 10− 5 = 5.

Property 2. Consider the cycle c = (i, . . . , j) obtained by forcing the edge (i, j)
such that parent[k] = ∅,∀k ∈ c (see Property 1). The minimum cost increase if
the cycle is broken/connected by the vertex k′ ∈ c is bestTwoDiff [k′].

Proof. For a given k′ ∈ c, parent[k′] = ∅ implies that the edge (pred[k′], k′) =
min1[k′]. Then the cheapest way to break the cycle by k′ is to use the edge with
the second minimum cost min2[k′]. Hence the minimum cost increase if the cycle
is broken by the vertex k′ is w(min2[k′])−w(min1[k′]) = bestTwoDiff [k′]. ut

When parent[j] = ∅, the LP reduced costs rc(i, j) are simple and can be
easily interpreted.

Property 3. Consider a vertex j ∈ V ′ such that parent[j] = ∅. For all i ∈ V \{j}
with (i, j) 6∈ A(G)?: rc(i, j) = w(i, j)− w(pred[j], j).

Proof. We know that if parent[j] = ∅, then for each S ⊆ V ′ with j ∈ S and
|S| ≥ 2, u?S = 0 (because none of them is a directed cycle). Then rc(i, j) =
w(i, j)−u?j . On the other hand, since parent[j] = ∅, the edge min1[j] is the one
used to connect j in A(G)?. So u?j = w(min1[j]) = w(pred[j], j) and rc(i, j) =
w(i, j)− w(pred[j], j). ut

By considering an MWAA(G)?, the interpretation of rc(i, j) when parent[j] =
∅ is that the edge (i, j) is forced into A(G)? and the edge (pred[j], j) that is used
to connect j is removed. Intuitively, if this process induces a new cycle, this
latter has to be (re)connected to the rest of the arborescence from a vertex in
the cycle different from j. Proposition 3 established below, gives a first improved
reduced cost expression when a new cycle c is created by forcing (i, j) into the
arborescence and ∀k ∈ c, parent[k] = ∅. Note that such new cycle will be created
only if there is already a path in A(G)? from the vertex j to the vertex i.

Proposition 3. Assume that there is a path P = (j, . . . , i) from the vertex j to
vertex i in A(G)? such that ∀k ∈ P : parent[k] = ∅. We have: w(A(G)?i→j) ≥
w(A(G)?) + rc(i, j) + mink∈P\{j}{bestTwoDiff [k]}.

Proof. Without loss of generality, we assume that the cycle c = (k : k ∈ P) is the
first one created by the Edmonds’ algorithm (see Property 1). After this step, the
new set of vertices is V ′ = {c}∪{v ∈ V : v 6∈ c}. In A(G)?, the edges assigned to
vertices in c do not influence the choice of edges for each vertex v ∈ V : v 6∈ c (be-
cause parent[k] = ∅,∀k ∈ c). So w(A(G)?i→j) ≥

∑
k∈V ∧k 6∈c w(pred[k], k) + w(c)

in which w(c) is the minimum sum of costs of edges when exactly one edge
is assigned to each vertex in c without cycle. The cheapest way to connect
all vertices in c such that each one has exactly one entering edge is to use
all cheapest entering edges (min1[k],∀k ∈ c). The cycle obtained must be
broken in the cheapest way. To do so, the vertex used: 1) must be different
from j (because (i, j) is already there) and 2) have to induce the minimal
cost increase. Then, from Property 2, a lower bound on the minimum cost in-
crease is mink∈P\{j}{bestTwoDiff [k]}. In addition, we have to add the cost
of the forced edge (i, j) and remove the cost of the edge in A(G)? that en-
ters in j: w(c) ≥

∑
k∈c w(pred[k], k) + mink∈c\{j}{bestTwoDiff [k]}+ w(i, j)−

w(pred[j], j). We know that
∑
k∈c w(pred[k], k) +

∑
k∈V ∧k 6∈c w(pred[k], k) =

w(A(G)?) and rc(i, j) = w(i, j)− w(pred[j], j) (see Property 3).
Thus w(A(G)?i→j) ≥ w(A(G)?) + rc(i, j) + mink∈P\{j}{bestTwoDiff [k]}. ut

Example 1. Consider the graph G1 presented in Fig. 1 and its MWA (Fig. 4).
We want to force (5, 3) to be into the MWA:

– rc(5, 3) = w(5, 3)−w(4, 3) = 41−11 = 30. This operation leads to the graph
shown in Fig. 5 (a). We can see that the new cycle created c = (5, 3) must
be broken from a vertex different from 3.

0

1 2

3 4

5
86

5

15
41

(a) G1 with rc(5, 3)

0

1 2

3 4

5
810 6

15
41

(b) G1 with irc(5, 3)

Fig. 5. G1 with rc(5, 3) and irc(5, 3)

– irc(5, 3) = rc(5, 3) + bestTwoDiff [5] = 30 + 5 = 35. The corresponding
graph is shown in Fig. 5 (b), that actually is the new MWA.

Property 2 and Proposition 3 can be generalized into Property 4 and Propo-
sition 4 below to include some vertices that have one parent.

Property 4. Consider an ordered set of vertices (k1, k2, . . . , kn) in A(G)? such
that c = (k1, k2, . . . , kn) is a directed cycle connected (broken) by the vertex k?

and parent[c] = ∅. The minimum cost increase if the cycle is broken by another
vertex k′ ∈ c \ {k?} is ≥ bestTwoDiff [k′]− u?c .

Proof. We know that parent[c] = ∅ implies u?c = min{w(min2[k])−w(min1[k]) :
k ∈ c} = w(min2[k?])−w(min1[k?]). So if the cycle is now connected by another
vertex than k?, the edge min1[k?] can be used instead of min2[k?] and decreases
the cost by w(min2[k?])−w(min1[k?]) = u?c . On the other hand, ∀ki ∈ c \ {k?},
(pred[ki], ki) = min1[ki]. The cheapest way to use k′ to connect c is to use
min2[k′]. Hence, a lower bound on the total cost induced is min2[k′]−min1[k′]−
u?c = bestTwoDiff [k′]− u?c . ut

Now the improved reduced costs can be formulated as follows.

Proposition 4. Assume that there is a path P = (j, . . . , i) from the vertex j to
vertex i in A(G)? such that ∀k ∈ P : parent[parent[k]] = ∅. Then w(A(G)?i→j) ≥
w(A(G)?) + rc(i, j) + mink∈P\{j}{bestTwoDiff [k]− u?parent[k]}.

Proof. Note that if ∀k ∈ P : parent[k] = ∅ (that implies that u?parent[k] = 0),
the formula is the same as the one of Proposition 3. Let Z denote the set of
vertices in P and in all other cycles linked to P. Formally, Z = {v ∈ V : v ∈
P} ∪ {k ∈ V : ∃v ∈ P ∧ parent[k] = parent[v]}. We know that, in A(G)?, the
edges assigned to vertices in Z do not influence the choice of edges for each vertex
k ∈ V \ Z. So w(A(G)?i→j) ≥

∑
k∈V \Z w(pred[k], k) + w(Z) in which w(Z) is

the minimum sum of the costs of edges when we assign exactly one edge to each
vertex in Z without cycle. The reasoning is close to the proof of Proposition 3.
The differences here are:

1. ∃k ∈ P \{j} : parent[k] 6= ∅. Assume that we want to break the cycle by one
vertex v? in P \ {j}. If the vertex v? used is such that parent[v?] = ∅, then
the minimum cost to pay is ≥ bestTwoDiff [v?] (here u?parent[v?] = 0 because

parent[v?] = ∅). If v? is such that parent[v?] 6= ∅ ∧ parent[parent[v?]] = ∅,
then from Property 4, the cost to pay is ≥ bestTwoDiff [v?] − u?parent[v?].
By considering all vertices in P \ {j}, the cost to pay is then
≥ mink∈P\{j}{bestTwoDiff [k]− u?parent[k]}.

2. the vertex j may have one parent. Let connect be the vertex that is used to
connect the cycle parent[j] in A(G)?.
Case 1: parent[i] 6= parent[j]. If we force the edge (i, j), then the cycle
parent[j] should not be created because it is as if all edges entering j but
(i, j) are removed. First, assume that j 6= connect. The edge in parent[j] not
in A(G)? should be used and the cost won is u?parent[j] (as in the proof of

Property 4). Thus, a lower bound on the cost to break the cycle parent[j] by
j is: w(i, j)− w(pred[j], j)− u?parent[j]. This lower bound is equal to rc(i, j)

because w(pred[j], j) = w(min1[j]). Now assume that j = connect. In this
case (pred[j], j) = min2[j] (because parent[parent[j]] = ∅). Using the edge
(i, j) instead of (pred[j], j) induces the cost w(i, j)−w(min2[j]) = w(i, j)−
w(min1[j])−w(min2[j]) +w(min1[j) = w(i, j)−w(min1[j])− u?parent[j] =

rc(i, j).
Case 2: parent[i] = parent[j] 6= ∅. This means that the edge (i, j) is the one
of the cycle that is not in the MWA. In this case rc(i, j) = 0, and the new
cycle created should be broken as described above (1.).

Hence, a lower bound on w(Z) is∑
k∈Z

w(pred[k], k) + min
k∈P\{j}

{bestTwoDiff [k]− u?parent[k]}+ rc(i, j)

and w(A(G)?i→j) ≥ w(A(G)?) + mink∈P\{j}{bestTwoDiff [k] − u?parent[k]} +

rc(i, j). ut

Note that parent[parent[k]] = ∅ if k is not in a cycle or k is in a cycle that
is not contained in a larger cycle. The formula of Proposition 4 is available only
if ∀k ∈ P : parent[parent[k]] = ∅. Let irc(i, j) denote the improved reduced
cost of the edge (i, j): irc(i, j) = rc(i, j) + max{mink∈P∧k 6=j{bestTwoDiff [k]−
u?parent[k]}, 0} if the assumption of Proposition 4 is true and irc(i, j) = rc(i, j)
otherwise.

Example 2. Consider the graph G1 in Fig. 1 and its MWA A(G1)? in Fig. 4. For
the contruction of A(G1)?, the cycle c1 = {2, 4} is created. We want to force
into the MWA the edge:

1. (1, 2): rc(1, 2) = w(1, 2)− u?2 − u?c1 = w(1, 2)− w(4, 2)− (w(0, 4)− w(2, 4)).
rc(1, 2) = 16. The corresponding graph is presented in Fig. 6 (a). Of course,
the new cycle (1, 2) created must be broken from the vertex 1. irc(1, 2) =
rc(1, 2) + (w(0, 1) − w(2, 1)) = 16 + 29 = 45. Actually, that is the exact

0

1 2

3 4

5
33

6

6

5 11

(a) G1 with rc(1, 2)

0

1 2

3 4

5

35

33
6

5 11

(b) G1 with irc(1, 2)

Fig. 6. G1 with rc(1, 2) and irc(1, 2)

reduced cost since the new graph obtained is an arborescence (see Fig. 6
(b)).

2. (1, 4): rc(1, 4) = w(1, 4)− u?4 − u?c1 = w(1, 4)− w(2, 4)− (w(0, 4)− w(2, 4)).
rc(1, 4) = 37. The corresponding graph is presented in Fig. 7 (a). But
irc(1, 4) = rc(1, 4)+min{w(0, 1)−w(2, 1) = 29, w(1, 2)−w(4, 2)−u?c1 = 16}.
So irc(1, 4) = 37 + 16 = 53. Here (see Fig. 7 (b)), the graph obtained is not
an arborescence and irc(1, 4) is a lower bound.

0

1 2

3 4

5

45

6

5

15

(a) G1 with rc(1, 4)

0

1 2

3 4

5
33

45

6

5

11

(b) G1 with irc(1, 4)

Fig. 7. G1 with rc(1, 4) and irc(1, 4)

Algorithm 3 computes irc(i, j),∀(i, j) in O(|V |2). First, it initializes each
irc(i, j) to rc(i, j), ∀(i, j) ∈ E. Then, for each edge (i, j) involved in the assump-
tion of Proposition 4 (Invariant (a)), Algorithm 3 updates its irc(i, j) according
to the formula of Proposition 4.

Algorithm 3: Computation of improved reduced costs irc(i, j),∀(i, j) ∈ E
Input: parent[k],∀k ∈ V ; pred[k], ∀k ∈ V ; u?

ci , ∀ci ∈ C and
bestTwoDiff [k],∀k ∈ V that can be computed in O(|V |2)

Output: irc(i, j), ∀(i, j) ∈ E
1 foreach each edge (i, j) ∈ E do
2 irc(i, j)← rc(i, j)

3 foreach each vertex i ∈ V do
4 if parent[parent[i]] = ∅ then
5 min← bestTwoDiff [i]− u?

parent[i]

6 j = pred[i]
7 while (parent[parent[j]] = ∅)∧ min > 0 ∧ j 6= r do

// Invariant (a): there is a path P from j to i such that
∀k ∈ P : parent[parent[k]] = ∅

// Invariant (b):
min = mink∈P\{j}{bestTwoDiff [k]− uparent[k]?}

8 irc(i, j)← irc(i, j) +min
9 if bestTwoDiff [j]− uparent[j]? < min then

10 min← bestTwoDiff [j]− u?
parent[j]

11 j = pred[j]

5 Experimental Results

As a first experiment, we evaluate the proportion of reduced costs affected by
Proposition 4. Therefore we randomly generated two classes of 100 instances
w(i, j) ∈ [1, 100] with different values of the number of vertices:

– class1: for each i ∈ V , parent[parent[i]] = ∅;
– class2: many vertices i ∈ V are such that parent[parent[i]] 6= ∅.

The class1 was obtained by filtering out the random instances not satisfying
the property. Let exactRC(i, j) be the exact reduced cost associated to the
edge (i, j) ∈ E. Table 1 shows, for each class of instances (with respectively
|V | = 20, |V | = 50 and |V | = 100), the proportion of instances of each class
and for each group of instances: 1) the proportion of edges (i, j) ∈ E such that
rc(i, j) < exactRC(i, j); 2) the proportion of edges that have irc(i, j) > rc(i, j);
and 3) the proportion of edges such that irc(i, j) = exactRC(i, j). Note that, for
this benchmark, at least 37% of 300 instances are class1 instances and at least
45% of LP reduced costs (with rc(i, j) < exactRC(i, j)) are improved for these
instances. Of course, the results are less interesting for the class2 instances.

To test the MinArborescence constraint, experiments were conducted on
an NP-Hard variant of CAP: the Resource constrained Minimum Weight Ar-
borescence Problem (RMWA) [14,10]. The RMWA problem is to find an MWA
under the resource constraints for each vertex i ∈ V :

∑
(i,j)∈δ+i

ai,j · xi,j ≤ bi
where δ+i is the set of outgoing edges from i, ai,j is the amount of resource

|V | = 20 |V | = 50 |V | = 100
Class1 Class2 Class1 Class2 Class1 Class2

%: instances of classk (k ∈ {1, 2}) 48 52 31 69 32 68

%: rc(i, j) < exactRC(i, j) 19.3 38.1 9.8 26.7 2.1 16.6
%: irc(i, j) > rc(i, j) 12.6 1.9 4.6 0.9 1.2 0.2
%: irc(i, j) = exactRC(i, j) 9.9 1.17 3.49 0.79 1.19 0.2

Table 1. Proportion of reduced costs affected by Proposition 4

uses by the edge (i, j) and bi is the resource available at vertex i. RMWA
can be modeled in CP with a MinArborescence constraint (or one of its de-
compositions) for the MWA part of problem and the binaryKnapsack con-
straint [7] together with weightedSum constraint for the resource constraints.
We have randomly generated the different costs/weights as described in [14]:
ai,j ∈ [10, 25], w(i, j) ∈ [5, 25]. To have more available edges to filter, we have

used bi = 2 · b
∑

(i,j)∈δ+
i
ai,j

|δ+i |
c (instead of bi = b

∑
(i,j)∈δ+

i
ai,j

|δ+i |
c) and 75% graph

density.

In order to avoid the effect of the dynamic first fail heuristic interfering
with the filtering, we use the approach described in [25] to evaluate global con-
straints. This approach consists in recording the search tree with the weakest
filtering as a baseline. It is obtained with the decomposition model using the
Arborescence constraint. This search tree is then replayed with the stronger
reduced cost based filtering for MinArborescence. The recorded search tree for
each instance corresponds to an exploration of 30 seconds. As an illustration
for the results, Table 2 details the computational results for MinArborescence

constraint with filtering based on improved reduced costs (MinArbo IRC), re-
duced costs (MinArbo RC), the decomposition with Arborescence constraint
(Arbo) and Arbo+filtering only based on lower bound on MWA (Arbo+LB) on
4 (arbitrarily chosen) out of the 100 randomly instances with |V | = 50. We also
report the average results for the 100 instances. On average, the search space is
divided by ≈ 460 with the reduced costs based filtering MinArborescence con-
straint (wrt Arbo) and by ≈ 81 with Arbo+LB. This demonstrates the benefits
brought by the MinArborescence global constraints described in this paper.

To further differentiate the filtering of MinArbo IRC, we now use MinArbo RC
as a baseline filtering for recording the search tree on another set of 100 randomly
generated instances of class1 with |V | = 50. Fig. 8 shows the corresponding per-
formance profiles wrt the number of nodes visited and the time used respectively.
For ≈ 30% of instances the search space is divided by at least 1.5 and for ≈ 7%
the search space is divided by at least 4. On the other hand, the average gain
for MinArbo IRC (wrt MinArbo RC) is 1.7 wrt the number of nodes visited and
1.4 wrt time. Unfortunately, as was expected, the average gain is limited as only
≈ 5% of LP reduced costs can be improved.

Instance MinArbo IRC MinArbo RC Arbo+LB Arbo
Nodes Time(s) Nodes Time Nodes Time Nodes Time

1 20259 0 20259 0 40061 1 5879717 28

2 12552 0 12552 0 16794 0 6033706 27
3 13094 0 13094 0 121290 2 6383651 28
4 62607 0 62607 0 283854 6 7316899 29
Average 14385 0 14385 0 81239 1.4 6646748 28

Table 2. Results: MinArbo IRC, MinArbo RC, Arbo+LB and Arbo

●● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8
τ

%
 in

st
an

ce
s

Propagators
● MinArboIRC

MinArboRC

Nodes

●

●

●

● ● ● ● ● ● ●

0.6

0.8

1.0

0 2 4 6 8
τ

%
ins

tan
ce

s

Propagators
● MinArboIRC

MinArboRC

Time

Fig. 8. Performance profiles wrt number of nodes visited and time

The implementations and tests have been realized within the OscaR open
source solver [24]. Our source-code and the instances are available at [15]. Our
CP model is able to solve and prove optimality of RMWA instances with up to
|V | = 50. Similar instances can be solved using the Lagrangian decomposition
approach of [14]. The branch and cut algorithm of [10] reports results solving
instances with up to |V | = 500. We believe this lack of performance of CP wrt to
the branch and cut approach is due to the |V | independent knapsack constraints
inducing a weaker pruning. We do hope this first result will trigger more research
in the future to make CP more competitive on this challenging problem.

6 Conclusion

We have defined the MinArborescence constraint based on the reduced costs to
filter the edges for a constrained arborescence problem. We have proposed an
algorithm to improve the LP reduced costs of the minimum weighted arbores-
cence in some cases. Finally, we have demonstrated experimentally the interest
of improved reduced costs in some particular graphs and the efficiency of the
cost-based filtering on the resource constrained arborescence problem. As future
works, we would like to: 1) think about a global constraint wrt resource con-
straints 2) study the incremental aspects of the MinArborescence constraint
and 3) propose specialized search heuristics.

References

1. N. Beldiceanu, P. Flener, and X. Lorca. The tree constraint. In International
Conference on Integration of Artificial Intelligence (AI) and Operations Research
(OR) Techniques in Constraint Programming, pages 64–78. Springer, 2005.

2. F. Bock. An algorithm to construct a minimum directed spanning tree in a directed
network. Developments in Operations Research, pages 29–44, 1971.

3. Y. J. Chu and T. H. Liu. On the shortest arborescence of a directed graph. Sci.
Sin., Ser. A, 14:1396–1400, 1965.

4. G. Dooms and I. Katriel. The minimum spanning tree constraint. In Principles and
Practice of Constraint Programming - CP 2006, pages 152–166. Springer, 2007.

5. G. Dooms and I. Katriel. The not-too-heavy spanning tree constraint. In Inte-
gration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems - CPAIOR 2007, pages 59–70. Springer, 2007.

6. J. Edmonds. Optimum branchings. Journal of Research of the National Bureau
for Standards, 71B(4):125–30, 1967.

7. T. Fahle and M. Sellmann. Cost based filtering for the constrained knapsack
problem. Annals of Operations Research, 115(1-4):73–93, 2002.

8. M. Fischetti and P. Toth. An additive bounding procedure for asymmetric travel-
ling salesman problem. Mathematical Programming, 53:173 – 197, 1992.

9. M. Fischetti and P. Toth. An efficient algorithm for min-sum arborescence problem
on complete digraphs. Management Science, 9(3):1520–1536, 1993.

10. M. Fischetti and D. Vigo. A branch-and-cut algorithm for the resource-constrained
minimum-weight arborescence problem. Network, 29:55–67, 1997.

11. F. Focacci, A. Lodi, M. Milano, and D. Vigo. Solving tsp through the integration
of or and cp techniques. Electronic notes in discrete mathematics, 1:13–25, 1999.

12. H. N. Gabow, Z. Galil, T. H. Spencer, and R. E. Tarjan. Efficient algorithms for
finding minimum spanning trees in undirected and directed graphs. Combinatorica,
6(3):109–22, 1986.

13. R. L. Graham and P. Hell. On the history of the minimum spanning tree problem.
History of computing, 7:13–25, 1985.

14. M. Guignard and M. B. Rosenwein. An application of lagrangean decomposition
to the resource-constrained minimum weighted arborescence problem. Network,
20:345–359, 1990.

15. V. R. Houndji and P. Schaus. Cp4cap: Constraint programming for constrained
arborescence problem. Available from https://bitbucket.org/ratheilesse/

cp4cap.
16. J. Kleinberg and E. Tardos. Algorithm Design, chapter 4: Minimum-Cost Arbores-

cences: A multi-phase greedy algorithm. Tsinghua University Press, 2005.
17. X. Lorca. Contraintes de Partitionnement de Graphe. PhD thesis, Université de

Nantes, 2010.
18. X. Lorca and J-G. Fages. Revisiting the tree constraint. In Principles and Practice

of Constraint Programming - CP 2011, volume 6876, pages 271–285, 2011.
19. R. Mendelson, R.E. Tarjan, M. Thorup, and U. Zwick. Melding priority queues.

Proceedings of SWAT 04, 3111(3):223–235, 2004.
20. G. Pesant, M. Gendreau, J-Y. Potvin, and J-M. Rousseau. An exact constraint logic

programming algorithm for the traveling salesman problem with time windows.
Transportation Science, 32(1):12–29, 1998.

21. J-C. Régin. Simpler and incremental consistency checking and arc consistency
filtering algorithms for the weighted spanning tree constraint. In Integration of AI

https://bitbucket.org/ratheilesse/cp4cap
https://bitbucket.org/ratheilesse/cp4cap

and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems - CPAIOR 2008, pages 233–245. Springer, 2008.

22. J-C. Régin, L-M. Rousseau, M. Rueher, and W. van Hoeve. The weighted spanning
tree constraint revisited. In Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems - CPAIOR 2010, pages
233–245. Springer, 2008.

23. R. E. Tarjan. Finding optimum branchings. Networks, 7(3):25–35, 1977.
24. OscaR Team. Oscar: Scala in or. https://bitbucket.org/oscarlib/oscar, 2012.
25. S. Van Cauwelaert, M. Lombardi, and P. Schaus. Understanding the potential

of propagators. In Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems - CPAIOR 2015, pages 427–436.
Springer, 2015.

https://bitbucket.org/oscarlib/oscar

	The Weighted Arborescence Constraint

