
The maximum weighted submatrix coverage
problem: A CP approach

Guillaume Derval[0000−0002−6700−3519], Vincent Branders[0000−0001−8688−7498],
Pierre Dupont[0000−0003−4835−6519], Pierre Schaus[0000−0002−3153−8941]

UCLouvain - ICTEAM/INGI
{firstname.lastname}@uclouvain.be

Abstract. The objective of the maximum weighted submatrix coverage
problem (MWSCP) is to discover K submatrices that together cover the
largest sum of entries of the input matrix. The special case of K = 1
called the maximal-sum submatrix problem was successfully solved with
CP. Unfortunately, the case of K > 1 is more difficult to solve as the
selection of the rows of the submatrices cannot be decided in polynomial
time solely from the selection of K sets of columns. The search space is
thus substantially augmented compared to the case K = 1. We introduce
a complete CP approach for solving this problem efficiently composed of
the major CP ingredients: 1) filtering rules, 2) a lower bound, 3) dom-
inance rules, 4) variable-value heuristic, and 5) a large neighborhood
search. As the related biclustering problem, MWSCP has many practi-
cal data-mining applications such as gene module discovery in bioinfor-
matics. Through multiple experiments on synthetic and real datasets,
we provide evidence of the practicality of the approach both in terms of
computational time and quality of the solutions discovered.

Keywords: Constraint Programming · Maximum Weighted Submatrix
Coverage Problem · Data mining.

1 Introduction

Constraint Programming (CP) has received an increasing interest for solving
unsupervised (clustering) data-mining problems [14,18,12,1,3,7,5]. This article is
interested into the mining of a numerical matrix to discover submatrices (also
called biclusters) that capture a high total value. More exactly we consider an
input matrix M with m rows and n columns where element Mi,j is a given
real value. The matrix is associated with a set of rows R = {r1, . . . , rm} and a
set of columns C = {c1, . . . , cn}. We use (R;C) to denote matrix M. If I ⊆ R
and J ⊆ C are subsets of the rows and of the columns, respectively, MI,J =
(I; J) denotes the submatrix MI,J of M that contains only the elements Mi,j

belonging to the submatrix with set of rows I and set of columns J .
The maximal sum submatrix problem introduced in [4] is to discover a subset

of rows and columns of an input matrix that maximizes the sum of the covered
entries. An example is provided in Fig. 1.

Definition 1. The Maximal-Sum Submatrix Problem. Given a matrix
M ∈ Rm×n. Let R = {1, . . . ,m} and C = {1, . . . , n} be index sets for rows and
for columns, respectively. The maximal-sum submatrix is the submatrix (I∗; J∗),
with I∗ ⊆ R and J∗ ⊆ C, such that:

(I∗; J∗) = argmax
I,J

f(I, J) = argmax
I,J

∑
i∈I,j∈J

Mi,j (1)

The objective function rewards the selection of positive values and penalizes
selection of negative values. In case of positive input matrices, the domain expert
can subtract a constant threshold θ from all entries. The choice of this threshold
is not discussed here. Therefore, the problem matrix is assumed to contain both
positive and negative values in order to be interesting and challenging to solve.

The submatrix ({R1, R2, R4, R5}; {C2, C4, C5, C6}),
in red, is of maximal sum as the value of the objec-
tive function is 27.3.

For K = 2, the two submatrices depicted in red,
({R1, R2, R4, R5}; {C2, C4, C5, C6}), and blue, ({R3,
R4, R6}; {C3, C4}), are of maximal sum. The objec-
tive value equals 38.6.

Fig. 1: Example of matrix and associated submatrices of maximal sum.

The maximum weighted submatrix coverage problem, that we study in this
work, generalizes the maximal-sum submatrix problem to K submatrices. An
example is provided in Fig. 1.

Definition 2. The Maximum Weighted Submatrix Coverage Problem.
Given a matrix M∈ Rm×n and a parameter K, the maximum weighted subma-
trix coverage problem is to select a set of submatrices (Rk, Ck) with k = 1, . . . ,K
such that the sum of the cells covered by at least one submatrix is maximal:

(R∗1; C∗1), . . . ,(R∗K ; C∗K) = argmax
(R1;C1),...,(RK ;CK)

∑
i∈R,j∈C

Mi,j × 1cover((i, j)) (2)

where 1cover is the indicator function over the set cover =
⋃
k∈1..K Rk × Ck.

1.1 Applications

The maximum weighted submatrix coverage problem has many practical data
mining applications where one is interested to discover K strong relations be-
tween two groups of variables (rows and columns) represented as a matrix:
– In gene expression analysis, rows correspond to genes and columns to samples

and the value inMi,j is the measurement of the expression of gene i in sample
j. One is typically interested in finding subsets of genes that present high

expression in a subset of the samples as it would indicate that a particular
biological pathway made of these genes is active in these samples.

– In migration data, valueMi,j represents the number of persons that moved
from location i to j. The goal is the to identify groups of locations that
together migrate to other groups of locations.

– A sports journalist could also be interested in Olympic games to discover
group of countries that together obtained similar strong performances on the
same subset of sports. The matrix value Mi,j then represents the number
of medals obtained by the country i in sport j.

– Dendograms and Sankey plots are standard visualization tools to represent
relations. Unfortunately those plots quickly suffer from cluttering for large
matrices. The MWSCP can be used as a preliminary step to preselect sub-
matrices that can then be analyzed more easily with those plots.

1.2 Related Work

The maximal-sum submatrix problem was introduced in [4] and efficiently solved
using constraint programming with a dedicated global constraint.

The biclustering problems are concerned with the discovery of homogeneous
submatrices (called biclusters in this context) rather than maximizing the sum
of the covered entries. A comprehensive review can be found in [15]. Common
approaches are heuristic based and greedily selects the next bicluster after ran-
domization of entries covered by the previously discovered biclusters.

The maximum subarray problem introduced by [2] is looking for a maximal-
sum submatrix with contiguous subsets of rows and contiguous subset of columns.

The maximum ranked tile mining problem has been introduced in [14]. This
is a special case of the maximal-sum submatrix problem for which the matrix
entries are discrete ranks, corresponding to a permutation of column indices on
each row. Another relevant difference is the constraint that sets of entries covered
by the submatrices are disjoint. This restriction is more convenient for solving
the problem efficiently but unnatural for the applications motivating this work.

1.3 Contributions

Our contributions are:

– The introduction of the maximum weighted submatrix coverage problem
(MWSCP) as a generalization of the maximal-sum submatrix problem.

– A CP approach for solving MWSCP including filtering, lower-bound, domi-
nance rules, a variable heuristic, and a large neighborhood search.

– An evaluation of the performances of the CP approach as compared to a
greedy baseline approach (using the maximal-sum submatrix problem as
subroutine) and two mathematical programming models on synthetic and
real datasets.

2 CP approach

Constraint programming (CP) is a flexible programming paradigm for solving
(discrete) optimization problems. A CP model is a triplet (V,D,C) where V is
the set of variables, D their domains and C is a set of constraints. In constraint
programming the set domain bounds representation [8] is used to approximate
the domain of a set variable S by a closed interval denoted [S∈,S∈∪S⊥] where S∈
are the mandatory elements and S⊥ are the possible additional ones (S∈∩S⊥ =
∅). Such an interval represents all the sets in between those two bound sets
according to the inclusion relation {S | S∈ ⊆ S ⊆ (S∈ ∪ S⊥)}. A set variable
is bound (or assigned) whenever it contains a single set in its domain. This
situation (called an assignment) happens when set interval bounds are equal,
that is the possible set is empty: S⊥ = ∅.

For a set variable, the domain’s update operations are:
– The inclusion of an item j in the mandatory set, denoted require(j,S), which

implies that S∈ ← S∈ ∪ {j} and S⊥ ← S⊥ \ {j}.
– The exclusion of an item j from the possible set, denoted exclude(j,S), which

implies that S⊥ ← S⊥ \ {j} (and j /∈ S∈).
For each submatrix k, a set variable Rk (resp. Ck) is introduced to represent the
possible rows (resp. columns) selections in submatrix k.

Preliminary notations. We define R∈,+jk (resp. R∈,−jk) as the subset of R∈k
whose matrix value in column j is positive (resp. strictly negative):

R∈,+jk = {i ∈ R∈k | Mi,j ≥ 0} R∈,−jk = {i ∈ R∈k | Mi,j < 0} (3)

Similar notations hold for Ck and ⊥. The sum of the elements in a given row i
(resp. column j) and in a column (resp. row) set S is noted as:

sum
row i

(S) =
∑
j∈S
Mi,j sum

col j
(S) =

∑
i∈S
Mi,j (4)

The set of cells selected by at least one submatrix is denoted Cover∈. The set of
cells excluded by all submatrices is denoted Cover/∈:

Cover∈ = {(i, j) | ∃k : i ∈ R∈k ∧ j ∈ C
∈
k } (5)

Cover/∈ = {(i, j) | ∀k : i /∈ (R∈k ∪R
⊥
k) ∨ j /∈ (C∈k ∪ C

⊥
k)} (6)

The CP resolution is made via a Depth-First-Search (DFS) exploration. The
following subsections discuss the search space, sketch the algorithm and its key
components.

2.1 Search Space

As explained in [4], the search space of MWSCP with K = 1 can be limited
to searching on a single dimension, for instance C1. Indeed, the variable R1

can be fixed optimally in polynomial time by a simple inspection argument:
∀i ∈ R⊥1 : sum

row i
(C1) > 0 =⇒ i ∈ R∈1 .

For K > 1, once all the columns set variables are fixed (Ck ∀k ∈ [1..K]) it
remains to decide for each row i and each submatrix k whether i should be part
of Rk or not. Those K decisions per row does not enjoy the monotonicity or the
anti-monotonicity properties as illustrated on the next example.

Example 1. Let us considerK = 2 with column selection C1 = {1, 3}, C2 = {2, 3}.
For the 1× 3 input matrixM = [[2, 2,−3]]. Individually for each submatrix, the
sum of entries that would be covered by selecting this row in both R1 and R2

would be negative (−1). But since weights of covered elements count only once,
the value −3 is added only once and the objective value obtained is 1. Now
consider the matrixM = [[−2,−2, 3]]. Individually for each submatrix, the sum
of entries that would be covered by selecting this row in both R1 and R2 would
be positive (1). But since weights of covered elements count only once, the value
3 is added only once and the final objective value is −1.

Actually, those K decisions per row cannot be optimally taken in polynomial
time anymore as stated in Theorem 1. As a consequence, the CP search will have
to branch both on the rows and columns variables rather than branching on the
columns only.

Theorem 1. For fixed variables Ck ∀k ∈ [1..K], fixing optimally Rk ∀k ∈ [1..K]
is NP-Hard.

Proof. We reduce the NP-Hard Set Cover Problem [11] to our problem: Given a
universe U = {1, . . . , n} and a set {S1, . . . , SK} of K subsets of U , the Set Cover
Problem is to find the minimum number of sets such that their union covers the
universe. We construct a matrix with a single row and n+K columns. The unique
row values of this matrix are given by the regular expression [K+1]{n}[−1]{K}
(value K + 1 repeated n times followed by −1 repeated K times). The column
variables are fixed to Ck = Sk ∪ {n + k}. In this reduction, Sk is selected if
and only if Rk = {1} for every set k. A first observation is that any optimal
solution covers the universe otherwise it could be improved by K by selecting
any additional set that contains an uncovered element. The optimal objective
function can thus be written as n · (K + 1) − |{k | Rk = {1}}|. As n · (K + 1)
is fixed, maximizing this expression amounts at minimizing |{k | Rk = {1}}|
which is exactly the set cover objective.

2.2 Resolution via Depth-First-Search

The CP resolution through Depth-First-Search (DFS) exploration is sketched
in Algorithm 1. All the procedures are assumed to take the decision variables
{R1, . . . ,RK , C1, . . . , CK} and the input matrix M as parameters.

The procedure selectUnBoundSetVar chooses a not yet bound set vari-
able among {R⊥1 , . . . ,R⊥K , C⊥1 , . . . , C⊥K}. The subsequent line chooses for the se-
lected row/column set of some submatrix k, the specific row/column i (among
the possible ones) to be included on the left branch and to be excluded on
the right branch. The explored search tree is thus binary. Once the constraint is

Algorithm 1 Sketch of the DFS resolution algorithm

function SolveDFS()
if !allVariablesBound() then
S ← selectUnBoundSetVar()

i← selectValue(S⊥)
for action ∈ [require(i,S), exclude(i,S)] do

saveState()
post(action)
propagateDominanceRule()
(lb, cb, ub) ← updateBounds()
best← max(best, cb)
if ub > best then

SolveDFS()
end if
restoreState()

end for
end if

end function

posted, and the previous state saved for later backtracking, the procedure prop-
agateDominanceRule can include (exclude) rows or columns in every subma-
trix that can be proven to (not) participate in any optimal solution. The up-
dateBounds function updates and returns the lower, current and upper bounds
for the state. The current bound is obtained by transforming the partial assign-
ment into a complete feasible solution that excludes all rows/columns in ⊥. If
the current bound cb is better than the best value found so far (stored in variable
best), the current state (R∈1 , . . . ,R∈K , C

∈
1 , . . . , C∈K) is a better solution and the

value of the variable best (storing the best objective found so far) is updated
(and the solution is logged). Once this is done, a check is made to ensure that
there may still be a better solution below this tree node, by verifying that the
upper bound is greater than the best objective value found so far; if that is
the case, the DFS continues recursively. Once these steps are done, the state is
backtracked and the next state visited.

Efficient backtracking is achieved through trailing, which is a state man-
agement strategy that facilitates the restoration of the computation state to
an earlier version. Trailing enables the design of reversible objects. We refer to
MiniCP [13] for a detailed description of trail-based solvers and to [17] for a
trailed based implementation of set domains with sparse-sets.

The following subsections are dedicated to the four main functions of our
algorithm: selectUnBoundSetVar, selectValue, propagateDominance-
Rule and updateBounds.

2.3 Functions selectUnBoundSetVar and selectValue

selectUnBoundSetVar chooses, at each step of the DFS, the next (un-
bounded) row/column interval set S to branch on, while selectValue selects
the value l ∈ S⊥ to include/exclude from this set when branching. That is,
when a pair (S, l) has been chosen, the DFS branches on the left, by setting
require(l,S), and on the right, by setting exclude(l,S). The decision of the
interval set and of the value are not done independently. To choose the next

(set,value) pair to branch on, our algorithm maintains two (reversible) counters
per row or column and per submatrix:
– trowk,i contains the sum of cell values that will be immediately added to the

objective value if row i is included in Rk:

trowk,i = sum
row i

(
{j | j ∈ C∈k ∧ (i, j) 6∈ Cover∈}

)
(7)

– prowk,i contains the sum of positive values in the line i that could be taken by
submatrix k, i.e. whose columns have not been excluded:

prowk,i = sum
row i

(
{j | j ∈ (C∈k ∪ C

⊥
k) ∧ (i, j) 6∈ Cover∈}

)
(8)

tcolk,j and pcolk,j are defined similarly. The algorithm then selects the (submatrix,

row) (or (submatrix, column)) pair (k, i) (or (k, j)) that maximizes trowk,i (or tcolk,j).

Ties are broken by maximizing prowk,i (or pcolk,j). The selected interval set and value
are then Rk and i (or Ck and j).

prows
k,i ← prows

k,i + v+

pcolsk,j ← pcolsk,j + v+
start

prows
k,i ← prows

k,i − v+

pcolsk,j ← pcolsk,j − v+

prows
k,i ← prows

k,i − v+ pcolsk,j ← pcolsk,j − v+

tcolsk,j ← tcolsk,j + v trows
k,i ← trows

k,i + v

tcolsk,j ← tcolsk,j − v

pcolsk,j ← pcolsk,j − v+
trows
k,j ← trows

k,j − v
prows
k,j ← prows

k,j − v+

require the cell

cell required by
other submatrix

require(i,Rk) require(j, Ck)

exclude(j, Ck) exclude(i,Rk)
cell required by
other submatrix

cell required by
other submatrix

require(j, Ck) require(i,Rk)

Fig. 2: FSM maintained for each (row, column, submatrix) i, j, k in the variable/value
selection algorithm. For simplicity, v = Mi,j , v+ = max(v, 0) and v− = min(v, 0).
FSMs states in blue are terminal states.

Recomputing these counters at each iteration is costly, as this operation
is in O(Knm + K(n + m)) for the MWSCP with an m × n matrix and K
submatrices. We propose here to maintain these counters using the finite state
machine (FSM) shown in Fig. 2. The algorithm we propose virtually maintains
a FSM for each (row, column, submatrix) triplet. The FSMs are updated each
time a row/column is added to/excluded from a submatrix:
– When a row i is included in/removed from the submatrix k, at most n FSMs

must be updated (one for each cell in the row).
– When a column j is included in/removed from the submatrix k, at most m

FSMs must be updated (one for each cell in the column).
– Updating a cell is O(1), if it does not become selected by a submatrix (i.e. the

row and column of the cell are both in the mandatory sets of the submatrix).
– If a cell becomes selected, K − 1 other cells must be updated.

Given that ∆rows, ∆cols and ∆selected are respectively the number of added or ex-
cluded (submatrix, row) tables, added/excluded (submatrix, column) tables and
selected cells between two calls of the algorithm, this update runs in O(∆rowsn+
∆colsm+∆selectedK). To this update process must be added the verification of
the counters to select the best set/value pair, which is in O(K(m+ n)).

Over a complete branch of the DFS tree (which has a maximum depth of
K(m+ n)), we have that:∑

branch

∆rows ≤ K ·m
∑

branch

∆cols ≤ K · n
∑

branch

∆selected ≤ n ·m (9)

Over a complete branch, the FSM-based algorithm maintains the states and re-
turns the best set/value pair in O(K2(m+ n)2), which is a significant improve-
ment over the recomputation-based algorithm which runs in O(K2(n2m+nm2))
over a complete branch.

2.4 Dominance rules

In some cases, given a partial assignment with some rows and columns already
included in the set variables Ck and Rk, dominance rules permit to detect addi-
tional rows or columns that must be included in any optimal solution extending
this partial assignment, or rows or columns that never participate in an opti-
mal solution. The current state is defined by (R∈k ,R⊥k , C

∈
k , C⊥k), and we denote

the optimal solution extending this state as (R∗∈k , ∅, C∗∈k , ∅) with R∈k ⊆ R
∗∈
k ,

R∗∈k ⊆ (R∈k ∪R⊥k), C∈k ⊆ C
∗∈
k , C∗∈k ⊆ (C∈k ∪ C⊥k).

Theorem 2 gives the condition to be satisfied to detect that a row i should
be included in submatrix l in any optimal solution extending the current state.

Theorem 2.

∀i ∈ R⊥l : sum
row i

(C∈l ∪ C
⊥,−i
l) \ (

⋃
k|k 6=l

C∈,+ik ∪ C⊥,+ik)

 > 0⇒ i ∈ R∗∈l (10)

Proof. (sketch) Let us assume the worst-case scenario: despite selecting all the
columns with negative values in this row i, while other submatrices would take
the columns with positive values, the submatrix still has a positive sum contri-
bution for this row i. Therefore this row must be included in submatrix l in any
optimal solution extending the current state.

Theorem 3 gives the condition to be satisfied to detect that a row i will
never be included submatrix l in any optimal solution extending the current
state, using the best-case scenario.

Theorem 3.

∀i ∈ R⊥l : sum
row i

(C∈l ∪ C
⊥,+i
l) \ (

⋃
k|k 6=j

C∈,−ik ∪ C⊥,−ik)

 < 0⇒ j /∈ R∗∈l (11)

These two properties (and their symmetric counterparts for columns) can be
used in any node of the search tree to reduce the search space.

2.5 propagateDominanceRule: dominance rules check

Dominance rules from equations (10) and (11) (and their symmetric counterparts
for the columns) can be used to reduce the search space. As in the previous
subsections, recomputing the rules at each call to propagateDominanceRule
is expensive (O(Kmn) at each call, O(K2(m2n+mn2)) over a complete branch
of the DFS). We describe below how to maintain the rules on rows. Of course,
the method is symmetric for columns.

As in selectUnBoundSetVar and selectValue, we maintain virtual
FSMs for each triplet (row, column, submatrix), as shown in shown Fig.3. The
FSMs collectively maintain two reversible values, shared between FSMs, for each
(submatrix k, row i) table:
– lbk,i is the value of the worst-case scenario for submatrix k and row i (the

left part of equation (10))
– ubk,i is the value of the best-case scenario for submatrix k and row i (the

left part of equation (11))
The FSMs also maintain the number of supports of each cell (i, j), i.e. the number
of submatrices that could still select the cell:

supporti,j =
∣∣{k | i ∈ (R∈k ∪R

⊥
k) ∧ j ∈ (C∈k ∪ C

⊥
k)}

∣∣ (12)

Each supporti,j , shared across all FSMs, is maintained as reversible integer by the
solver: its state can then be backtracked. The transition and update operations

lbk,i ← lbk,i + v−

ubk,i ← ubk,i + v+
start

supporti,j ← supporti,j − 1

lbk,i ← lbk,i − v−

ubk,i ← ubk,i − v+

supporti,j ← supporti,j − 1

lbk,i ← lbk,i + v+

ubk,i ← ubk,i + v−

exclude(j, Ck)

exclude(i,Rk)require(j, Ck) supporti,j = 1

exclude(i,Rk)

supporti,j = 1

exclude(i,Rk)

exclude(j, Ck)

require(j, Ck)

Fig. 3: FSM maintained for each (row, column, submatrix) i, j, k in propagateDom-
inanceRule. For simplicity, v = Mi,j , v+ = max(v, 0) and v− = min(v, 0). FSMs
states in blue are terminal states.

of our FSMs are the following:
– When a row i (resp. column j) is excluded from a submatrix k, at most n

(resp. m) cells’ FSMs must be updated. The contribution of the cell (i, j)
to ubk,i and lbk,i are removed and the support of the cell is decremented.
Each of these operations are in constant time, and overall takes O(n) (resp.
O(m)).

– When a cell (i, j) becomes supported by only one remaining submatrix k
(supporti,j = 1), and the column j is included in this submatrix k (j ∈ C∈k ,

and since supporti,j = 1, it implies that i ∈ (R∈k ∪R⊥k)), the value of lb and
ub for this submatrix k is updated by the cell’s value. This operation is also
in constant time, and thus O(K) for all submatrices.

– When a row i (resp. column j) is included in a submatrix k, a check on
all columns j (resp. rows i) must be performed to see if a cell (i, j) with
supporti,j = 1 and i ∈ R∈k and j ∈ C∈k exists. If that is the case, lbk,i and
ubk,i are updated to include the value of the cell. Overall, this operation is
O(n) (resp. O(m)).

Once the update of the FSMs is done, each (row, submatrix) pair is verified
w.r.t. the rules, inO(Km). A call to propagateDominanceRule is inO(Km+
∆rowsn + ∆colsm + ∆requiredK + ∆support=1K). Over a complete branch, the
number of operations required is in O(Km2 + Kmn). If the rules are applied
symmetrically on columns, the overall running time is in O(K max(m,n)2).

2.6 updateBounds: efficient lower and upper bounds computations

In order to run the Branch & Bound, upper bounds on the objective for the
current tree node must be computed efficiently. The chosen method also provides
a lower bound, with no additional (asymptotic) computational cost.

The upper bound ub is the sum of every cell that is either selected in a
submatrix or that is positive and could still be selected. The lower bound lb is
similarly defined, but keeping negative-valued cells. Formally, they are computed
as follows:

ub =
∑
{Mi,j | (i, j) ∈ Cover∈ ∨ (Mi,j > 0 ∧ (i, j) /∈ Cover/∈)} (13)

lb =
∑
{Mi,j | (i, j) ∈ Cover∈ ∨ (Mi,j < 0 ∧ (i, j) /∈ Cover/∈)} (14)

Recomputing these bounds from scratch in each node is again costly:O(Knm).
The running time can be improved by maintaining incrementally the number of
submatrices supporting each cell, in the same way as previously done in prop-
agateDominanceRule.

These bounds, stored as reversible floating point numbers, can then be main-
tained easily:

– When a row i is included in a submatrix k, check if any column j is already
in C∈k , and that (i, j) /∈ Cover∈ yet. If that is the case and that Mi,j > 0
(resp. < 0), increase ub (resp. lb) by Mi,j . This operation runs in O(n).

– The similar operation must be performed when a column is included in a
submatrix. Each of these operations runs in O(m).

– When a row i is excluded from a submatrix k, check if any column j is not
already excluded (j /∈ (C∈k ∪ C⊥k)). If that is the case, decrease supporti,j by
one. This operation runs in O(n).

– The same operation goes for excluded columns in O(m).
– When the supporti,j is reduced to zero, ifMi,j > 0 (resp. < 0), then decrease

ub (resp. lb) by Mi,j . This operation runs in O(1).

The whole maintenance process for the bounds behaves in O(∆rowsn+∆colsm).
Over a complete branch, the incremental method is in O(Knm), while the one
based on recomputations is in O(K2(n2m+ nm2)).

2.7 The Large Neighborhood Search.

The exhaustive approach presented above eventually finds and proves the opti-
mum value provided enough time is given. Unfortunately, the search space is so
large that even for small matrices and a limited number of submatrices, it tends
to quickly find a good solution but is not able to improve it. To overcome this
limitation, we propose to embed the exhaustive CP search into a Large Neigh-
borhood Search (LNS) [19]. LNS is a local search approach using CP to discover
improvements around the current best solution:

– First the CP exhaustive search is used during a limited time, to discover an
initial solution.

– For a given number of iterations, the CP exhaustive search is used again but
this time with some variables partially fixed (fragment) as in the current
best solution.

In addition, to limit the risk of having an iteration stuck for too long, we limit
the DFS to 1000 failures.

The current best solution at iteration t has the form ((R∗∈1,t, . . . ,R∗∈K,t); (C∗∈1,t ,
. . . , C∗∈K,t)) We propose three different fragment selection heuristics (part of the
solution to constrain when restarting the LNS for next iteration):

1. Select uniformly at random a subset of rows and columns in the set of
lines and columns used by some submatrix: Rp ⊆ (

⋃
k∈Mp R∗∈k,t), Cp ⊆

(
⋃
k∈Mp C∗∈k,t), then for each submatrix, include the set of rows and columns

intersecting with those sets: R∈k,t+1 = R∈k,t ∩ Rp, R⊥k,t+1 = R \ R∈k,t+1 and
similarly for columns.

2. A similar operator is defined with rows and columns selected inside the whole
matrix: Rp ⊆ R, Cp ⊆ C. This allows for greater diversification, notably by
allowing discovery of previously unselected rows/columns.

3. Selecting uniformly at random a subset of submatrices Mp ⊆ {1, . . . ,K}.
For each of these submatrices, select at random different subsets of rows and
columns Rpk ⊆ R

∗∈
k,t, C

p
k ⊆ C

∗∈
k,t that is constrained: R∈k,t+1 = R∈k,t ∩ R

p
k,

R⊥k,t+1 = R \ R∈k,t+1 and similarly for columns.

Empirical observations show that these three operators are complementary.

3 Experiments

This section describes experiments conducted to assess the performances of the
proposed algorithms and to provide guidance on the selection of the appropriate
solution. We first evaluate the methods on synthetic datasets, where the optimum
is known, then on real datasets.

We compare our exhaustive CP and LNS methods against a greedy base-
line approach, CP-Greedy, that solves at each step the maximal-sum submatrix
(K=1) problem using the CP approach from [4]. This approach iteratively selects
the next best submatrix, on a modified matrix in which the previously selected
entries are set to 0 such that there is no incentive to select several times the

same (positive) entries. Each iteration is performed within tmax

K with tmax the
allocated budget of time.

The implementation has been carried out on OscaR [16], using Java 1.8.0
(Hotspot VM) on an AMD Bulldozer clocked at 2.1GHz; one core and 3 Go of
RAM per instance.

The source code is available here: https://github.com/GuillaumeDerval/
MWSCP.

3.1 Synthetic Datasets

A synthetic dataset composed of 1,617 instances have been generated using a
Python script (available on Zenodo [9]). For those, the optimal solution is known
as they were all generated by implanting randomly K submatrices before adding
some noise1. Table 1 describes parameter values considered in the generation.The
parameters used to generate the instances are described in Table 1.

Approaches are compared using any-time profiles as described in Definition 3.

Definition 3. Any-Time Profile. Let f(a, i, t) be the objective value of the
best solution found so far by an algorithm a for an instance i at time t. Let tmax

be the provided budget of time before interrupting a run. Let f∗i be the optimal
solution for i if known (as is the case for synthetic data). The any-time profile
of a is the solution quality Qa(t) of a on all instances as a function of time:

Qa(t) =
1

|i|
∑
i

f(a, i, t)

max(f(a∗
i , i, t

max), f∗)
with a∗

i = argmax
a

f(a, i, tmax) . (15)

Table 1: Parameters for the synthetic dataset generation
Parameter Description Values used
m,n size of the matrixM ∈ Rm×n (800, 200), (640, 250), (400, 400)
K number of submatrices 2, 4, 8
o minimum overlap between submatrices (in % of cells) 0, 0.3, 0.6
σ background noise variance (mean is 0) 0, 0.5, 1.0
r, s size of submatrices (noisy, Gaussian with σ = r or s

20) (35, 70), (50, 50)
seed seed for matrix generation [0, 9]

Fig. 4 gives the any-time profiles of the CP-Greedy baseline method, along with
CP-Exhaustive (the exhaustive process presented above) and CP-LNS. The re-
sults clearly illustrates the overall better performances of the CP-LNS whenever
the computation time exceeds roughly 20 seconds.

Table 2a presents, for each parameter value considered in the synthetic data
generation, the performances of the algorithms. Reported performances are com-
puted as the average performance of each algorithm obtained before a certain
limit of computation time.

Through analysis of the performances with respect to parameters’ values,
we observed that the major parameters are, in decreasing order of influence,

1 Notice that the optimal solution may be slightly different than the implanted sub-
matrices because of the noise addition.

https://github.com/GuillaumeDerval/MWSCP
https://github.com/GuillaumeDerval/MWSCP
https://github.com/GuillaumeDerval/MWSCP

the following: 1) the submatrices overlap, 2) K = the number of submatrices.
The difficulty of reaching good solution increases quickly as the minimum overlap
parameter increases until 50%, after which it decreases. Similarly, as the number
of implanted submatrices increases, good solution quality becomes harder to
grasp.

3.2 Real Datasets

We also experiment with non-synthetic datasets of several types (olympic, mi-
gration, genes) described in section 1.1. The results, presented in Table 2b, are
similar to those obtained for synthetic datasets. CP-LNS is the best method on
most datasets given 10 seconds of computation time, with two notable exceptions

Table 2: Comparison between CP-Greedy (GRE), CP-Exhaustive (EX) and CP-LNS
(LNS). The table shows the Qa(t) for each algorithm a given a certain amount of time
t (see equation (3)).

(a) Synthetic dataset

10s 20s 100s 1080s
Parameters GRE EX LNS GRE EX LNS GRE EX LNS GRE EX LNS

{m = 400, n = 400} 0.70 0.33 0.37 0.74 0.57 0.76 0.76 0.75 0.95 0.77 0.75 0.97
{m = 640, n = 250} 0.71 0.34 0.32 0.75 0.48 0.79 0.77 0.74 0.95 0.77 0.75 0.97
{m = 800, n = 200} 0.73 0.34 0.29 0.77 0.48 0.61 0.79 0.77 0.94 0.79 0.78 0.96

K = 2 0.85 0.78 0.32 0.85 0.88 0.83 0.85 0.90 0.96 0.85 0.91 0.97
K = 4 0.72 0.20 0.30 0.77 0.51 0.72 0.78 0.74 0.94 0.78 0.75 0.96
K = 8 0.57 0.03 0.36 0.64 0.13 0.61 0.68 0.62 0.94 0.68 0.62 0.97
o = 0% 0.58 0.27 0.34 0.67 0.45 0.71 0.71 0.66 0.97 0.71 0.66 0.98
o = 30% 0.71 0.34 0.31 0.73 0.50 0.69 0.75 0.75 0.93 0.75 0.76 0.95
o = 60% 0.85 0.40 0.34 0.86 0.57 0.77 0.86 0.86 0.94 0.86 0.86 0.97
σ = 0.0 0.73 0.34 0.78 0.78 0.63 0.80 0.81 0.77 0.98 0.81 0.78 1.00
σ = 0.5 0.72 0.33 0.04 0.75 0.44 0.67 0.78 0.74 0.94 0.78 0.74 0.97
σ = 1.0 0.69 0.33 0.16 0.73 0.44 0.68 0.73 0.75 0.93 0.73 0.75 0.94

{r = 50, s = 50} 0.71 0.34 0.34 0.75 0.52 0.73 0.77 0.76 0.94 0.77 0.77 0.96
{r = 35, s = 70} 0.71 0.32 0.32 0.76 0.50 0.71 0.78 0.75 0.95 0.78 0.75 0.97

(b) Real datasets

K = 4 1s 5s 20s
Type Dataset GRE EX LNS GRE EX LNS GRE EX LNS

migration migration 0.001 [6] 0.96 0.92 0.96 0.96 0.92 0.99 0.96 0.92 1.00
migration migration 0.003 [6] 0.87 0.89 0.93 0.87 0.89 0.99 0.87 0.89 1.00
migration migration 0.005 [6] 0.83 0.79 0.96 0.83 0.79 1.00 0.83 0.79 1.00
olympic olympic 0.01 [10] 0.88 0.69 0.92 0.88 0.91 0.97 0.91 0.91 1.00
olympic olympic 0.02 [10] 0.79 0.69 0.87 0.84 0.84 0.97 0.84 0.84 1.00
olympic olympic 0.04 [10] 0.62 0.81 0.91 0.76 0.82 0.96 0.93 0.82 1.00
olympic olympic 0.06 [10] 0.80 0.92 0.93 0.97 0.92 0.98 0.97 0.92 0.99
K = 4 10s 20s 100s
Type Dataset GRE EX LNS GRE EX LNS GRE EX LNS
gene alizadeh-2000-v1 095 [20] 1.00 0.48 0.82 1.00 0.48 0.82 1.00 0.48 0.92
gene armstrong-2002-v1 095 [20] 0.73 0.60 0.92 0.73 0.60 0.99 0.73 0.60 1.00
gene bhattacharjee-2001 095 [20] 0.82 0.31 0.98 0.91 0.86 0.99 0.91 0.96 1.00
gene bittner-2000 095 [20] 0.96 0.53 0.86 0.96 0.53 0.98 0.96 0.53 0.98
gene bredel-2005 095 [20] 0.98 0.86 1.00 0.98 0.86 1.00 0.98 0.86 1.00
gene chen-2002 095 [20] 0.74 0.80 1.00 0.89 0.80 1.00 0.89 0.80 1.00
gene chowdary-2006 095 [20] 0.82 0.83 1.00 0.82 0.83 1.00 0.87 0.83 1.00
gene dyrskjot-2003 095 [20] 0.97 0.94 0.99 0.97 0.94 1.00 0.97 0.94 1.00
gene garber-2001 095 [20] 0.59 0.24 0.58 0.82 0.32 0.58 1.00 0.50 0.86
gene golub-1999-v1 095 [20] 0.86 0.88 0.92 0.86 0.88 0.95 0.86 0.88 0.96

100 101 102 103

Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

so
lu

tio
n

qu
al

ity

Any-time profile

CP-Greedy
CP-Exhaustive
CP-LNS

Fig. 4: Comparison between CP-Greedy, CP-Exhaustive and CP-LNS on 1, 617 matrices
generated as described in section 3.1. The graph presents the any-time profile described
in equation (3). For each instance, 18 minutes were allocated for computations.

(alizadeh and garber datasets), in which case LNS did not find the optimum in
the 20 minutes allowed for each dataset.

3.3 Comparison Against Mixed Integer Linearly and Quadratically
Constrained Programming

Table 3: Comparison between CP-LNS, MIP and MIQCP, on a synthetic dataset (gen-
erated as described in section 3.1). All methods were given a fixed time limit of 300
seconds. The metric used is the any-time profile at the time limit (see definition 3).
CP-LNS finds the optimum on each dataset. The time when the best found solution
was found is indicated inside parentheses. Experiments made on Gurobi 8.1.0.

(a) Varying number of submatrices
and noise, with matrices of size 50×50
and submatrices of size 16× 16.

K σ CP-LNS MIP MIQCP
2 0.0 1.00 (1s) 1.00 (0s) 1.00 (1s)
2 0.5 1.00 (1s) 1.00 (7s) 1.00 (7s)
2 1.0 1.00 (1s) 0.89 (233s) 0.79 (57s)
3 0.0 1.00 (2s) 1.00 (1s) 1.00 (2s)
3 0.5 1.00 (3s) 1.00 (140s) 1.00 (138s)
3 1.0 1.00 (3s) 0.74 (254s) 0.48 (256s)
4 0.0 1.00 (2s) 1.00 (1s) 1.00 (62s)
4 0.5 1.00 (3s) 1.00 (252s) 0.88 (290s)
4 1.0 1.00 (6s) 0.64 (260s) 0.69 (225s)
5 0.0 1.00 (4s) 1.00 (79s) 1.00 (275s)
5 0.5 1.00 (5s) 0.82 (257s) 0.69 (237s)
5 1.0 1.00 (6s) 0.77 (24s) 0.36 (38s)

(b) Varying size of the matrix and noise,
with matrices of size m×m and K = 2
submatrices of size bm

3
c × bm

3
c.

m σ CP-LNS MIP MIQCP
50 0.0 1.00 (0s) 1.00 (1s) 1.00 (3s)
50 0.5 1.00 (1s) 1.00 (5s) 1.00 (7s)
50 1.0 1.00 (1s) 0.95 (207s) 0.82 (204s)
100 0.0 1.00 (4s) 1.00 (1s) 1.00 (33s)
100 0.5 1.00 (1s) 0.86 (293s) 1.00 (45s)
100 1.0 1.00 (3s) 0.65 (269s) 0.82 (191s)
200 0.0 1.00 (17s) 1.00 (8s) 1.00 (135s)
200 0.5 1.00 (21s) 0.37 (191s) 3% (81s)
200 1.0 1.00 (6s) 0% (0s) 5% (134s)
400 0.0 1.00 (1s) 1.00 (31s) 1.00 (54s)
400 0.5 1.00 (1s) 0% (1s) 0% (0s)
400 1.0 1.00 (1s) 0% (1s) 4% (301s)

We tested our methods against MIP (linear) and MIQCP (quadratic terms
in the constraints) methods. As these two methods do not perform well on big-
ger instances, we do not integrate them in our experiments on large matrices,

presented above.

MIP model MIQCP model
max

∑
i,jMi,j · si,j max

∑
i,jMi,j · si,j

si,j ≥ ei,j,k ∀i, j, k K · si,j ≥
∑
k rk,i · ck,j ∀i, j

si,j ≤
∑
k ei,j,k ∀i, j si,j ≤

∑
k rk,i · ck,j ∀i, j

ei,j,k + 1 ≥ rk,i + ck,j ∀i, j, k
2 · ei,j,k ≤ rk,i + ck,j ∀i, j, k

All variables ∈ {0, 1}

MIP and MIQCP methods are plagued by the number of variables, that is in
O(Knm) for MIP and O(K(n + m)) for MIQCP, and by the number of con-
straints, which is O(Knm) for MIP and O(nm) for MIQCP. Tables 3a and 3b
show that both models are slow compared to our LNS method, and are heavily
affected by matrix size, number of submatrices to find and noise. For bigger sub-
matrices, such as the synthetic and real ones presented in the previous section,
both methods timeout either without returning solutions or with comparatively
poor solutions.

4 Conclusions

We presented a generalization of the Maximal-Sum Submatrix Problem [4] to
multiple submatrices, called the Maximum Weighted Submatrix Coverage Prob-
lem (MWSCP), along with a method to solve this problem based on constraint
programming and large neighborhood search. Experiments on both synthetic
and real datasets show that our CP-LNS method finds consistently better so-
lutions (when more than 10 seconds are allocated) than both MIP/MIQCP, an
exhaustive CP method and a greedy approach using the method from [4].

Acknowledgments Computational resources have been provided by the Con-
sortium des Équipements de Calcul Intensif (Cq́ECI), funded by the Fonds de la
Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11.

References

1. Aoga, J.O., Guns, T., Schaus, P.: An efficient algorithm for mining frequent se-
quence with constraint programming. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. pp. 315–330. Springer (2016)

2. Bentley, J.: Programming pearls: algorithm design techniques. Communications of
the ACM 27(9), 865–873 (1984)

3. Bessiere, C., De Raedt, L., Kotthoff, L., Nijssen, S., OSullivan, B., Pedreschi, D.:
Data mining and constraint programming (2016)

4. Branders, V., Schaus, P., Dupont, P.: Mining a sub-matrix of maximal sum. In:
Proceedings of the 6th International Workshop on New Frontiers in Mining Com-
plex Patterns in conjunction with ECML-PKDD 2017 (2017)

5. Chabert, M., Solnon, C.: Constraint programming for multi-criteria conceptual
clustering. In: International Conference on Principles and Practice of Constraint
Programming. pp. 460–476. Springer (2017)

6. Dao, T., Docquier, F., Maurel, M., Schaus, P.: Global migration in the 20th and
21st centuries: the unstoppable force of demography (2018)

7. Duong, K.C., Vrain, C., et al.: Constrained clustering by constraint programming.
Artificial Intelligence 244, 70–94 (2017)

8. Gervet, C.: Interval propagation to reason about sets: Definition and implementa-
tion of a practical language. Constraints 1(3), 191–244 (1997)

9. Guillaume, D., Vincent, B., Pierre, D., Pierre, S.: Synthetic dataset used in ”the
maximum weighted submatrix coverage problem: A cp approach” (Nov 2018).
https://doi.org/10.5281/zenodo.1688740

10. IOC Research and Reference Service, The Guardian: Olympic sports and medals,
1896-2014. https://www.kaggle.com/the-guardian/olympic-games

11. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of com-
puter computations, pp. 85–103. Springer (1972)

12. Kuo, C.T., Ravi, S., Vrain, C., Davidson, I., et al.: Descriptive clustering: Ilp and
cp formulations with applications. In: IJCAI-ECAI 2018, the 27th International
Joint Conference on Artificial Intelligence and the 23rd European Conference on
Artificial Intelligence (2018)

13. Laurent Michel, Pierre Schaus, Pascal Van Hentenryck: MiniCP: A
lightweight solver for constraint programming (2018), available from
https://minicp.bitbucket.io

14. Le Van, T., Van Leeuwen, M., Nijssen, S., Fierro, A.C., Marchal, K., De Raedt, L.:
Ranked tiling. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. pp. 98–113. Springer (2014)

15. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis:
a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics
(TCBB) 1(1), 24–45 (2004)

16. OscaR Team: OscaR: Scala in OR (2012), available from
https://bitbucket.org/oscarlib/oscar

17. de Saint-Marcq, V.L.C., Schaus, P., Solnon, C., Lecoutre, C.: Sparse-sets for do-
main implementation. In: CP workshop on Techniques foR Implementing Con-
straint programming Systems (TRICS). pp. 1–10 (2013)

18. Schaus, P., Aoga, J.O., Guns, T.: Coversize: a global constraint for frequency-
based itemset mining. In: International Conference on Principles and Practice of
Constraint Programming. pp. 529–546. Springer (2017)

19. Shaw, P.: Using constraint programming and local search methods to solve ve-
hicle routing problems. In: International conference on principles and practice of
constraint programming. pp. 417–431. Springer (1998)

20. de Souto, M.C., Costa, I.G., de Araujo, D.S., Ludermir, T.B., Schliep, A.: Cluster-
ing cancer gene expression data: a comparative study. BMC bioinformatics 9(1),
497 (2008)

https://doi.org/10.5281/zenodo.1688740
https://www.kaggle.com/the-guardian/olympic-games

	The maximum weighted submatrix coverage problem: A CP approach

