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Abstract. Multi-Valued Decision Diagrams (MDDs), and more generally Multi-
Valued Variable Diagrams (MVDs), are instrumental in modeling constrained
combinatorial problems. This has led to a number of algorithms for filtering
constraints such as mddc, MDD4R and CD (Compact-Diagram). Many com-
pressed forms of tables have also been proposed over the years, leading to a
’smart’ hybridization between extensional an intentional representations, which
was obtained by embedding simple arithmetic constraints in tuples (of tables). In-
terestingly, the state-of-the-art algorithm CT (Compact-Table) has been recently
extended to deal efficiently with bs-tables, i.e., ’basic smart’ tables containing
expressions of the form ’∗’, ’6= v’, ’≤ v’, ’≥ v’ and ’∈ S’. In this paper, we
introduce the concept of bs-MVDs by enabling arcs of diagrams to be labelled
with similar expressions. We show how such diagrams can be naturally derived
from ordinary tables and MDDs, and we extend the state-of-the-art algorithm CD
in order to handle bs-MVDs (and bs-MDDs).

Keywords: Multi-Valued Decision Diagrams, Filtering, Compression, Compact-
Table, Bitset

1 Introduction

Efficiently representing constraints under extensional forms such as tables and decision
diagrams has been a hot research topic for the last decade; concerning MDDs (Multi-
Valued Decision Diagrams), see e.g., [1, 2, 4, 5, 13–15, 28]. Actually, two main lines
of improvements have been followed when handling extensional forms of constraints.
Firstly, high effective filtering techniques have been proposed over the years, such as
those based on tabular reduction [18, 19] and bitwise operations [11, 16, 32]. Secondly,
compact representation techniques have been intensively studied, mainly by allowing
simple constraints to be put in tables as in [17, 20, 30, 31] or by directly using decision
diagrams such as MDDs [10, 22, 23].

CD (Compact-Diagram), previously called Compact-MDD, has been recently in-
troduced [29] for Multi-Valued Variable Diagrams (MVDs), which are diagrams gener-
alizing MDDs by authorizing non-determinism. By combining several ideas and tech-
niques, in particular, those proposed in [30, 29], we show how a bitwise filtering al-
gorithm can be conceived for constraints represented by bs-MVDS, which are ’basic
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smart’ MVDs accepting arcs to be labelled with unary constraints. These bs-MVDs can
be seen as a very promising modeling tool.

As a direct application of bs-MVDs, we find the possible compact representation of
regular constraints [3, 6, 25], imposing that a specified sequence of variables must be
accepted by a given automaton (derived from a regular expression). As a user, it is quite
natural to express an automaton using expressions on transitions, as illustrated in Fig. 1a
for the regular language [1−9].∗[∧5].∗[05]. As described in [24], a layered deterministic
automaton graph basically defines an MDD constraint; a layered automaton graph ob-
tained from a non-deterministic automaton then naturally leads to an MVD constraint.
Figure 1b displays the bs-MVD that corresponds to the unfolding of the automaton over
a sequence of 5 variables.
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Fig. 1: The regex [1− 9].∗[∧5].∗[05] describes a number divisible by 5 with at least one
of its inner digits being different from 5.

The main contributions of this paper are:

– Different strategies to create bs-MVD constraints from table constraints, with im-
proved compression compared to classical MDDs.

– An efficient bitwise filtering algorithm that enforces the property known as Gener-
alized Arc Consistency on bs-MVD constraints.

– An experimentation that demonstrates the practical interest of our approach.

2 Technical Background

A constraint network is composed of a set of variables and a set of constraints. Each
variable x has an associated (ordered) domain dom(x) containing the values that can
be assigned to it; the current domain is included in the initial domain dom0(x). We
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respectively denote bymin(x) andmax(x) the smallest and greatest values in dom(x).
Each constraint c involves an ordered set of variables, called the scope of c and denoted
by scp(c), and is semantically defined by a relation rel(c) containing the tuples allowed
for the variables involved in c. The arity of a constraint c is |scp(c)|. When the domain
of a variable x is (becomes) singleton, we say that x is bound.

Given a sequence 〈x1, . . . , xr〉 of r variables, an r-tuple τ on this sequence of vari-
ables is a sequence of r values 〈a1, . . . , ar〉, where the individual value ai is also de-
noted by τ [xi]. An r-tuple τ is valid on an r-ary constraint c iff ∀x ∈ scp(c), τ [x] ∈
dom(x), and τ is allowed by c iff τ ∈ rel(c). A support of c is a tuple which is both
valid on c and allowed by c. A literal is a pair (x, a) where x is a variable and a a value.
A literal (x, a) is Generalized Arc-Consistent (GAC) on c iff there is a support τ on c
such that τ [x] = a. A constraint c is GAC iff any literal (x, a) such that x ∈ scp(c) and
a ∈ dom(x) is GAC on c.

A directed graph is composed of a set of nodes and a set of arcs. Each arc has an
orientation from one node, the tail of the arc, to another node, the head of the arc. For
a given node ν, the set of arcs with ν as tail (resp., head) is called the set of outgoing
(resp., incoming) arcs of ν. A labelled directed graph is a directed graph such that a
label l(ω) is associated with each arc ω. A node is in-d (in-deterministic) iff it does
not have two incoming arcs with the same label, in-nd otherwise. A node is out-d (out-
deterministic) iff no two outgoing arcs have the same label, out-nd otherwise. A directed
acyclic graph (DAG) is a directed graph with no directed cycles. An MVD (Multi-
valued Variable Diagram) [1] for a constraint c (called an MVD constraint) is a layered
DAG, with one special root node at level 0, denoted by ROOT, r layers of arcs, one
layer L(xi) for each variable xi of the scope 〈x1, . . . , xr〉 of c, and one special sink
node at level r, denoted by SINK. The arcs in L(xi) going from level i − 1 to level i
are on the variable xi: any such arc is labelled by a value in dom0(xi). A valid path
in such an MVD is a path p from the root to the sink such that for each variable xi
in scp(c) the label of the arc going in p from level i − 1 to i is a value in dom(xi).
The set of supports of an MVD constraint c corresponds to the valid paths in the MVD
for c. One classical type of MVD is the Multi-valued Decision Diagram (MDD) [8],
which guarantees that each node is out-d (each node at level i has at most |dom0(xi)|
outgoing arcs, labelled with different values), but possibly in-nd. Another type of MVD
is the semi-MDD (sMDD) [29] which guarantees that each node at a level < b r2c is
out-d and each node at a level > b r2c+ 1 is in-d.

CD. Compact-Diagram, or CD (previously called Compact-MDD [29]), is a filtering
algorithm (propagator) that uses bitwise operations for MVD constraints. It is based on
some ideas behind both Compact-Table [11], a propagator for table constraints that uses
bitwise operations as well, and MDD4R [23], a propagator for MDD constraints.

The idea is to keep track of the arcs that remain valid during the filtering process;
namely by introducing (reversible sparse) bitsets, one per layer of the MVD (and so, per
variable of the constraint). At layer i, one bit, in the bitset currArcs[xi], is associated
with each arc: when the bit is set to 1, it means that the arc is considered as valid. This
way, the current MVD, which can be seen as a subgraph of the initial MVD, can be
identified, and used to remove the values without any supports left.
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Algorithm 1: Class ConstraintCD
1 Method enforceGAC()
2 updateGraph()
3 filterDomains()

4 Method updateGraph()
5 foreach variable x ∈ scp do
6 mask[x]← 064

7 updateMasks()
8 propagateDown(x1, false)
9 propagateUp(xr, false)

10 Method updateMasks()
11 foreach variable x ∈ {x ∈ scp : |∆x| > 0} do
12 if |∆x| < |dom(x)| then // Incremental update
13 foreach value a ∈ ∆x do
14 mask[x]← mask[x] | supports[x, a] // bitwise OR

15 else // Reset-based update
16 foreach value a ∈ dom(x) do
17 mask[x]← mask[x] | supports[x, a] // bitwise OR

18 mask[x]←∼ mask[x] // bitwise NOT

19 Method propagateDown(xi, localChange)
20 if |∆xi | > 0 or localChange then
21 currArcs[xi]← currArcs[xi] & ∼ mask[xi]
22 if currArcs[xi] = 0 then
23 throw Backtrack

24 if xi 6= xr then
25 localChange← false

26 foreach node ν ∈ {ν : currArcs[xi+1] & arcsT[ν, xi+1] 6= 064} do
27 if currArcs[xi] & arcsH[xi, ν] = 064 then
28 mask[xi+1]← mask[xi+1] | arcsT[ν, xi+1]
29 localChange← true

30 propagateDown(xi+1, localChange)

31 else if xi 6= xr then
32 propagateDown(xi+1, false)

33 Method propagateUp(xi, localChange)
/* Similar to propagateDown with x1 instead of xr, xi−1 instead of xi+1,

inverted use of arcsT and arcsH. */

34 Method filterDomains()
35 foreach variable x ∈ {x ∈ scp : |dom(x)| > 1} do
36 foreach value a ∈ dom(x) do
37 if currArcs[x] & supports[x, a] = 064 then // bitwise AND
38 dom(x)← dom(x) \ {a}
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To ease computations, at each level there are three types of precomputed bitsets:
these bitsets are never modified. First, supports[x, a] indicates for each arc on the
variable x whether or not the value a is initially supported by this arc (bit is set to 1
iff a is supported). Second, arcsT[ν, x] and arcsH[x, ν′] indicate for each arc on x
whether ν and ν′ are respectively the tail and the head of this arc. Finally, a temporary
bitset mask[xi] is associated with each variable xi to store the results of intermediate
computations.

The pseudo-code for enforcing GAC on an MVD constraint is given by Algo. 1,
which is, for simplicity, a simplified version of the one given in [29]. In method update-
Graph(), after initializing all masks, all arcs that can be trivially removed are handled by
calling updateMasks(). This method assumes access to the set of values ∆x removed
from dom(x) since the last call to enforceGAC()1. There are two ways of updating
the masks (before updating currArcs from these masks, later): either incrementally or
from scratch after resetting. In case of an incremental update, we perform the union of
the arcs to be removed, whereas in case of a reset-based update, we perform the union
of the arcs to be kept, followed by a reverse operation. Next, we need to determine
which arcs can be subsequently removed: this is achieved by calling the methods prop-
agateDown() and propagateUp(), which, similarly to MDD4R, perform two passes on
the diagram. During the downward (resp., upward) pass, each level is examined from
the root (resp., sink) to the sink (resp., root). When there are no more valid arcs entering
(resp. exiting) a node, it becomes unreachable and all arcs exiting (resp. entering) the
node becomes invalid. Identifying unreachable nodes is done by testing if the intersec-
tion between currArcs and arcsT (for outgoing arcs) or arcsH (for incoming arcs) is
empty.

The process of filtering domains is very similar to the one described in CT [11].
This is given by method filterDomains() in Algo. 1. For each unbounded variable x and
each value a in dom(x), the intersection between the valid arcs on x, currArcs[x], and
the arcs allowing value a, supports[x, a], determines if a is still supported. An empty
intersection means that a can be deleted from dom(x).

Let us mention an important fact about the bitwise operations performed at Lines 14,
17 and 28 of Algo. 1. As described in [11], bitsets are implemented as arrays of words
(long integers). Progressively, while arcs become invalid, some words of currArcs
become equal to 0 (all bits set to 0). In practice, operations are only performed on the
active (i.e., non-zero) words of currArcs, which are easily retrievable due to the use of
a sparse set maintaining the indexes of active words (called validWords). Eventually,
the mask is intended for being intersected with currArcs. Therefore, computing values
of the words of mask corresponding to a non-valid word of currArcs is not needed and
not done.

3 Transforming Tables into bs-MVDs

A bs-MVD, or basic smart MVD, is defined similarly to a bs-table, or basic smart table
[30]. Namely, it is an MVD where each arc is labelled by one the following expressions:

1 In [27], a sparse-set domain implementation for obtaining ∆x without overhead is described.
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’∗’, ’〈relop〉 v’, ’∈ S’ and ’6∈ S’ where v is value, S is a set of values, and 〈relop〉 is an
operator in {<,≤,=, 6=,≥, >}. The operator involved in the labeling expression of an
arc ω is denoted by op(ω). There are two main strategies of generating bs-MVDs from
(ordinary) tables:

1. Through MVDs: the table is first transformed into an MVD, using pReduce [24]
(leading to an MDD) or sReduce [29] (leading to an sMDD). Then, the arcs with
the same tail and head nodes are processed, targeting the general unary expressions
given above. Note that the initial structure of the MVD is preserved. Namely, an
MDD becomes a bs-MDD, while an sMDD becomes a bs-sMDD.

2. Through bs-tables: the table is first transformed into a bs-table, for example using
the algorithms described in [17, 30]. Then, the bs-table is transformed into a bs-
MVD using a slightly modified version of an algorithm transforming tables into
diagrams. However, as some (smart) tuples may overlap, the transformation may
lead to a bs-MVD with nodes that are non deterministic (in-nd and out-nd) at any
level. This is not an issue since CD can handle non-deterministic diagrams.

We now describe how to carry out the second step of both approaches.

3.1 From MVDs to bs-MVDs: Arc Merging

Generating a bs-MVD from an MVD is straightforward. At each level i, we simply
process every group G of (at least two) arcs sharing the same tail and head nodes.
Specifically, we can compare V = {l(ω) : ω ∈ G} with dom(xi), and consequently
apply some rules (given in order of priority) for merging some arcs of G:

1. if V = dom(xi), then G is replaced by a unique arc labelled with ’∗’;
2. if ∃a ∈ dom(xi) s.t. V ∪ {a} = dom(xi), then G is replaced by a unique arc

labelled with ’6= a’;
3. if m, defined as max{v : {v′ ∈ dom(xi) : v

′ ≤ v} ⊆ G} is not equal to min(xi),
then Gm = {ω ∈ G : l(ω) ≤ m} is replaced by a unique arc labelled with ’≤ m’
(otherwise, Gm = ∅); if M , defined as min{v : {v′ ∈ dom(xi) : v′ ≥ v} ⊆
G \ Gm}, is not equal to max(xi), then GM = {ω ∈ G \ Gm : l(ω) ≥ M} is
replaced by a unique arc labelled with ’≥ M ’ (otherwise, GM = ∅); with G′ =
G \Gm \GM , if |G′| > 1 then G′ is replaced by a unique arc labelled with ’∈ S’
where S = {l(ω) : ω ∈ G′}.

Figure 2a illustrates these merging rules. The variable of interest xi has a domain
(initially) composed of 10 values, and white cells represent the values that are present
in G.

Note that our merging procedure keeps at most three arcs between any two nodes.
An example is given in Fig. 2.

3.2 From bs-Tables to bs-MVDs: pReducebs

To create a bs-MVD from a bs-table, one can easily adapt the known procedure pRe-
duce (initially introduced for creating MDDs from tables) so as to generate MVDs; the
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(a) Illustration of possible merging rules (on a domain of size 10).
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Fig. 2: Transforming an MVD into an equivalent bs-MVD.

adaptation is called pReducebs. The four steps of the procedure are the following. First,
the tuples of the table are sorted using a lexicographic ordering. Second, the corre-
sponding trie (i.e., prefix tree) is created by sharing common prefixes among the tuples.
Third, a diagram is derived from the trie by merging all the leaves of the trie to form the
sink node. Finally, the diagram is reduced by merging, in a bottom-up way, each pair
of nodes having similar sets of outgoing edges. Two sets of outgoing arcs are similar if
they have the same cardinality, and for each arc in one set, there is an arc in the other set
with the same label (value) and the same head. Actually, for adapting it, we just need to
impose a total order on expressions (unary constraints) involved in basic smart tuples.
For example, we can simply associate a pair of integers with each expression (unary
constraint) such that the first element of the pair represents the type (operator) of the
expression and the second element the operand involved in the expression. Figure 3a
illustrates the naturally derived lexicographic order.

Figure 3 illustrates through an example the four steps of pReducebs: going from a
sorted bs-table (Fig. 3b) to a trie (Fig. 3c), then into an MVD (Fig. 3d) and finally into
a reduced MVD (Fig. 3e, where the gray node is the result of merging two nodes with
similar outgoing sets of edges). This example shows that pReducebs does not necessar-
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Fig. 3: Turning a bs-table into a bs-MVD using pReducebs.

ily generate a bs-MDD, because some nodes are not out-d, possibly leading to multiple
paths for a same tuple as it is the case for (1, 1, 1).

A similar adaptation exists for sReduce [29], the procedure that generates sMDDs,
leading to sReducebs.

4 CDbs: Compact-Diagram Handling bs-MVDs

CD and CT are quite similar in term of design. Basically, both of them use the bit-
sets called supports to respectively find the arcs and tuples that must be discarded.
Recently, the CTbs [30] algorithm, which can deal with bs-tables, was proposed as an
extension of CT, by only modifying the update procedure. In the same spirit, we show
how similar ideas can be reused to adapt the method updateMask() of CD in order to
define CDbs. We present first a simple version of CDbs, before introducing an optimized
version that strongly relies on a partition of the arcs at each level i, defined as follows:

– Cbas(xi) = {ω ∈ L(xi) : op(ω) ∈ {=, 6=, ∗}},
– Cmin(xi) = {ω ∈ L(xi) : op(ω) ∈ {<,≤}},
– Cmax(xi) = {ω ∈ L(xi) : op(ω) ∈ {>,≥}},
– Cset(xi) = {ω ∈ L(xi) : op(ω) ∈ {∈, /∈}}
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Algorithm 2: Simple Version of CDbs

1 Method updateMasks()
2 foreach variable x ∈ {x ∈ scp : |∆x| > 0} do
3 if |∆x| < |dom(x)| and Cset(x) = φ then // Incremental update
4 foreach value a ∈ ∆x do
5 mask[x]← mask[x] | supports∗[x, a] // bitwise OR

6 if dom(x).minChanged() then
7 mask[x]← mask[x] | ∼ supportsMin[x, x.min]

8 if dom(x).maxChanged() then
9 mask[x]← mask[x] | ∼ supportsMax[x, x.max]

10 else // Reset-based update
11 foreach value a ∈ dom(x) do
12 mask[x]← mask[x] | supports[x, a] // bitwise OR

13 mask[x]←∼ mask[x] // bitwise NOT

Simple Adaptation of CTbs. As in CTbs, in addition to bitsets supports, we intro-
duce auxiliary bitsets:

– supports∗[x, a], the exclusive supports: for each arc for which the label of arc ω
is exactly a (’= a’), the bit is set to 1,

– supportsMin[x, a], the lower bound supports: for each arc which would be still
valid if the minimum of the domain was a, the bit is set to 1,

– supportsMax[x, a], the upper bound supports: for each arc which would be still
valid if the maximum of the domain was a, the bit is set to 1.

Algorithm 2 displays the method updateMasks() for the simple version of CDbs.
This is for Compact-Diagram a simple adaptation of the modifications made to pass
from CT to CTbs. Resetting (and recomputing) is performed when the number of re-
moved values (i.e., values in ∆x) is too large by collecting the supports of every value
in the current domain (lines 10-18). Otherwise an incremental update is performed.
Notice that contrarily to the reset-based update, one needs to also collect invalid arcs
for operators in {<,≤, >,≥} using supportsMin and supportsMax at lines 7 and
9 of Algo 2. The time complexity of one call to updateMasks(), for a given variable
x, is Θ(dt) where t is the number of valid words and d is min(|∆x|, |dom(x)|) if
Cset(x) = φ and |dom(x)| if not.

Exploiting Partitions of Arcs. The time complexity of Algo. 2 can be improved to
reach Ω(t) and O(dt). For that, let us consider the hypothetical case of a variable with
an operator in {<,≤, >,≥} for each of its associated arc labels. In such a case, one
can collect invalid arcs using lines 7 and 9 from Algo. 2, and there is no need to iterate
over the sets dom(x) or ∆x. This favorable situation can be partially forced by sorting
arcs in bitsets supports so that the bits in a computer word only represent arcs from
a given category (Cbas, Cset, Cmin, Cmax). If each computer word is filled with (bits for)
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Algorithm 3: Optimized Version of CDbs

1 Method updateMasks()
2 foreach variable x ∈ {x ∈ scp : |∆x| > 0} do
3 foreach index j ∈ currArcs[x].validWords do
4 switch currArcs[x].category[j] do
5 case Cbas do
6 if |∆x| < |dom(x)| then // Incremental update
7 foreach value a ∈ ∆x do
8 mask[x][j]← mask[x][j] | supports∗[x, a][j]

9 else // Reset update
10 foreach value a ∈ dom(x) do
11 mask[x][j]← mask[x][j] | supports[x, a][j]
12 mask[x][j]←∼ mask[x][j]

13 case Cset do
14 foreach value a ∈ dom(x) do
15 mask[x][j]← mask[x][j] | supports[x, a][j]
16 mask[x][j]←∼ mask[x][j]

17 case Cmin do
18 if dom(x).minChanged() then
19 mask[x][j]← mask[x][j] | ∼ supportsMin[x, x.min][j]

20 case Cmax do
21 if dom(x).maxChanged() then
22 mask[x][j]← mask[x][j] | ∼ supportsMax[x, x.max][j]

arcs belonging to the same category (dummy invalid arcs are used to complete a word
if necessary), then only the required specific operations can be systematically applied
to this word. This leads to Algo. 3 that iterates over the valid words and only applies the
operations required by the category of the word (note that the category for the jth word
is given by currArcs[x].category[j]). Arcs from Cbas are updated using supports∗

or supports (incremental or reset case). Arcs from Cset are updated using supports in
all cases. Arcs from Cmin and Cmax are updated using supportsMin and supportsMax,
respectively. It appears that the categories Cmin and Cmax are particularly cheap to treat
as they only imply one value.

An Interesting Observation. In Algo. 3, each valid word is associated with a (unique)
category. From this fact, one can observe that supportsMin and supportsMax are
useless.
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Observation 1 For any variable x, and any word index j of currArcs[x], we have:

currArcs[x].category[j] = Cmin ⇒
supportsMin[x, a][j] = supports[x, a][j]

Similarly,

currArcs[x].category[j] = Cmax ⇒
supportsMax[x, a][j] = supports[x, a][j]

Proof. (sketch for Cmin) By restricting the scope of the definitions of the bitsets to the
word (index) j whose bits are exclusively associated with arcs from Cmin, supports[x, a][j]
contains arcs represented by this word that accept the value a, i.e. arcs labelled by ≤ v
with v ≥ a, whereas supportsMin[x, a][j] contains arcs for which ∃b ∈ dom(x) ac-
cepted by the arcs such as a ≤ b, i.e., arcs labelled by ≤ v with v ≥ a. The two
words end up to be equal: the exact same bits are set for both supports[x, a][j] and
supportsMin[x, a][j].

This observation is illustrated by Fig. 4. For any literal (x, a) and any word index j of
category Cmin (resp., Cmax), the word supportsMin[x, v][j] (resp., supportsMax[x, v][j])
is equal to the word supports[x, v][j]. Therefore, we can simply use supports at
lines 19 and 22. It means that the only required auxiliary bitset is supports∗ for words
attached to Cbas.

Overall Complexity of the Propagator. Regarding the time complexity of the prop-
agator (and not only the updateMasks() method), CD is O(max(n, d)r a

w ) where r is
the arity of the constraint, d the greatest domain size, n (resp. a) the maximum number
of nodes (resp. arcs) per level and w the size of computer words (w = 64 for Java long
integer type). CDbs keeps the same complexity. Regarding the space complexity, the
maximum number of words of one bitset is d aw e+ 3. Per level, there is one currArcs,
d supports and supports∗ (its length is min 0 words, if Cbas = φ and d aw e max, if
|Cset| ≤ w, |Cmin| ≤ w and |Cmax| ≤ w) and n arcsH and arcsT. The space complexity
is thus O((d+ n)r a

w ).

5 Experimental Results

All algorithms described in this paper are implemented in the Oscar solver [21], using
64-bit words (Long). Our implementation benefits from all optimization techniques de-
scribed in [11] and [29]. Notably, we manage sparse sets in order to avoid handling zero
computer words.

All the results of our experiments are displayed using performance profiles [12].
A performance profile is a cumulative distribution of the improved performance of an
algorithm s ∈ S compared to other algorithms of S over a set I of instances: ρs(τ) =
1
|I|×|{i ∈ I : ri, s ≤ τ}|where the performance ratio is defined as ri, s =

ti, s
min{ti, s|s∈S}

with ti, s the value of the measured unit (here, either the number of nodes, the number
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x

ω0 = 1
ω1 ≤ 2
ω2 ≥ 1
ω3 ∈ {1, 3}
ω4 6= 1
ω5 > 2
ω6 6∈ {0, 3}
ω7 < 2
ω8 6= 2
ω9 ∗

(a) Labels of Arcs

word 0 word 1 word 2 word 3
(Category) Cbas Cset Cmin Cmax

ω0 ω4 ω8 ω9 ω3 ω6 ω1 ω7 ω2 ω5

[x, 0] 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0
[x, 1] 1 0 1 1 1 1 0 0 1 1 0 0 1 0 0 0
[x, 2] 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0
[x, 3] 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0
[x, 4] 0 1 1 1 0 1 0 0 0 0 0 0 1 1 0 0

(b) Bitsets supports for literals on x

word 0 word 1 word 2 word 3
(Category) Cbas Cset Cmin Cmax

(From) supports∗ no auxiliary supportsMin supportsMax

ω0 ω4 ω8 ω9 ω3 ω6 ω1 ω7 ω2 ω5

[x, 0] 0 0 0 0 - - - - 1 1 0 0 0 0 0 0
[x, 1] 1 0 0 0 - - - - 1 1 0 0 1 0 0 0
[x, 2] 0 0 0 0 - - - - 1 0 0 0 1 0 0 0
[x, 3] 0 0 0 0 - - - - 0 0 0 0 1 1 0 0
[x, 4] 0 0 0 0 - - - - 0 0 0 0 1 1 0 0

(c) Auxiliary bitsets for literals on x

Fig. 4: Bitsets related to a variable x, assuming 10 associated arcs ω0, ω1, . . . in the
bs-MVD. The size of computer words is assumed to be 4, for simplicity.

of arcs or the CPU time) obtained with algorithm s ∈ S on instance i ∈ I . A ratio
ri, s = 1 thus means that s is the best algorithm for instance i.

Depending on the main data structure (table or diagram) and possible transforma-
tion, we use different names to describe the benchmark suite:

– βt: the initial benchmark. It is a set of roughly 4, 000 instances only containing
(positive) table constraints, and available on the XCSP3 website [7].

– βbst: instances of βt have been transformed into instances where bs-tables replace
(ordinary) tables. The compression algorithm detailed in [30] was used.

– βmdd: instances of βt have been transformed into instances where MDDs replace
(ordinary) tables. The algorithm pReduce [24] was used.

– βbsmvd: instances of βbst have been transformed into instances where bs-MVDs
replace bs-tables. The algorithm pReducebs was used.

– βbsmdd: instances of βmdd have been transformed into instances where bs-MDDs
replace MDDs.

Our experiments have two main objectives:

1. analyzing the compression quality of the different approaches, when transforming
tables,

2. analyzing the speedup obtained by the new filtering algorithms over the existing
ones.
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Fig. 5: Performance profile comparing the structure of the graphs from βbsmdd, βbsmvd

and βmdd.

5.1 Quality of Compression

To start, we consider the results depicted in Fig. 5. The three benchmarks involving
MVDs are βmdd, βbsmvd and βbsmdd. In term of compression, the clear winner is
βbsmdd with substantially less arcs than in the diagrams generated by the two other
approaches. Let us recall that this approach consists of two main steps: 1) creating a
graph, and 2) merging arcs greedily. The alternative approach βbsmvd that creates first
a bs-table, and then converts it into a bs-MVD is worse both in terms of the number of
nodes and the number of arcs, even when compared to a standard generation of MDDs
(βmdd). One explanation is that, despite starting from smaller tables, there is less chance
to merge nodes due to the proliferation of constraint labels in the compressed tables.
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Fig. 6: Performance profile comparing CDbs to CD on various basic smart MVD bench-
marks CD on βmdd, CTbs on βbsmdd, βbsmvd and βbsmdd.

5.2 Speedup

Figure 6 shows the results of a comparison between CD and CDbs. The new filtering
algorithm CDbs, as it could be expected, obtains a larger speedup when applied on
graphs with fewer nodes and arcs, i.e., on instances from βbsmdd.

In particular, we can see that on the benchmark βbsmvd (based on a compression
into bs-tables, followed by a generation of bs-MVDs) CDbs performs worse than CD
applied on βmdd (standard MDDs). The reason is that graphs in βbsmvd have generally
a greater number of nodes than other equivalent graphs as shown before in Fig. 5a.
This follows the same conclusions as in [29] regarding why CD was more efficient on
sMDDs (having fewer nodes than MDDs).

An interesting remark is that, contrarily to CTbs (Compact-Table for basic smart
tables) [30], the presence of expressions ’∈ S’ does not induce any overhead for CDbs.
Since the arcs involving expressions of the form ’∈ S’ are gathered on the same bit-
words, they don’t prevent from doing an incremental update when considering the other
categories of expressions, as it was the case for CT.

In [29], CT was shown to remain faster than CD despite the introduction of bitwise
operations. We revisit the same experiment with the newly presented algorithm. Fig-
ure 7 compares four scenarios, including the use of CT: CT on βt, CTbs (the extension
of CT [30] handling directly bs-tables) on βbst, CD (Compact-Diagram, the adaptation
of CT to MVD [29]) on βmdd and CDbs on βbsmdd.

One can see that CT is still the best approach, followed by CTbs. Nevertheless, as it
can be observed in the figure, the gap is shrinking when using the new algorithm CDbs.
Also, there is now around 10% of the instances where CDbs is the fastest algorithm. A
post analysis has shown that instances with larger domains are the more favorable for
CDbs. In such cases, we could observe for some tables a reduction by a factor of up to
8 on the number of arcs.

The main advantage of CD thus lies in the potential compactness of the diagrams, al-
though this is really problem/constraint dependent. On the one side, some graphs, when
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Fig. 7: Performance profile of the comparison of the best-case scenario of CDbs, CD
and the tables algorithms CT and CTbs.

expanded into tables, can’t even fit in memory. On the other side, some constraints, like
AllDifferent [22] are not well suited for an MDD representation because there is almost
no compression. When CD can benefit from a large compression, it becomes faster.

For a fair comparison, the choice was made not to evaluate the new algorithm on a
priori favorable problems, hence the benchmarks composed of problems that initially
contain table constraints. Also the order of variables remained unchanged (order as
described in the initial instances used). Optimizing this order may also have an impact
on the size of the graphs [9].

In our opinion, having both CT and CD is useful: if, for a given constraint, a high
compression (by an MDD or another diagram) is possible, CD should be used, oth-
erwise CT is more suited. Also, the new algorithm should typically be used for solv-
ing combinatorial problems with complex constraints that can’t even be represented in
memory as simple tables. One good example of work in that direction is [26]. Another
promising direction for applying this propagator is for solving combinatorial problems
on Strings.

6 Conclusion

We have proposed to use a new general form of Multi-valued Variable Diagram (MVD)
for representing constraints: the bs-MVD that accepts unary constraints as labels of
arcs. We have also shown how to generate such diagrams from (ordinary) tables. Fi-
nally, we have adapted the propagator CD (Compact-Diagram) to bs-MVDs, by inspir-
ing ourselves from the adaptation of CT to bs-tables. This new propagator is efficient
and makes little closer graph-based approaches and table-based approaches.
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