
Insertion Sequence Variables for Hybrid Routing and
Scheduling Problems

Charles Thomas1[0000−0002−7360−5372], Roger Kameugne2[0000−0003−1809−9822], and
Pierre Schaus1[0000−0002−3153−8941]

1 UCLouvain, Belgium {name.surname}@uclouvain.be
2 Faculty of Sciences, University of Maroua, Cameroon rkameugne@gmail.com

Abstract. The Dial a Ride family of Problems (DARP) consists in routing a fleet
of vehicles to satisfy transportation requests with time-windows. This problem is
at the frontier between routing and scheduling. The most successful approaches
in dealing with DARP are often tailored to specific variants. A generic state-of-
the-art constraint programming model consists in using a sequence variable to
represent the ordering of visits in a route. We introduce a possible representa-
tion for the domain called Insertion Sequence Variable that naturally extends the
standard subset bound for set variables with an additional insertion operator af-
ter any element already sequenced. We describe the important constraints on the
sequence variable and their filtering algorithms required to model the classical
DARP and one of its variants called the Patient Transportation Problem (PTP).
Our experimental results on a large variety of instances show that the proposed
approach is competitive with existing sequence based approaches.

1 Introduction

Door-to-door transportation services and on demand public transport are increasingly
important due to the flexibility it offers to the customers. Two such problems are the Dial
a Ride Problem (DARP) [7] and the Patient Transportation Problem (PTP) [3] which
consist in transporting a maximum of patients to and from medical appointments. These
problems often involve large number of requests and thus require efficient algorithmic
solutions. Many approaches have been proposed and applied successfully to different
variants of the DARP [11]. However, these solutions are often tailored towards specific
use-cases and are difficult to adapt to other variants of the problem. It is thus crucial
to develop approaches to model and solve efficiently such problems while remaining
generic and easily adaptable.

We describe an Insertion Sequence Variable (ISV) for modeling and solving DARPs.
Our domain representation includes the subset bound domain [9] for set variables. This
allows to represent optional elements in the domain and prevents a repetition of the
same element at different positions in the sequence. The set domain is extended with
an internal sequence that can be grown with arbitrary insertions available from a set of
possible insertions. By letting the constraints remove impossible insertions, the search
space is pruned by restricting the set of possible sequences. We describe two important
global constraints on the Insertion Sequence Variable for modeling the DARP and PTP:
1) The TransitionTimes constraint links a sequence variable with time interval

2 C. Thomas et al.

variables to take into account a transition time matrix between consecutive elements
in the sequence. 2) The Cumulative constraint ensures that the load profile does
not exceed a fixed capacity when pairs of elements in the sequence represent the load
and discharge on a vehicle. We experimentally test the performances of the Insertion
Sequence Variable on the two problems and show that it is competitive with the state-
of-the-art CP approaches.

2 Related Work

In [14], the authors propose a constraint-based approach called LNS-FFPA to solve
DARPs with a cost objective and show that it outperforms other state-of-the-art ap-
proaches. While highly efficient, the LNS-FFPA algorithm is difficult to adapt to other
variants of the DARP such as the PTP. Indeed, the approach is not declarative since
some constraints are enforced with the search. Furthermore, the model is not able to
deal with optional visits that occur in the PTP and similar problems.

Two recent approaches for solving the PTP are [3] and [20]. The approach proposed
in [3] consists in representing the problem with a scheduling model where trips are
represented by activities. The approach of [20] is based on IBM ILOG CP Optimizer
solver [19]. It makes use of the sequence variables from CP Optimizer to decide the
order of visits in each vehicle.

The high level functionalities and constraints related to sequence variables of CP
Optimizer have been briefly described in [17, 18]. Unfortunately, no details are given
on the implementation of such variables and the filtering algorithms of the constraints
in the literature. According to the API and documentation available at [12, 13], the
sequence variable of CP Optimizer is based on a Head-Tail Sequence Graph structure. It
consists of maintaining separate growing head and tail sub-sequences. Interval variables
not yet sequenced can be added either at the end of the head or at the beginning of the
tail. When no more interval variable can be added and all members of the head and tail
are decided, both sub-sequences are joined to form the final sequence. Google OR-Tools
[22] also propose sequence variables [23] with the same approach as CP Optimizer. The
approach proposed in this paper differs from the one of CP Optimizer in the following
ways: 1) the insertion sequence variable is generic and usable in a large variety of
problems. In particular, the variable is independent of the notion of time intervals; 2)
insertions are allowed at any point in the sequence which allows flexible modeling and
search; 3) the variable proposed keeps track of the possible insertions for each element
inside its domain which allows advanced propagation techniques.

In [10], the authors discuss the usage of a path variable in the context of Segment
Routing Problems. Their implementation is based on a growing prefix to which candi-
dates elements can be appended.

3 Preliminary

Let X = {0, ..., n} be a finite set and P(X) the set of subsets (power set) of X . The
inclusion ⊆ relation defines a partial order over P(X) and the structure (P(X),⊆)
is a lattice generally used to represent the domain of a finite set variable. To avoid

Insertion Sequence Variables for Hybrid Routing and Scheduling Problems 3

explicit exhaustive enumeration of set domain, three disjoint subsets of X are used
to represent the current state of the set domain (see [9]). The domain is defined as
〈P,R,E〉 ≡ {S′ | S′ ⊆ X ∧R ⊆ S′ ⊆ R∪P} where P ,R, and E denote respectively
the set of Possible, Required and Excluded elements of X . At any time we have that
P,R and E form a partition of X . The variable S with domain 〈P,R,E〉 is bound if
P is empty. Table 1 contains the supported operations on a set variable S of domain
〈P,R,E〉 with their complexity.

Table 1: Operations supported by set variables
Operation Description Complexity
requires(S, e) move e to R, fails if e ∈ E Θ(1)
excludes(S, e) move e to E, fails if e ∈ R Θ(1)
isBound(S) return true iff S is bound Θ(1)
is{Possible/Required/Excluded}(S, e) return true iff e ∈ {P/R/E} Θ(1)
all{Possible/Required/Excluded}(S) enumerate {P /R/E} Θ(|{P/R/E}|)

We denote by −→S a sequence without duplicates over X (S ⊆ X). The sequence −→S
defines an order over the elements of S. Each element of X is unique and can appear
only once in S. The set of all sequences of X is denoted by −→P (X). Let a and b be

two elements of S. The relation a precedes b in −→S is noted a
−→
S

≺ b or a ≺ b when it is
clear from the context that the relation applies in regards to S. The relation a directly

precedes b in −→S is noted a
−→
S−→ b or or a → b when clear from the context. In this case,

b is called the successor of a and a is called the predecessor of b in −→S . A sequence −→S ′

is a super-sequence of −→S if S ⊆ S′ and ∀a, b ∈ S, a
−→
S

≺ b =⇒ a
−→
S′

≺ b. This relationship
is noted −→S ⊆ −→S ′. Conversely, −→S is a sub-sequence of −→S ′.

The insertion operation insert(−→S , e, p) consists in inserting the element e in the
sequence −→S after the element p where e ∈ X \ S and p ∈ S. Performing this operation

results in a super-sequence −→S ′ of −→S such that S′ = S ∪ {e} and p
−→
S′−→ e. The operation

is also noted −→S =⇒
(e,p)

−→
S ′.

The insertion of an element e at the beginning of a sequence or in an empty sequence
is defined as insert(−→S , e,⊥). An insertion in a sequence −→S is thus characterized by a
tuple (e, p) where e /∈ S and p ∈ S ∨ p = ⊥.

Given I , a set of tuples, each corresponding to a potential insertion in −→S , the one-
step derivation −→S =⇒

I

−→
S ′ between a sequence −→S and its super-sequence S′ is de-

fined as −→S =⇒
I

−→
S ′ ⇐⇒ ∃i = (e, p) ∈ I | −→S =⇒

i=(e,p)

−→
S ′. In other words, the

sequence S is transformed into S′ by applying one possible insertion from I . More
generally zero or more steps derivation is defined as −→S ∗

=⇒
I

−→
S ′ ≡ −→

S =
−→
S ′ ∨(

∃i ∈ I | −→S =⇒
i

−→
S ′′ ∧ −→S ′′ ∗

=⇒
I\{i}

−→
S ′
)
. Note that I may contain tuples that do not

correspond to a possible insertion in −→S but instead to a possible insertion in a super-

4 C. Thomas et al.

sequence of −→S . Also note that several sequences of insertions in I may lead to a same
super-sequence.

Example 1. Let us consider the sequence −→S = (1, 2, 3) and the set of insertions I =

{(4, 2), (5, 2), (5, 4)}. We have that−→S ∗
=⇒
I

−→
S ′ = (1, 2, 4, 5, 3) since it can be obtained

with consecutive derivations over I: (1, 2, 3) =⇒
(4,2)

(1, 2, 4, 3) =⇒
(5,4)

(1, 2, 4, 5, 3).

4 Insertion Sequence Variable

Definition 1. An insertion sequence variable Sq on a setX is a variable whose domain
is represented by a tuple 〈−→S , I, P,R,E〉 where 〈P,R,E〉 is the domain of a set variable
on X , −→S is a sequence ∈ −→P (R) and I is a set of tuples (e, p), each corresponding to a
possible insertion. The domain of Sq, also noted D(Sq), is defined as

〈−→S , I, P,R,E〉 ≡
{−→
S ′ ∈ −→P (P ∪R) | R ⊆ S′ ∧ −→S ∗

=⇒
I

−→
S ′
}

(1)

Sq is bound if P is empty and |S| = |R|. Initially, all elements of the domain are op-
tional (∈ P). During the search, elements can be set as mandatory or excluded (moved
to R or E) and possible insertions can be removed from I .

Lemma 1. Checking the consistency of the domain 〈−→S , I, P,R,E〉 is NP-complete.

Proof. It requires verifying the following properties: ∃−→S ′ | −→S ∗
=⇒
I

−→
S ′ ∧ R ⊆ S′

and ∀e ∈ P,∃S′ | −→S ∗
=⇒
I

−→
S ′ ∧ R ∪ {e} ⊆ S′. The Hamiltonian path problem for a

directed graph G = (V, E) can be reduced to checking the consistency of the domain
D(Sq) = 〈−→S = (), I = Ereverse ∪ {(v,⊥) | ∀v ∈ V}, P = ∅, R = V, E = ∅〉 where
Ereverse is the result of applying the reverse operation on each edge (i, j) ∈ E defined
as (i, j)reverse = (j, i). ut

Consequently, instead of checking the full domain consistency at each change in the
domain, the following invariant is maintained internally by the sequence variable:

P ∪R ∪ E = X ∧ P ∩R = R ∩ E = P ∩ E = φ (2)
S ⊆ R (3)
∀(e, p) ∈ I, e /∈ S ∧ e /∈ E ∧ p /∈ E (4)
∀p ∈ S,@(e, p) ∈ I =⇒ e ∈ E (5)

At any moment: P ∪R∪E form a partition of X (2); any member of −→S is required (3);
any member of −→S cannot be inserted in −→S ; any excluded element cannot be inserted in
−→
S and is not a valid predecessor (4); any element that cannot be inserted at any position
in −→S is excluded (5).

Example 2. Let us consider X = {a, b, c, d, e, f}, the variable Sq of domain 〈−→S =
(f, b), I = {(c,⊥), (c, e), (c, f), (e, c), (e, f)}, P = {c}, R = {b, e, f}, E = {a, d}〉
corresponds to the sequences {(f, e, b), (c, f, e, b), (f, c, e, b), (f, e, c, b)}. The sequen-
ces {(f, b), (c, f, b), (f, c, b)} are not valid as they do not contain e which is required.

Insertion Sequence Variables for Hybrid Routing and Scheduling Problems 5

The insertion sequence variable inherits all the operations defined on the set variable
(see Table 1) and supports the additional operations summarized in Table 2.

Table 2: Operations supported by insertion sequence variables
Operation Description Complexity
isBound(Sq) return true iff Sq is bound Θ(1)

isMember(Sq, e) return true iff e is present in −→S Θ(1)

allMembers(Sq) enumerate −→S Θ(|S|)
allCurrentInserts(Sq) enumerate {(e, p) ∈ I | p ∈ S} O(min(|I|, |S|))
nextMember(Sq, e) return the successor of e in −→S Θ(1)

insert(Sq, e, p) insert e in −→S after p, update P , R and I , Θ(1)
fail if e ∈ E ∨ p /∈ S

canInsert(Sq, e, p) return true iff (e, p) ∈ I Θ(1)
allInserts(Sq) enumerate I Θ(|I|)
remInsert(Sq, e, p) remove (e, p) from I Θ(1)

4.1 Implementation

The implementation of the internal set variable 〈P,R,E〉 uses array-based sparse sets
as in [24] to ensure efficient update and reversibility during a backtracking depth-first-
search. It consists of an array of length |X| called elems and two reversible integers:
r and p. The position of the elements of X in elems indicates in which subset the
element is. Elements before the position r are part of R while elements starting from
position p are part of E. Elements in between are part of P . An array called elemPos
maps each element of X with its position in elems, allowing access in Θ(1).

The internal partial sequence −→S is implemented using a reversible chained structure.
An array of reversible integers called succ indicates for each element its successor in
the partial sequence. An element which is not part of the partial sequence points towards
itself. An additional dummy element ⊥ marks the start and end of the partial sequence.
It can be specified as predecessor in the insertion operation to insert an element at
the beginning of the sequence or in an empty sequence. Inserting an element e in the
partial sequence after p consists in modifying the successor of e to point to the previous
successor of p and modifying the successor of p to point to e.

The set of possible insertions I is implemented using an array of sparse sets called
posPreds. For each element, the corresponding sparse set contains all the possible
predecessors after which the element can be inserted. If the element is a member of
the sequence −→S or excluded, its set is empty. The sparse sets are initialized with the
following domain: R ∪ P ∪ {⊥}. Constraints may remove possible insertions during
their propagation. If doing so results in an empty set, the corresponding element is
excluded according to the invariant (5).

An illustration of the domain representation for the variable Sq with a domain of
〈−→S = (f, b), I = {(c,⊥), (c, e), (c, f), (e, c), (e, f)}, P = {c}, R = {b, e, f}, E =
{a, d}〉 is given in Figure 1.

6 C. Thomas et al.

Fig. 1: The insertion sequence variable domain 〈〈−→S = (f, b), I = {(c,⊥), (c, f), (c, e), (e, c),
(e, f)}, P = {c}, R = {b, e, f}, E = {a, d}〉 (left and middle) and the corresponding lattice
(with valid sequences underlined) and graphical representation (right)

5 Global Constraints on Insertion Sequence Variables

5.1 Transition Times constraint

In a scheduling context, the elements to sequence correspond to activities performed
over time, each associated with a time window and requiring a minimum transition time
to move to the next that depends on the pair of consecutive activities. The Transition
Times constraint links the sequenced elements with their time window to make sure
that transition time constraints are satisfied between any two consecutive elements of
the sequence. More formally, each element i ∈ X is associated with an activity defined
by a start starti and a duration variable duri. A matrix transi,j , satisfying the triangle
inequality, specifies transition times associated to each couple of activities (i, j). The
TransitionTimes constraint is then defined as

TransitionTimes(Sq, [start], [dur], [[trans]]) ≡{
−→
S ′ ∈ D(Sq) | ∀a, b ∈ S′, a

−→
S′

≺ b =⇒ startb ≥ starta + dura + transa,b

}
(6)

Filtering The filtering algorithm is triggered whenever an element is either inserted in
−→
S ′ or required or if one of the bounds of a time window changes. The algorithm is split
into three parts: time windows update, insertion update and feasible path checking and
filtering.

Time window update This filtering algorithm is used to adjust the start and duration
of the activities already present in −→S . This update is done in linear time by iterating
over the elements of the sequence and updating their time windows depending on the
time needed to transition from the previous element and to the next element. If the time
window of an element is shrunk outside its domain, this leads to a failure.

Insertion Sequence Variables for Hybrid Routing and Scheduling Problems 7

Insertion update This filtering algorithm is used to filter out the invalid insertions in I
based on the current state of −→S and the transition times of the activities. The algorithm
is linear and consists in iterating over I . For each possible insertion, if the transition
times between the inserted activity and its predecessor and successor lead to a violation
of a time window, the insertion is removed.

Feasible Path checking and filtering The problem of verifying that there exists at least
one transition time feasible extension of the current sequence composed of the required
activities not yet inserted is NP-Complete [8] by a reduction from the TSP. Algorithm
1 is a recursive depth first search used to check that there exists at least one feasible ex-
tension of the current sequence composed of the required activities not yet inserted (i.e.
in the set R \ S). Given the current sequence −→S , the recursive call feasiblePath(`,
p,Ω, t, d) checks that it is possible to build a sequence starting from ` at time t that
contains at least d elements of Ω and is a super-sequence of the sub-sequence of −→S
starting in p. The parameter ` indicates the last element visited at time t whereas the
parameter p indicates the last element of S that has been visited (possibly several steps
before `). The initial call feasiblePath(` = ⊥, p = ⊥, Ω = R \ S, t = 0, d)
thus checks that there exists a super-sequence of −→S containing d elements of R \ S.

Algorithm 1: feasiblePath(`, p,Ω, t, d)
Input: `: last element reached, p: previous element reached in −→S , Ω: set of elements to

reach, t: departure time from `, d: depth, Sq = 〈−→S , I, P,R, E〉: Sequence
variable, cache: memoization map

1 n← nextMember(Sq, p) ;
2 if n 6= ⊥ and t+ trans`,n > max(startn) then
3 return false;
4 if Ω = ∅ then
5 return true;
6 (tf , ti)← cache.getOrElse((`, p,Ω), (−∞,+∞)) ;
7 if t ≤ tf then return true;
8 if t ≥ ti then return false;
9 for a ∈ Ω do

10 if t+ trans`,a > max(starta) then
11 cache.update((`, p,Ω), (tf ,min(ti, t))) ;
12 return false ; // pruning (infeasible sequence)

13 if d ≤ 0 then
14 return true ; // pruning (maximum depth reached)

15 else
16 for a ∈ Ω | (a, `) ∈ I , sorted in increasing (min(starta) + min(dura)) do
17 if feasiblePath(a, p,Ω \ {a},max(t+ trans`,a,min(starta) +

min(dura)), d− 1) then
18 cache.update((`, p,Ω), (max(tf , t), ti)) ;
19 return true;
20 if n 6= ⊥ and feasiblePath(n, n,Ω,max(t+ trans`,n,min(startn) +

min(dura)), d) then
21 cache.update((`, p,Ω), (max(tf , t), ti)) ;
22 return true;
23 return false;

8 C. Thomas et al.

At each node, the algorithm either explores the insertion of a new element after `
which corresponds to branching over an element of Ω (line 16) or follows the current
sequence −→S which consists in branching over the successor of p in −→S (line 20). A prun-
ing is done at lines 2 and 9 if one realizes that at least one activity cannot be reached.
By the triangle inequality assumption of the transition times, if either the successor of
p or at least one activity of Ω cannot be reached directly after `, then it can surely not
be reached later in time if some activities were visited in between. Therefore false
is returned in such case which corresponds to the infeasibility pruning. The possible
extensions considered recursively at line 16 are based on the current state of I and the
value of p. The maximum depth is controlled by the parameter d to avoid prohibitive
computation. The algorithm can thus return a false positive result by returning true at
line 14 if this limit is reached.

The time complexity of Algorithm 1 is O(|S| · |Ω|d) in worse case as it corre-
sponds to an iteration over −→S with a depth-first search of depth d and branching fac-
tor |Ω| at each step. In practice, as the branching is based on I , the search tree will
often be smaller. In order to reduce the time complexity of the successive calls to
feasiblePath, a cache is used to avoid exploring several times a partial extension
that can be proven infeasible or feasible based on previous executions. A global map
called cache is assumed to contain keys composed of the arguments of the function,
that is a tuple with (Ω, `, p). At each key, the map associates a couple of integer values
(tf , ti) where tf is the latest known time at which it is possible to depart from ` and
find a feasible path among the sub-sequence starting after p and the activities of Ω and
ti is the earliest known time at which the departure from ` is too late and there exists no
feasible path. Line 6 is called to find if a corresponding entry exists in the map. If it is
the case, the departure time t is compared to the couple (tf , ti) of the map. If t ≤ tf , the
value true is immediately returned. If t ≥ ti, false is returned. If tf < t < ti, the algo-
rithm continues its exploration. The cache is updated at lines 11, 18 and 21 depending
on the result found. Usage of the cache is highlighted in gray in Algorithm 1.

This checking algorithm can be used in a shaving-like fashion into Algorithm 2.
A value is filtered out from the possible set if its requirement made the sequencing
infeasible according to the transition times. This TransitionTimesFiltering
algorithm executes in O(|P | · (|S| · |R \ S|)d). Notice that the cache is shared and
reused along the calls in order to avoid many subtree explorations. Due to the exten-
sive nature of the algorithm, a parameter ρ defines a threshold for the size of P above
which the feasiblePath algorithm is not executed for each element of P (line 4).

Algorithm 2: TransitionTimesFiltering(Sq, d, ρ)
Input: d: maximum depth, ρ: filtering threshold, Sq = 〈−→S , I, P,R, E〉: seq. variable

1 cache← map() ; // initializing memoization map
2 if !feasiblePath(⊥,⊥, R \ S, 0, d) then
3 return failure ;
4 if |P | ≤ ρ then
5 forall a ∈ P do
6 if !feasiblePath(⊥,⊥, (R \ S) ∪ {a}, 0, d) then
7 excludes(Sq, a);

Insertion Sequence Variables for Hybrid Routing and Scheduling Problems 9

Example 3. Let us consider the following example where X = {a, b, c, d} is the set
of activities. The transition times between activities are given in Table (a) of Fig. 2
and the initial time windows (column start) in Table (b) of Fig. 2. We consider the
sequence variable Sq of domain 〈−→S = (a, d), I = {(b, a), (b, d), (c,⊥), (c, d)}, P =
{c}, R = {a, b, d}, E = ∅〉. The duration of each activity is fixed at 2. Let us apply the
propagation of TransitionTimes on this example:

1. Time window update is applied. The time windows of a and d are reduced. The
updated time windows are displayed in Table (b) (column start’).

2. Insertion update is applied. The insertion (b, a) is removed from I as b cannot be
inserted after awithout violation (bwould end at the earliest at 9 which implies that
d would start at the earliest at 16, outside its time window).

3. Transition Time Filtering (Algorithm 2) is applied. The search trees for the checker
(c) and the filter (d) are displayed in Figure 2. Failures are denoted with × and
successes with

√
. The initial value of the parameter d is 3. The domain of Sq after

propagation is 〈(a, d), {(b, d)}, ∅, {a, b, d}, {c}〉 as the filter excludes c.

(a)
a b c d

a 0 5 6 5
b 5 0 5 7
c 6 5 0 5
d 5 7 5 0

(b)
start start’

a [0,10] [0,8]
b [0,16] [0,16]
c [0,15] [0,15]
d [0,15] [7,15]

(` = ⊥, p = ⊥, Ω = {b}, t = 0, d = 3)

(a, a, {b}, 2, 3)

(d, d, {b}, 9, 3)

(b, d, ∅, 18, 2)√

(c)

(` = ⊥, p = ⊥, Ω = {b, c}, t = 0, d = 3)

(c,⊥, {b}, 2, 2)

(a, a, {b}, 10, 2)

(d, d, {b}, 17, 2)
×

(a, a, {b, c}, 2, 3)

(d, d, {b, c}, 9, 3)

(b, d, {c}, 18, 2)
×

(c, d, {b}, 16, 2)
×

(d)

Fig. 2: Propagation on Sq = 〈(a, d), {(b, a), (b, d), (c,⊥), (c, d)}, {c}, {a, b, d}, ∅〉

5.2 Cumulative constraint

In both the DARP and PTP, one has to satisfy requests that correspond to embarking
and disembarking a person in a vehicle. The activities of transport are modeled as pairs
of elements in an insertion sequence variable that must occur in this specific order:

10 C. Thomas et al.

embarking before disembarking. Also this pair of elements must both be present or
absent from the sequence. During the trip, the person occupies some load in the vehicle.
By analogy to scheduling problems, a request is called an activity Ai and is composed
of the two elements (starti,endi) corresponding to the embarking and disembarking.
This activity will consume a load loadi while it is on the board of the vehicle. The set
of activities is denoted A. Also by analogy to scheduling [1], we call Cumulative
the constraint that ensures that the capacity C of the resource is respected at any point
in the ordering defined by the sequence Sq over X where ∀i ∈ A, starti, endi ∈ X .
More formally

Cumulative(Sq, [start], [end], [load], C) ≡−→S ′ ∈ D(Sq) | ∀e ∈ S′,
∑

i∈A|starti�e�endi

loadi ≤ C

 . (7)

Filtering The propagation is triggered when new elements are inserted in −→S . It consists
in filtering insertions in the current sequence −→S by checking if they are supported. An
insertion for the element corresponding to one extremity of an activity is supported if
there exists at least one possible insertion for the other extremity of the activity such
that the activity load does not overloads the capacity between both insertion positions.

The first step of the propagation algorithm is to build a minimum load profile that
maps each element e of the sequence to the minimal load at this point in the sequence
based on the activities that are part of −→S . These can be either fully inserted (both the
start and end of the activity ∈ −→S) or partially inserted (only the start or end ∈ −→S).
For partially inserted activities, the position for the element not yet inserted is chosen
among the possible insertions in I as the closest one to the inserted element. Note that
a violation of the capacity at this point would trigger a failure.

Once the cumulative profile is built, possible insertions for activities that are par-
tially inserted are filtered. The algorithm used consists in iterating over −→S starting from
the inserted element. Possible insertions for the missing element are considered and
allowed as long as the load of the activity can be added to the minimal load profile
without overloading the capacity. If the capacity is overloaded at some point, the cur-
rent insertion as well as the insertions not yet reached are removed.

Finally, Algorithm 3 is used to check activities for which neither element is inserted.
The loop at line 5 iterates over −→S starting from the dummy element⊥. When a potential
start predecessor is encountered, it is added to the activeStarts set which main-
tains potential valid predecessors for the start element that have been encountered so
far (line 7). The boolean canClose indicates if there exists at least one possible in-
sertion position for the start of the activity that would be valid if the end is inserted at
this point. It is set to true whenever a start predecessor is added to activeStarts.
If adding the activity to the load profile for the current element violates the capacity,
canClose is set to false and activeStarts is emptied as the potential start pre-
decessors will not be matched to a valid insertion for the end element. When a valid
predecessor for the end element is encountered, the end predecessor and all the start
predecessors in activeStarts are validated (lines 13 and 14). The possible pre-

Insertion Sequence Variables for Hybrid Routing and Scheduling Problems 11

decessors that have not been validated at the end of the loop are removed at line 18.

Algorithm 3: CumulFiltering(Sq, start, end, load, C, profile)
Input: start, end, load: starts, ends and loads of activities, C: capacity,

Sq = 〈−→S , I, P,R, E〉: Sequence variable, profile: minimum load profile
1 forall i | starti /∈ S ∧ endi /∈ S do
2 activeStarts← ∅ ;
3 current← ⊥ ;
4 canClose← false ;
5 do
6 if canInsert(Sq, starti, current) then
7 activeStarts← activeStarts ∪ {current} ;
8 canClose← true ;
9 if profile(current) + loadi > C then

10 activeStarts← ∅ ;
11 canClose← false ;
12 if canInsert(Sq, endi, current) ∧ canClose then
13 current is valid predecessor for endi ;
14 ∀p ∈ activeStarts, p is valid predecessor for starti ;
15 activeStarts← ∅ ;
16 current←nextMember(Sq, current)

17 while current 6= ⊥;
18 remove predecessors for starti and endi that have not been validated ;

The complexity to build the minimum load profile is linear. The complexity to check
all the activities ∈ A is O(|A| · |S|).

Example 4. Let us consider four activities: A0 = [a, e], A1 = [b, f], A2 = [c, g] and
A3 = [d, h]. Each activity Ai has a load of 1. The capacity is C = 3. The current
partial sequence is −→S = (a, b, c, e, f). Before propagation, the current possible in-
sertions in I are: {(d,⊥), (d, a), (d, b), (d, g), (g, d), (g, e), (g, f), (g, h), (h, a), (h, c),
(h, e), (h, d), (h, g)}. Note that the possible insertions that are not in the current se-
quence ((d, g), (g, d), (g, h), (h, d), (h, g)) will be ignored by the filtering algorithm.
Let us propagate the Cumulative constraint:

1. The minimal load profile is built based on A0 = [a, e] and A1 = [b, f] which are
both fully inserted and A2 = [c, g] which is partially inserted (only c is member in
−→
S). The possible insertion for the end of A2 (g) that is the closest to its start (c) is
(g, e). Thus, A2 is considered ending after e to compute the minimum load profile
which is {⊥ : 0, a : 1, b : 2, c : 3, e : 2, f : 0}.

2. The possible insertions for the partially inserted activity A2 are filtered. The se-
quence is iterated over starting from c. As (g, e) is part of the minimal load profile,
it is validated. The remaining possible insertion (g, f) is reached without overload-
ing the capacity and thus validated.

3. The possible insertions for non-inserted activity A3 = [d, h] are filtered. To do
so, Algorithm 3 iterates over the elements in −→S , starting from ⊥. Both ⊥ and a
are added to activeStart and canClose is set to true. When considering a
as possible predecessor for h, as canClose is true, the insertions (h, a), (d,⊥)
and (d, a) are validated. Afterwards b is added to activeStart. When consid-

12 C. Thomas et al.

ering c, adding the activity A3 at this point would overload the capacity C. Thus,
canClose is set to false and activeStart is emptied. c and d are not vali-
dated as possible predecessors, as canClose is false when they are considered.

At the end of the propagation, the validated insertions are (g, e), (g, f), (d,⊥), (d, a)
and (h, a). The possible insertions (d, b), (h, c) and (h, e) are removed from I .

6 Applications of the Insertion Sequence Variable

This section presents the application of the insertion sequence variable on two variants
of the Dial a Ride Problem.

6.1 Dial a Ride Problem

The Dial a Ride Problem (DARP) consists at routing a fleet of vehicles in order to
transport clients from one place to another. The variant experimented in this paper was
proposed by Cordeau and Laporte [5]. The objective is to minimize the total routing
cost of the vehicles (defined as the total distance traveled by the vehicles) under various
constraints such a maximum trip duration and time-windows. This problem is modeled
with one insertion sequence variable for each route. Each request is modeled by two
stops (its pickup and drop) that must be part of the same sequence. A Cumulative
constraint ensures the capacity of the vehicle is satisfied. The time-window and time
constraints are enforced with the help of the TransitionTimes constraints.

Search A Large Neighborhood Search (LNS) [25] is used. The relaxation procedure
randomly selects a subset of requests that must be reinserted into the sequences. If the
search tree is completely explored during a given number of consecutive iterations given
by a stagnation threshold s, the relaxation size is increased. Two different search heuris-
tics are considered: 1) A generic First Fail search. Similarly as in [14], at each step
of the search, it selects the element (the stop) not yet decided with the minimal number
of possible insertions in all compatible sequences. Then, it branches in a random order
over the possible insertions for the element. 2) A problem specific heuristic called
Cost Driven search. It uses a similar approach to the first fail heuristic to select a
stop with a minimal number of possible insertions. The cost metric used in [14] for their
LNS-FFPA algorithm is used to improve the heuristic. The minimum cost between all
possible insertions for a stop is used as a tie breaker for the selection of the next stop to
insert. Additionally, the branching decisions, each corresponding to a possible insertion
for the stop selected, are explored by increasing order of cost.

6.2 Patient Transportation Problem (PTP)

The Patient Transportation Problem (PTP) [3] is a variation of the classical DARP
where clients are patients that must be transported to medical appointments and pos-
sibly brought back to a specified location after their care. This implies that some pairs
of requests are dependent from each other. The objective consists in maximizing the

Insertion Sequence Variables for Hybrid Routing and Scheduling Problems 13

number of requests served instead of minimizing the total distance. Additionally, the
problem introduces additional constraints such as categories of patients that can only
be taken in charge by specific vehicles. The fleet of vehicles is heterogeneous, each has
its own capacity, can only serve some types of patients and departure from different
points. Also each vehicle is available in a given time window only.

Search Such as for the DARP, LNS is used and Two search heuristics are considered:
1) The same generic First Fail heuristic as the one described in 6.1; 2) A problem
specific heuristic called Slack Driven search. It is similar to the Cost Driven
heuristic described in section 6.1. The cost metric is replaced by a slack difference
metric which is defined as the total size difference of the time windows of the prede-
cessor and successor of the stop to insert before and after insertion. The intuition is
to minimize this difference in order to keep the sequences as flexible as possible and
maximizing potential future insertions.

7 Experimental results

This section reports the comparison of the models presented in section 6 with state-of-
the-art CP approaches for the DARP and PTP. The models based on insertion sequences
variables are referred as the Insertion Sequence (ISEQ) approaches. The generic First
Fail heuristic is referred as FF. The Cost Driven and Slack Driven heuristics are referred
as CDS and SDS respectively.

For the DARP, the insertion sequence approach was compared with 1) the LNS with
First Feasible Probabilistic Acceptance(LNS-FFPA) model and heuristic proposed in
[14]; 2) an implementation of our model with the sequence variables and interval vari-
ables of CP Optimizer is referred as DARP CPO. The approaches were run on 68 DARP
instances from [6, 4] and are available at [2].

For the PTP, The insertion sequence model was compared with 1) the model pro-
posed in [3], referred as Scheduling with Maximum Selection Search (SCHED+MSS); 2)
the model proposed in [20], referred as Liu CP Optimizer model (LIU CPO). A greedy
approach referred as (GREEDY) was used to compute the initial PTP solutions given to
the compared models in the LNS setting. Tests were performed on the benchmark of in-
stances used in [3]. It contains both real exploitation instances and randomly generated
instances which are available at [26].

For the TransitionTimes constraint, the maximum depth was fixed to 3 and
the filtering threshold to 10. The LNS used an initial relaxation of 20% of the requests,
a failure limit of 500, a stagnation threshold of 50 and an increase factor of 20%.

Each approach was run 10 times on each instance, with a time limit of 600 sec.
The system used for the experiments is a PowerEdge R630 server (128GB, 2 proc.
Intel E5264 6c/12t) running on Linux. The approaches using CP Optimizer were im-
plemented using the Java API of CPLEX Optimization Studio V12.8 [19]. The other
models were implemented on OscaR [21] running on Scala 2.12.4.

In order to compare the anytime behavior of the approaches, we define the relative
distance of an approach at a time t as the current distance from the best known objective
(BKO) divided by the distance to the worse initial objective (WSO): (objective(t) −

14 C. Thomas et al.

BKO)/(WSO − BKO). If an approach has not found an initial solution, the worse
initial objective (WSO) is used as objective value. A relative distance of 1 thus indicates
that the approach has not found an initial solution or is stuck at the initial solution while
a relative distance of 0 indicates that the best known solution has been reached.

Results Figure 3 shows the evolution of the average relative distance during the search.
The DARP results are shown on the left. For the PTP, the approaches are compared in
two different settings: 1) in the same experimental setting as in [3] (with a LNS search
starting from an initial solution given by a greedy approach) (middle); 2) in a DFS
starting without an initial solution (right).

0.5 2.0 5.0 20.0 50.0 200.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DARP

time (log)

rd
is

t

DARP_CPO
LNS−FFPA
ISEQ+CDS
ISEQ+FF

0.2 0.5 2.0 5.0 20.0 100.0 500.0

0.
01

0.
05

0.
20

0.
50

PTP−LNS

time (log)

rd
is

t (
lo

g)

LIU_CPO
SCHED+MSS
ISEQ+SDS
ISEQ+FF

0.2 0.5 2.0 5.0 20.0 100.0 500.0

0.
01

0.
05

0.
20

0.
50

PTP−DFS

time (log)

rd
is

t (
lo

g)

LIU_CPO
SCHED+MSS
ISEQ+SDS
ISEQ+FF

Fig. 3: Average relative distance in function of time

These results suggest that, on the DARP, the sequence based approaches are not able
to compete with the dedicated LNS-FFPA algorithm. However, they are able to success-
fully outperform the dedicated SCHED+MSS approach on the PTP. As can be observed,
the approaches using the insertion sequence variable obtain slightly better result than
the approach using the state-of-the-art CP Optimizer. Note that the comparison with CP
Optimizer is not straightforward as it is mostly black box and its interface does not of-
fer much control over its behavior. However, despite the adaptive LNS search [16] and
the advanced techniques (failure directed search [28], objective landscapes [15]) used
by CP Optimizer, our approach is competitive in a LNS setting. The experiment in a
DFS setting where the advanced search of CP Optimizer is not used suggests that the
difference is mainly due to the modeling and propagation as even our generic search
outperforms CP Optimizer in this setting.

Constraint parameters Several values were tested for the parameters of the Transi-
tionTimes constraint by using the methodology proposed in [27]. It consists in stor-
ing the search tree obtained with the weakest filtering and replaying it with the con-
straints and parameters to test. The impact of the Cumulative constraint was also
tested by comparing it to a simple checker.

Table 3 presents the results of this experiment on 3 medium sized PTP instances
in a DFS setting. The instances are expressed in terms of the number of hospitals (h),

Insertion Sequence Variables for Hybrid Routing and Scheduling Problems 15

number of available vehicles (v) and number of patients (p). The values are displayed
in terms of percentage compared to the base case (the parameter value for the first
column). The first row corresponds to the percentage of size (in terms of the number
of nodes) of the new search tree compared to the base case. The second row consists
in the percentage of time taken to explore the new search tree. For example, on the
Hard instance, for a depth d of 2, the search tree is 76.26% smaller which results in an
exploration 63.67% faster. Each parameter was tested independently with the others set
to their default values.

Table 3: Number of nodes explored (top) and time taken (bottom) with various parameter values
Instance ρ d cache Cumul.

Set h v p 0 10 20 ∞ 1 2 3 6 ∞ ×
√

×
√

Easy 24 9 96
100 100 100 100 100 100 100 100 100 100 100 100 100
100 96.27 92.27 101 100 102.53 96.68 93.87 91.73 100 95.39 100 126.61

Medium 48 5 96
100 100 100 100 100 0.01 0.01 0.01 0.01 100 100 100 0.01
100 80.79 55.67 53.07 100 0.05 0.06 0.05 0.06 100 77.24 100 0.01

Hard 96 5 96
100 100 100 55.35 100 76.26 70.31 64.48 59.86 100 100 100 0.01
100 85.06 56.47 22.74 100 63.67 53.8 38.8 51.93 100 91.44 100 0.03

As can be observed, the constraints have an important impact on both the size of
the search tree and the search time for the medium and difficult instances. The easy
instance search tree was not affected by the constraints. Note that an increase in depth
may result in a faster search despite having the same search tree size (such as for the
Easy instance). This is most likely due to the cache that is filled faster in the first calls
to Algorithm 1 and thus allows smaller searches in the subsequent calls which results
in a gain of time over the whole propagation.

8 Conclusion

In this paper, we propose a new variable called Insertion Sequence Variable (ISV) to
provide a flexible and efficient model for the DARP and its variant the PTP. The ISV
domain extends the set domain variable with the possibility to insert an element after
any sequenced element. Experimental results show that the proposed approach is com-
petitive with existing sequence based approaches, outperforms dedicated approaches
for the PTP and confirm the effectiveness of the new filtering algorithms proposed.

While used only in the context of the Dial-a-Ride problem in this paper, sequence
variables could be used to model a large variety of Routing and Scheduling problems.
As future work, it would be interesting to study the usage of the ISV on other problems
as well as developing new global constraints and filtering algorithms.

Acknowledgments This research is financed by the Walloon Region (Belgium) as part
of PRESupply Project. We thank Siddhartha Jain and Pascal Van Hentenryck for sharing
with us their implementation of the LNS-FFPA algorithm.

16 C. Thomas et al.

References

1. Aggoun, A., Beldiceanu, N.: Extending chip in order to solve complex scheduling and place-
ment problems. Mathematical and computer modelling 17(7), 57–73 (1993)

2. Braekers, K.: Dial-a-Ride Problems Instances. http://alpha.uhasselt.be/kris.
braekers/ (2019), [Online; accessed 2-December-2019]

3. Cappart, Q., Thomas, C., Schaus, P., Rousseau, L.M.: A constraint programming approach
for solving patient transportation problems. In: International Conference on Principles and
Practice of Constraint Programming. pp. 490–506. Springer (2018)

4. Cordeau, J.F.: A branch-and-cut algorithm for the dial-a-ride problem. Operations Research
54(3), 573–586 (2006)

5. Cordeau, J., Laporte, G.: The dial-a-ride problem (DARP): variants, modeling issues and
algorithms. 4OR 1(2), 89–101 (2003). https://doi.org/10.1007/s10288-002-0009-8, https:
//doi.org/10.1007/s10288-002-0009-8

6. Cordeau, J.F., Laporte, G.: A tabu search heuristic for the static multi-vehicle dial-a-ride
problem. Transportation Research Part B: Methodological 37(6), 579–594 (2003)

7. Cordeau, J.F., Laporte, G.: The dial-a-ride problem: models and algorithms. Annals of Op-
erations Research 153(1), 29–46 (2007)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman (1979)

9. Gervet, C.: Interval propagation to reason about sets: Definition and implementation of a
practical language. Constraints 1(3), 191–244 (1997)

10. Hartert, R., Schaus, P., Vissicchio, S., Bonaventure, O.: Solving segment routing problems
with hybrid constraint programming techniques. In: International Conference on Principles
and Practice of Constraint Programming. pp. 592–608. Springer (2015)

11. Ho, S.C., Szeto, W., Kuo, Y.H., Leung, J.M., Petering, M., Tou, T.W.: A survey of dial-a-
ride problems: Literature review and recent developments. Transportation Research Part B:
Methodological 111, 395–421 (2018)

12. IBM Knowledge Center: Interval variable sequencing in CP Optimizer. https:
//www.ibm.com/support/knowledgecenter/SSSA5P_12.9.0/ilog.
odms.ide.help/refcppopl/html/interval_sequence.html (2019), [On-
line; accessed 22-November-2019]

13. IBM Knowledge Center: Search API for scheduling in CP Optimizer. https://www.
ibm.com/support/knowledgecenter/SSSA5P_12.9.0/ilog.odms.cpo.
help/refcppcpoptimizer/html/sched_search_api.html?view=kc#85
(2019), [Online; accessed 22-November-2019]

14. Jain, S., Van Hentenryck, P.: Large neighborhood search for dial-a-ride problems. In: Inter-
national Conference on Principles and Practice of Constraint Programming. pp. 400–413.
Springer (2011)

15. Laborie, P.: Objective landscapes for constraint programming. In: International Conference
on the Integration of Constraint Programming, Artificial Intelligence, and Operations Re-
search. pp. 387–402. Springer (2018)

16. Laborie, P., Godard, D.: Self-adapting large neighborhood search: Application to single-
mode scheduling problems. Proceedings MISTA-07, Paris 8 (2007)

17. Laborie, P., Rogerie, J.: Reasoning with conditional time-intervals. In: FLAIRS conference.
pp. 555–560 (2008)

18. Laborie, P., Rogerie, J., Shaw, P., Vilı́m, P.: Reasoning with conditional time-intervals. part
ii: An algebraical model for resources. In: Twenty-Second International FLAIRS Conference
(2009)

Insertion Sequence Variables for Hybrid Routing and Scheduling Problems 17

19. Laborie, P., Rogerie, J., Shaw, P., Vilı́m, P.: Ibm ilog cp optimizer for scheduling. Constraints
23(2), 210–250 (2018)

20. Liu, C., Aleman, D.M., Beck, J.C.: Modelling and solving the senior transportation prob-
lem. In: International Conference on the Integration of Constraint Programming, Artificial
Intelligence, and Operations Research. pp. 412–428. Springer (2018)

21. OscaR Team: OscaR: Scala in OR (2012), available from
https://bitbucket.org/oscarlib/oscar

22. Perron, L., Furnon, V.: Or-tools (2019), https://developers.google.com/
optimization/

23. Perron, L., Furnon, V.: OR-Tools Sequence Var. https://developers.google.
com/optimization/reference/constraint_solver/constraint_
solver/SequenceVar (2019), [Online; accessed 22-November-2019]

24. de Saint-Marcq, V.l.C., Schaus, P., Solnon, C., Lecoutre, C.: Sparse-sets for domain im-
plementation. In: CP workshop on Techniques foR Implementing Constraint programming
Systems (TRICS). pp. 1–10 (2013)

25. Shaw, P.: Using constraint programming and local search methods to solve vehicle routing
problems. In: International Conference on Principles and Practice of Constraint Program-
ming. pp. 417–431. Springer (1998)

26. Thomas, C., Cappart, Q., Schaus, P., Rousseau, L.M.: CSPLib problem 082: Patient trans-
portation problem. http://www.csplib.org/Problems/prob082 (2018)

27. Van Cauwelaert, S., Lombardi, M., Schaus, P.: How efficient is a global constraint in prac-
tice? Constraints 23(1), 87–122 (2018)

28. Vilı́m, P., Laborie, P., Shaw, P.: Failure-directed search for constraint-based scheduling. In:
International Conference on AI and OR Techniques in Constriant Programming for Combi-
natorial Optimization Problems. pp. 437–453. Springer (2015)

