The Bi-Objective Pareto Constraint

Renaud Hartert* and Pierre Schaus

UCLouvain, ICTEAM,
Place Sainte Barbe 2,
1348 Louvain-la-Neuve, Belgium
{renaud.hartert, pierre.schaus}@uclouvain.be

Abstract. Multi-Objective Combinatorial Optimization (MOCO) problems are
ubiquitous in real-world applications. Gavanelli proposed a complete constraint
programming approach to find the exact set of optimal solutions — known as effi-
cient solutions — of MOCO problems. This approach has recently been extended
in a new global constraint called the Pareto constraint. In this paper, we bring
some complementary information on the Pareto constraint. Particularly, we
discuss its efficiency when applied on standard MOCO problems and present two
ways of improving this efficiency when applied on bi-objective combinatorial
optimization problems.

Keywords: constraint programming, multi-objective combinatorial optimization,
bi-objective combinatorial optimization, global constraint.

1 Introduction

Since the pioneering work of Pareto [8], many progresses were done in the field of
Multi-Objective Combinatorial Optimization (MOCO). However, during the last decades,
only a small number of approaches have been introduced to tackle MOCO problems
with constraint programming (CP) [3]. Among them, Gavanelli [5] proposed a dedi-
cated branch-and-bound algorithm to find the exact set of efficient solutions in a single
constraint programming search.

The Pareto constraint (briefly introduced in [11]), extends the original idea of
Gavanelli in a more time efficient and flexible way. In this paper, we complete our
brief introduction of the Pareto constraint with a detailed formalization. Besides,
we discuss the complexity of its general case and show how it can be improved when
applied on bi-objective combinatorial optimization problems.

Outline. We introduce the definitions and concepts necessary to the understanding of
this work in Section 2. We introduce the Pareto constraint in its general form in
Section 3. Then, we describe in Section 4 two ways of improving the efficiency of
the Pareto constraint to tackle bi-objective combinatorial optimization problems. Fi-
nally, we conclude this paper in Section 5 by discussing future work on the Pareto
constraint.

* MSc student.

2 Renaud Hartert and Pierre Schaus

2 Multi-Objective Combinatorial Optimization

The typical MOCO problem we want to solve has m finite integer objective variables
to minimize while satisfying a set of constraints:

Minimize obj = (obji, 0bja, . .., 0bjm))

Subject to constraints

Solutions of this problem are defined as follows:
Definition 1 (Solution). Let P be a MOCO problem, a solution of the problem P is a
complete assignment of the decision variables and objective variables of P that satis-

fies all the constraint of this problem. In the following, we represent a solution sol by
the vector of its objective values sol = (soly, . .., soly,).

As it is not likely that a solution is simultaneously optimal in all objectives, one is
generally interested in all the optimal compromises known as efficient solutions.

Definition 2 (Weak Pareto dominance). Let sol and sol’ be two solutions of a MOCO
problem P. We say that sol dominates sol’, denoted sol < sol’, if and only if:

Vi e {l,...,m}: sol; < sol;.)

Definition 3 (Efficient solution). Let sols(P) denote the set of all the feasible solu-
tions of a MOCO problem P. A solution sol is efficient if and only if there is no solution
sol” in sols(P) that dominates sol:

Bsol’ € sols(P) : sol' < sol. 3)

In other words, a solution is efficient if it is impossible to improve the value of one
objective without degrading the value of at least one other objective.

The set of all the efficient solutions is called the efficient set of the problem and is
defined as follows:

Definition 4 (Efficient set). The efficient set of a MOCO problem P is the set of all the
efficient solutions of the problem:

{sol € sols(P) | Bsol’ € sols(P) : sol' < sol}. 4)

Unfortunately, discovering the exact efficient set of difficult MOCO problems may
be impracticable. We are thus interested in finding a good approximation of this set,
also known as the archive. It is formalized as follows:

Definition 5 (Archive). An archive A is a set of solutions such that there is no solution
in the archive that dominates an other solution in the archive. This property is known
as the domination-free property:

Vsol € A, Bsol’ € A: sol’ < sol. 5

The Bi-Objective Pareto Constraint 3

3 The Pareto Constraint

The Pareto constraint is a global constraint defined over the set of objective variables
of a MOCO problem P and the solutions contained in a domination-free archive A of
current size n:

Pareto(objy,...,0bjm,A) (6)

where obj; is an objective variable and sol; is a feasible solution of P.

The aim of the Pareto constraint is to prune branches of the search tree that are
dominated by the previously discovered solutions i.e. the solutions contained in the
archive A. In other words, the Pareto constraint ensures that each new discovered
solution is nondominated w.r.t. the archive:

Psol € A: sol < (objy,...,0bjm). @)

Particularly, each time a new solution is discovered, it is inserted into the archive A
to strengthen the filtering of the Pareto constraint.! This approach can be seen as a
specialized branch-and-bound algorithm for MOCO.

3.1 Filtering

The filtering rule of the Pareto constraint aims at reducing the upper bound of each
objective variable. Let 0bj™™ and 0bj™®* denote the lower and upper bounds of the

objective variable obj;, we define the dominated point D P; of objective i has follows:

DP; = (obj™™, ..., obji™Y, obj™™, obji}}, . .., objm™). (®)

Observe that D P; dominates all the solutions sol contained in the Cartesian product of

the domain of the objective variables such that sol; > obj;***. Hence, if the dominated

point D P; is dominated by a solution in the archive, we can use this solution to adjust
the upper bound of the objective variable obj;:

dsol € A, sol = DP; : 0bj"** < sol; — 1. 9)

This filtering rule (due to [5]) has to be executed until there exists no solution in the
archive that dominates the dominated point. Fig. 1 illustrates this situation where the
dominating solutions are selected in the worst possible order.

From the observation made in Fig. 1, it appears that the Pareto constraint can
reach its fix point in one step (i.e. the constraint becomes idempotent) if it is able to
access directly the solution that dominates D P; with the lowest value for objective ¢ (we
call this solution the tightest solution in objective 7). The filtering rule thus becomes:

obj"™ + min({obj;"**} U {sol; — 1| sol € A, sol X DP;}) (10)

! According to the domination-free property, solutions that are dominated by a new inserted
solution are removed from the archive.

4 Renaud Hartert and Pierre Schaus

obj," - . op
72 A\ % obyj,mx .
: 2 LW
sol o M - 7 Objzmax
sol’
. o
Obj2r!Al]l Obj2l!Alll obj2l!Alll
_—
Obj]min Obj]n\(\x Obj]mm Obj]mzlx Obj]mm Obj]m;lx

Fig. 1. A dominated point D P; may be dominated by several solutions. The order in which the
dominating solutions are selected affects the number of iterations to reach the fix point of the
Pareto constraint.

3.2 Efficiency

Clearly, the time needed to access the tightest solutions is the bottle-neck of the Pareto
constraint and is strongly related to the data structure used to store the archive. In [5],
Gavanelli suggested to use domination-free quad-trees [6,12,13] (simply quad-trees in
the following) to store the archive. However, we do not encourage the use of quad-trees
for the following reasons:

— To the best of our knowledge, there is no efficient algorithm to access the tightest
solutions of an archive implemented with a quad-tree;

— Despite the existence of algorithms [4,10] to reduce its size, a quad-tree is not auto-
balanced. Hence, the efficiency of a quad-tree is strongly influenced by the order in
which solutions are inserted in its structure;

— Since quad-trees are not auto-balanced, the worst time complexity of finding a dom-
inating solution in a quad-tree is worse than O(log n).? This is especially true when
considering more than two objectives [6].

Further researches have to be conducted to provide the Pareto constraint with an
efficient data structure. Meanwhile, we recommend (when considering more than two
objectives) the use of linked-lists which allow to find the tightest solutions in a single
traversal of the archive.’

4 Efficient Bi-Objective Implementations

According to Definitions 2 and 3, bi-objective problems have the particularity that im-
proving the first objective of a Pareto optimal solution cannot be done without degrad-
ing the value of the second objective (and vice-versa). Hence, sorting the solutions of
a bi-objective problem in increasing order w.r.t. one objective amounts to sort these so-
lutions in decreasing order w.r.t. the other objective. We call this property the ordering
property of bi-objective problems.

We introduce two possible uses of the ordering property to implement efficiently
the idempotent filtering rule (Equation 10) of the Pareto constraint when considering
bi-objective combinatorial optimization problems.

2 This affirmation contradicts the claim of Gavanelli [5].
3 Standard implementations of quad-trees and linked-lists are compared in [7].

The Bi-Objective Pareto Constraint 5

4.1 Balanced Linked-Tree

A balanced linked-tree (or braided balanced trees [9]) is an ordered linked-list and a
balanced binary tree [1,2] at a same time. Balanced linked-trees ensure a worst time
complexity of O(logn) for operations as access, insertion and deletion while allowing
to access the successor and the predecessor of a given element in constant time.

Let BLT} be a binary linked-tree containing all the solutions of a bi-objective
archive where sol; is the key value of a solution sol. The following algorithm is able to
access the tightest solution of 0bjy (if it exists) within a time complexity of O(logn).
The idea consists in finding the position of the key obj™® in BLT. If the tree is not
empty, one of the three following situations has to be considered:*

1. If BLT; already contains a solution sol with obji“in as key value, then, sol is the
tightest solution of 0bjs.

2. If obj{“in has to be inserted in the left branch of a solution sol, then, the direct
successor of sol in objective 1 is the tightest solution of 0bjs.

3. If obji“i“ has to be inserted in the right branch of a solution sol, then, sol is the

tightest solution of objs (see Fig. 2).

Objumz\x

0bj9min

objlmin Objllxm.x

Fig. 2. Balanced linked-trees allow to access the tightest solutions in a worst time complexity of
O(logn). In this example, d is the tightest solution of objective 2.

As mentioned in Section 3, each new solution sol™V is inserted into the archive to
strengthen the filtering of the Pareto constraint. Using a balanced linked-tree based
archive, the insertion of sol"" has a worst time complexity of O(klogn) where k is
the number of solutions in the archive that are dominated by sol"*" (see Table 1).

4.2 Reversible Ordered Linked-List

An alternative to the balanced linked-tree based implementation is to exploit the order-
ing property of bi-objective problems to maintain the tightest solution of each objective
incrementally during the exploration of the search tree.

Definition 6 (Support solution). Let sol be a solution in a bi-objective archive A. We
say that sol is the support solution of objy (resp. objs) if and only if:

| = mi 11 | solly < objam» 11
S0 Sgl/lenA{so 1] soll, < objy"™} (11)

* The tightest solution of 0bj1 can be accessed similarly in BLT%.

6 Renaud Hartert and Pierre Schaus

Proposition 1. Support solutions are never included in the Cartesian product of the
domain of the objective variables. Hence, support solutions cannot be dominated be a
new discovered solution.

Proposition 2. If it exists, the tightest solution of an objective i is its support solution
or the direct successor in objective i of the support solution.

Let us consider the left part of Fig. 2 to illustrate these propositions. Solutions e and
b are the supports of obj; and objo respectively and are not contained in the Cartesian
product of the domain of the objective variables (Proposition 1). Besides, d and b are
the tightest solutions of obj; and objs respectively and can thus be used to adjust the
upper bounds of the objective variables (Proposition 2).

We describe now a second algorithm to adjust the upper bound of 0bj; (resp. objs)
based on support solutions. The idea is as follows:

1. Each time the lower bound of 0bj, is adjusted, we have to reconsider the support
of obj;. To do so, we iterate on the direct successors in objective 1 of the old sup-
port until reaching a new support solution. Let A denote this number of iterations.
Clearly, the sum of the A cannot exceed n along a branch of the search tree.

2. Then, we use Proposition 2 to apply the idempotent filtering rule from Equation 10
to adjust the upper bound of 0bj; .

Assuming a trailed based CP solver, reversible pointers can be used to maintain
the support solutions. Thus, each time a backtrack occurs, the bi-objective Pareto
constraint is able to recover its previous support solutions in constant time. The time
complexity of this approach is reported in Table 1. Observe that this approach can also
be used with a balanced linked-tree as ordered list.

Table 1. Best and worst time complexity of the bi-objective Pareto constraints when filtering
the objective variables and inserting a new solution in an archive of n solutions.

Algorithms Filtering Insertion

(0] @ [0 @
Linked-list n n n n
Balanced Linked-Tree (BLT) logn logn logn klogn
Reversible with ordered list 1 A 1 n
Reversible with BLT 1 A logn klogn

5 Conclusion

We have detailed and formalized the Pareto constraint while pointing out the impor-
tance of the chosen underlying data structure in the efficiency of the filtering algorithm.
Besides, we have presented two different ways of taking advantage of the ordering prop-
erty to improve the efficiency of the Pareto constraint when applied on bi-objective
combinatorial optimization problems.

As future work, we would like to compare the practical efficiency of our bi-objective
approaches over general implementations of the Pareto constraint.

The Bi-Objective Pareto Constraint 7

References

11.

12.

13.

G. Adelson-Velskii and E. Landis. An algorithm for the organization of information. Tech-
nical report, DTIC Document, 1963.

. Rudolf Bayer. Symmetric binary b-trees: Data structure and maintenance algorithms. Acta

informatica, 1(4):290-306, 1972.

. Matthias Ehrgott and Xavier Gandibleux. Hybrid metaheuristics for multi-objective combi-

natorial optimization. Hybrid metaheuristics, pages 221-259, 2008.

. Raphael A. Finkel and Jon Louis Bentley. Quad trees a data structure for retrieval on com-

posite keys. Acta informatica, 4(1):1-9, 1974.

. M. Gavanelli. An algorithm for multi-criteria optimization in csps. ECAI, 2:136-140, 2002.
. W Habenicht. Quad trees, a datastructure for discrete vector optimization problems. In

Essays and Surveys on Multiple Criteria Decision Making, pages 136—145. Springer, 1983.

. Sanaz Mostaghim and Jiirgen Teich. Quad-trees: A data structure for storing pareto sets in

multiobjective evolutionary algorithms with elitism. In Evolutionary Multiobjective Opti-
mization, pages 81-104. Springer, 2005.

. Vilfredo Pareto. Manual of political economy. 1927.
. Stephen V Rice. Braided avl trees for efficient event sets and ranked sets in the SIMSCRIPT

IIT simulation programming language. In Proceedings of the 2007 Western Multiconference
on Computer Simulation: International Conference on High Level Simulation Languages
and Applications, pages 150-155, 2007.

. Hanan Samet. Foundations of multidimensional and metric data structures. Morgan Kauf-

mann, 2006.

Pierre Schaus and Renaud Hartert. Multi-objective large neighborhood search. In Pro-
ceedings of The 19th International Conference on Principles and Practice of Constraint
Programming, 2013.

Minghe Sun. A primogenitary linked quad tree data structure and its application to discrete
multiple criteria optimization. Annals of Operations Research, 147(1):87-107, 2006.
Minghe Sun and Ralph E Steuer. Quad-trees and linear lists for identifying nondominated
criterion vectors. INFORMS Journal on Computing, 8(4):367-375, 1996.

	The Bi-Objective Pareto Constraint
	Introduction
	Multi-Objective Combinatorial Optimization
	The Pareto Constraint
	Filtering
	Efficiency

	Efficient Bi-Objective Implementations
	Balanced Linked-Tree
	Reversible Ordered Linked-List

	Conclusion

