
Supervised Learning to Control Energetic
Reasoning : Feasibility Study

Sascha Van Cauwelaert1 ?, Michele Lombardi2, and Pierre Schaus1 ??

Université Catholique de Louvain,
Università di Bologna

Abstract. Propagation is a double-edged sword, with more pruning
power coming at the price of larger computation time. For each problem
constraint, the best propagator depends on the specific instance and may
change at search time. We propose to use an oracle function, obtained
via Machine Learning, to decide whether to run complex propagators for
a target constraint. In this paper, we focus on investigating the feasi-
bility of building an oracle for the Energetic Reasoning propagator used
in scheduling. Our experiments show that high prediction accuracy can
be obtained, provide suggestions for classification features, and highlight
important issues to address when building such an oracle.

Propagation is a double-edged sword: more powerful filtering algorithms provide
an increased chance to prune values, but they also have larger computation
time, that must be paid regardless of whether additional propagation is actually
achieved.

The cumulative constraint is widely employed to model resource restric-
tions for scheduling problems with non-preemptive activities. The constraint
counts a wide range of propagators. Timetable propagation (TT) is known to be
dominated by Energetic Reasoning (ER, see [4]), which is however seldom used
in practice because the algorithm has higher time complexity (O(n3) against
O(n2)). However, there exist Energetic Reasoning overload checkers (i.e., de-
tecting infeasibility) [4, 8] that run in O(n2).

The best propagator depends on specificities of the target problem and in-
stance, and it is far from trivial to select. The choice is typically done by the
model designer based on personal experience, intuition, and pilot tests, with
mixed outcomes (we refer to [17] for interested reader).

The work presented in this paper is strictly related to Algorithm Selection,
meaning the activity of deciding the best algorithm for tackling a given prob-
lem, first formalized in [16]. For an excellent overview on Algorithm Selection
in the context of Combinatorial Optimization (covering Hydra – and derivatives
–, SATzilla, ParamILS and ISAC), the reader is referred to [13]. Despite the
extensiveness of the literature about Algorithm Selection, only a few works so

? PhD. S.
?? Adv.



2 Sascha Van Cauwelaert, Michele Lombardi, and Pierre Schaus

far have addressed the problem of choosing propagators (or adjusting the consis-
tency levels) in Constraint Programming(CP) automatically. According to our
knowledge, the related works in this domain are [9, 6, 18, 2, 5, 14, 10].

We propose to use an oracle, obtained via Machine Learning(ML), to predict
at run time if running a specific propagator for a constraint will be beneficial. The
decision will be based on the current domain of the variables in the constraint
scope, i.e., on the input of the propagator itself.

Deploying effectively such an approach is an ambitious endeavour. As a start,
in this paper we investigate the feasibility of building an oracle for the ER
propagator. In particular, we focus on the problem of detecting whether running
ER will narrow the domains after TT and ER checker has reached a fix-point.
In this study, we show that high prediction rates can indeed be obtained, we
suggest effective features to be used as input for the classifier, and we highlight
critical issues to be addressed in the design of the oracle.

1 Oracle to Predict Propagation

Given a target constraint c and the current domains of the variables in its scope
S(c), we consider the problem of predicting whether a propagator πc will cause
some pruning or not. Formally, we are interested in designing an oracle1 function
Oπc

such that:

Oπc
(Di|xi ∈ S(c)) =

{
true if some value is pruned

false otherwise

where Di is the domain of the variable xi and S(c) is the scope of the constraint
c. The Oπc function is meant to be used as a guard condition for the execution
of the propagator.

This problem formulation has a number of advantages: first, the oracle is
guaranteed to have enough information to make a correct guess2. The challenge
is therefore to devise an Oπc function with lower complexity than the propagator
itself. Second, if a new propagator for the constraint is introduced, a new oracle
must be trained, but the existing ones require no modification at all. Third, the
oracle can be checked at any point during search, making the designer completely
free about how to combine propagators (as long as the fallibility of the oracle is
taken into account). More importantly, this also makes the approach well suited
for use in complex search strategies and Large Neighborhood Search.

Although π could be applied at any time during the search process, when π
subsumes another lighter propagator already used during the fix point, it makes
sense to use it only to perform additional deductions. In this case, it is clear
that the decision should be made after the fix point is reached. Once reached, a
post fix point procedure would be applied in order to make as many additional

1 Strictly speaking, an estimator of an oracle.
2 Provided the estimator is perfect.



Supervised Learning to Control Energetic Reasoning : Feasibility Study 3

deductions as possible. In this procedure, for each constraint c, we check if Oπc

is true and if so, we apply πc. After each call to a given πc, if some pruning has
occured, we call the fix point algorithm for which only the other propagators are
involved. This mechanism is applied as long as some pruning is performed. If an
inconsistency is derived, backtracking occurs. Informally, this procedure is a fix
point for which domain reductions are at most as strong as the ones obtained
with a fix point in which the πc are always applied.

2 Case study : Energetic Reasoning

Resource Constrained Project Scheduling Problems (RCPSP) consist in finding
a start time for a set A of activities. Each activity ai has a fixed duration di and
requires an amount rik of each resource rk from a set R. Each resource has limited
capacity capk. The activities may be connected by precedence constraints. The
goal is to minimize the worst case completion time (makespan). An RCPSP
is modeled in CP by introducing a start variable si for each activity and by
modeling the resource restrictions via cumulative constraints [1, 3] for each
resource rk : ∀t = 0..eoh

∑
si≤t<si+di rik ≤ capk, i.e., no resource overusage

can occur. The term eoh refers to the maximum possible end time, where each
end time ei corresponds to si + di. The bounds for si and ei have conventional
names: esti and lsti are the earliest and latest start times, respectively, while
ecti and lcti are the earliest and latest completion (end) times.

ER is a propagator for the cumulative constraint that is rarely used due
to its cubic complexity. This work focus on the following problem : for a given
instance of the RCPSP, build an oracle OERc

for each cumulative c. Particularly,
the oracle decides for a cumulative constraint whether or not to run ER after
a TT propagator and the ER checker have reached the fix point (as well as the
other constraints of the problem). Moreover, in order to quantify the gain of
using oracles in terms of number of nodes reduction and number of backtracks
reduction, we use a static search strategy. Variable branching order is fixed and
value branching is binary : left branch assign the variable to its minimum, right
branch removes the minimum from the domain.

First of all, let us assume that for each cumulative c we have access to a
perfect oracle Operfect

ERc
that always predicts correctly. Clearly, if using Operfect

ERc
in

order to solve problems provides no time gain (i.e., the time difference compared
with the minimum time required when OERc

always returns true or always re-
turns false), the overall approach is useless. For instance, in the case of the BL
instances [3] with 20 activities, the maximum3 time gain on average is 27.3%.

Input Features

In this part, we try to provide guidelines for picking meaningful features by de-
scribing the ones we used for the oracle functions in the case of ER. In particular,

3 Maximum from the point of view of our approach, i.e., when the local prediction is
always correct. It is possible that making wrong predictions actually implies time
gain due to the trade-off between search and propagation.



4 Sascha Van Cauwelaert, Michele Lombardi, and Pierre Schaus

we obtain our features by first extracting intermediate characterizations for the
cumulative constraint (cumulative characterizations), and then by computing
aggregated statistics. The cumulative characterizations are numbers obtained
from static information about the cumulative constraint and from the domains.
For their description it is useful to introduce some definitions (most are intro-
duced in [4] and [5]) :
– Point of interests considered by ER:
O1 = {est i} ∪ {ect i} ∪ {lst i} O2 = {lct i} ∪ {lst i} ∪ {ect i}

– Time Intervals considered by ER (here O(t) = {est i + lct i − t}):

{[t, t′)} ∀t ∈ O1,∀t′ ∈ O2, t
′ ≥ t ∪ {[t, t′)} ∀t ∈ O1,∀t′ ∈ O(t), t′ ≥ t

∪{[t, t′)} ∀t′ ∈ O2,∀t ∈ O(t′), t′ ≥ t

– Relative Energy: ẽi = di·rik
lcti−esti

– Relative Energy Histogram: Ẽ(t) =
∑
ai∈A:esti≤t<lcti

di·rik
lcti−esti

– Relative Requirement Histogram: R̃(t) =
∑
ai∈A:esti≤t<lcti

rik
Generic cumulative characterizations: Table 1 presents our generic cumu-
lative characterizations. They are computed for each activity ai and have O(1)
complexity, so that for a given cumulative constraint we have a vector of val-
ues for each characterization type. Obtaining each vector has complexity O(n),
where n is the number of activities. H stands for the value of the current horizon.

Characterization Name Value

compulsoryPart max(0,esti+duri−lsti)
(lsti+duri−esti)

fixedActivity best i/lst ic
domainTightness (lst i − est i)/H

estLstRatio est i/lsti
relativeEnergy ẽi/C

est esti/H

lct lcti/H

durationHorizon di/H

durationDomain di/(lst i + dur i − est i)

requirement rik/capk

Table 1: Generic cumulative characterizations.

ER specific characterizations: The characterizations in Table 2 are specific
to ER. Both timePoints (i.e., points of interests considered by ER) and interval-
Size are computed for every Time Interval considered in ER. The notation lub
stands for the least upper bound and is used instead of max as the intervals are
right-open. The characterizations relativeEnergyTimePoints and relativeRequire-
mentTimePoints are computed for every time point in the timePoints character-
ization. Moreover, we also have characterizations based on relativeEnergyTime-
Points and relativeEnergyTimePoints that consider only time points crossing at
least one activity i with a non-fixed si. Similarly, we also generate vectors for
which an activity is only considered if its compulsory part4 (i.e., [lst i, ect i), if

4 Information used by TT.



Supervised Learning to Control Energetic Reasoning : Feasibility Study 5

lst i < ect i) crosses the considered time point. The size of every characterization
is O(n) except for intervalSize which is O(n2). For each characterization, the
time complexity for computing all the values is O(n2).

Characterization Name Parameter Value

timePoints Interval I {min(I)/H , lub(I)/H }
intervalSize Interval I (lub(I)−min(I))/H

relativeEnergyTimePoints Time point t Ẽ(t)/C

relativeRequirementTimePoints Time point t R̃(t)/C

Table 2: ER specific characterizations.

Final features: The features used as input for the classification algorithm are
aggregation statistics computed for each characterization type. In particular, for
each vector of values we consider the minimum, maximum, arithmetic mean,
geometric mean, median, first quartile, third quartile, population variance, sam-
ple variance, kurtosis, skewness, length, cardinality (i.e., the number of distinct
elements).

Complexity: The time complexity to compute a cumulative characterization is
at most O(n2), thus lower than the one of ER. Most of the statistics that we
employ as features have complexity O(m), where m is the size of the vector from
which the feature is extracted. Some statistic operations involve an ordering
step and have therefore a complexity of O(m log(m)). Hence, the worst time
complexity for computing some features is O(n2log(n2))5, but most of them are
actually obtained in O(n), O(n log(n)), or O(n2).

3 Experiments

We considered the BL instances with 20 activities to test our approach. The
learning method we used is Random Forests [7] with default parameters from
the Weka [12] API. We used the CP solver from OscaR [15]. Difficult problems
directly arise :
– how to build a representative training set, i.e., representative of the search

nodes that will be met during search.
– how to select the features ; there is a trade-off between computation time of

the features and prediction performances.
We do not have clear answers to those problems. For now, let us assume we have
access to the complete search tree for which each cumulative c, OERc

returns true
with a probability p, in order to simulate the use of OERc

in a given search. We fix
p = 0.5, as we do not have knowledge about the a priori probability that ER will
prune or not at a given node. With this knowledge, if during an actual search,
we are able to make good prediction results with a small sample of the search
nodes, we make a (mandatory) first step towards our goal. We experimented

5 Clearly, as ER is in O(n3), those features will not be used once the oracles will be
considered in a search process.



6 Sascha Van Cauwelaert, Michele Lombardi, and Pierre Schaus

this approach on several BL instances and present preliminary results in Fig. 1.
Notice we only used the features with time complexity of O(n.log(n)) or lower6.

0 % 5 % 10 % 15 % 20 % 25 % 30 %

20 %

40 %

60 %

80 %

100 %

Training set size

2c0

3c0

3c1

3c2

6c0

6c2

0 % 5 % 10 % 15 % 20 % 25 % 30 %
40 %

60 %

80 %

100 %

Training set size

2c0

3c0

3c1

3c2

6c0

6c2

Fig. 1: True Positive (left) and True Negative (right) Rates of oracles used during
search. Legends provide the instance number and the cumulative number.

It is worth to mention that those results depend on the actual search tree. A
decision or the other at a given search node can have important impacts on the
corresponding subtree, and therefore, on the set of elements to be classified.

4 Conclusion and Future Work

This paper proposes an approach to take better advantage of complex propa-
gators, by running them only when they provide an actual benefit in terms of
pruning. We propose to achieve this goal by relying on an oracle function, ob-
tained via ML techniques. In this work we focus on investigating the feasibility
of an accurate oracle for ER in the context of the cumulative constraint. We
show that a high prediction accuracy can be obtained with a reasonably low
time complexity.

A classifier should always be imperfect in the general case. Therefore, one of
the future direction is to study the effect of prediction mistakes, in order to know
what prediction performances our oracle must have to allow time gain. Average
correct prediction results may not be sufficient ; prediction errors of certain type
can have drastic effects on the overall search process, e.g., missing pruning in
the upper part of the search tree. We also need to make the approach faster, by
relying on fewer or cheaper-to-compute features, by using incremental compu-
tation, or by simplifying the classifiers (e.g., fewer trees in a Random Forest).
Moreover, we are interested in using adaptable classifiers, in order to incorpo-
rate the approach in a Randomized Large Neighborhood Search for Cumulative
Scheduling [11]. The knowledge of the oracles would then grow more and more
with the restarts. We also plan to use the approach for other constraints (such
as Bin-Packing).

6 Although the others allow better prediction performances.



Supervised Learning to Control Energetic Reasoning : Feasibility Study 7

References

1. Abderrahmane Aggoun and Nicolas Beldiceanu. Extending chip in order to solve
complex scheduling and placement problems. Mathematical and Computer Mod-
elling, 17(7):57–73, 1993.

2. Amine Balafrej, Christian Bessiere, Remi Coletta, and El Houssine Bouyakhf.
Adaptive parameterized consistency. In Principles and Practice of Constraint Pro-
gramming, pages 143–158. Springer, 2013.

3. Philippe Baptiste and Claude Le Pape. Constraint propagation and decompo-
sition techniques for highly disjunctive and highly cumulative project scheduling
problems. Constraints, 5(1-2):119–139, 2000.

4. Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-based scheduling:
applying constraint programming to scheduling problems, volume 39. Springer, 2001.

5. Timo Berthold, Stefan Heinz, and Jens Schulz. An approximative criterion for
the potential of energetic reasoning. In Theory and Practice of Algorithms in
(Computer) systems, pages 229–239. Springer, 2011.

6. James E Borrett, Edward PK Tsang, Natasha R Walsh, and Colchester Co Sq.
Adaptive constraint satisfaction: The quickest first principle. In European Confer-
ence on Artificial Intelligence, pages 160–164. Citeseer, 1996.

7. Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
8. Alban Derrien and Thierry Petit. The energetic reasoning checker revisited. Prin-

ciples and Practice of Constraint Programming (Doctoral Program), 2013. arXiv
preprint arXiv:1310.5564.

9. Hani El Sakkout, Mark G Wallace, and E Barry Richards. An instance of adaptive
constraint propagation. In Principles and Practice of Constraint Programming,
pages 164–178. Springer, 1996.

10. Ian Gent, Lars Kotthoff, Ian Miguel, and Peter Nightingale. Machine learning for
constraint solver design–a case study for the alldifferent constraint. 3rd workshop
on Techniques foR Implementing Constraint programming Systems, 2010. arXiv
preprint arXiv:1008.4326.

11. Daniel Godard, Philippe Laborie, and Wim Nuijten. Randomized large neighbor-
hood search for cumulative scheduling. In Fifteenth International Conference on
Automated Planning and Scheduling, pages 81–89, 2005.

12. Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. The weka data mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10–18, 2009.

13. Lars Kotthoff. Algorithm selection for combinatorial search problems: A survey.
AI Magazine, 2014. arXiv preprint arXiv:1210.7959.

14. Olivier Lhomme. Backtracking adaptatif. 7ièmes Journées Francophones de Pro-
grammation par Contraintes (JFPC’11), pages 173–182, 2011.

15. OscaR Team. OscaR: Scala in OR, 2012. Available from
https://bitbucket.org/oscarlib/oscar.

16. John R. Rice. The algorithm selection problem. Advances in Computers, 15:65–
118, 1976.

17. Barbara M Smith. Modelling. In Francesca Rossi, Peter Van Beek, and Toby
Walsh, editors, Handbook of constraint programming, pages 377–406. Elsevier, Ox-
ford, 2006.

18. Kostas Stergiou. Heuristics for dynamically adapting propagation in constraint
satisfaction problems. Ai Communications, 22(3):125–141, 2009.


