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Motivation : Exponential gain from a smart use of costly and powerful propagators

Propagators 71 and my with costr, >= cost,, and inference ., >= inference .
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Potential exponential gain with 75 when Overhead of A.,,; on exponential num- Avoid exponential cost from search explo-
inference, > inference, ber of nodes when cost,, > cost;, and ration and cumulative overheaad
inference, = inference, .

Oracle Estimator

O, (Dilz; € S(c)) = true if some value will be pruned
el V) false otherwise
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e Oracle estimated using Machine Learning
e After initial fix point, O, Is consulted until a new fix point is
e Feature computation and model evaluation must be cheap reached
Case Study : Energetic Reasoning Good Prediction can be performed
e Energetic Reasoning (ER) : propagator for the cumulative con- e Training set : random subset of nodes in a search tree where
straint.
— ER is applied with a probability 0.5
vt = 0..eoh Z Tik < Capk — Binary lexicographic branching
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o Test set: complete search tree where O, are used

e High time complexity (O(n°)) but more inferences than most

other propagators. e BL instances (A.p is cumulative number B of instance number A)
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e Identify instances where the approach can be beneficial e Prediction performances must take the “benefit in time" of a node into account

— 9 Must prune more at “critical” nodes - E.g., depth of a node.

- Cumulative A,,; must be significant o If a subtree can be explored faster with 7; than with 75 but still O(72) = true, we should

e Embed the approach to solve actual problems faster use m; (other kind of prediction).
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