

Supervised Learning to Control Energetic Reasoning: Feasibility Study

Sascha Van Cauwelaert*, Michele Lombardi**, Pierre Schaus* *ICTEAM, Université catholique de Louvain, Belgium; **Al Research Lab, University of Bologna

Motivation: Exponential gain from a smart use of costly and powerful propagators

Propagators π_1 and π_2 with $cost_{\pi_2} >= cost_{\pi_1}$ and $inference_{\pi_2} >= inference_{\pi_1}$

Potential exponential gain with π_2 when $inference_{\pi_2} > inference_{\pi_1}$

Overhead of Δ_{cost} on exponential number of nodes when $cost_{\pi_2} > cost_{\pi_1}$ and $inference_{\pi_2} = inference_{\pi_1}$

 $O_{\pi} = true$

 π_{ideal}

Avoid exponential cost from search exploration and cumulative overhead

Oracle Estimator

$$O_{\pi_c}(D_i|x_i \in S(c)) = \begin{cases} \mathit{true} \ \mathit{if} \ \mathit{some} \ \mathit{value} \ \mathit{will} \ \mathit{be} \ \mathit{pruned} \\ \mathit{false} \ \mathit{otherwise} \end{cases}$$

Variable Domains

Model Evaluation $O_{\pi} = false$

 π_2

- Oracle estimated using Machine Learning
- Feature computation and model evaluation must be cheap

Post Fix Point Prodecure

- $cost_{O_{\pi}} < \Delta_{cost}$
- ullet After initial fix point, O_π is consulted until a new fix point is reached

Case Study: Energetic Reasoning

• Energetic Reasoning (ER): propagator for the cumulative constraint.

$$\forall t = 0..eoh \sum_{s_i \le t < s_i + d_i} r_{ik} \le cap_k$$

- High time complexity $(\mathcal{O}(n^3))$ but more inferences than most other propagators.
 - \rightarrow used only if $O_{ER}(D_i) = true$ to keep higher inference and reduce time.
- π_1 : TimeTabling ($\mathcal{O}(n^2)$), π_2 : ER
- Feature example : average domain tightness $(\mathcal{O}(n))$

$$\frac{1}{H.n} \sum_{i=1}^{n} lst_i - est_i$$

where H is the current horizon.

Good Prediction can be performed

- Training set: random subset of nodes in a search tree where
 - ER is applied with a probability 0.5
 - Binary lexicographic branching
- Test set : complete search tree where O_{π} are used
- BL instances (A_{cB} is cumulative number B of instance number A)

Current work

- Identify instances where the approach can be beneficial
 - π_2 must prune more at "critical" nodes
 - Cumulative Δ_{cost} must be significant
- Embed the approach to solve actual problems faster

Future work

- Prediction performances must take the "benefit in time" of a node into account
 - E.g., depth of a node.
- If a subtree can be explored faster with π_1 than with π_2 but still $O(\pi_2) = true$, we should use π_1 (other kind of prediction).

References

- O. Lhomme. Backtracking adaptatif, 7ièmes Journées Francophones de Programmation par Contraintes (JFPC'11), pp. 173-182, Lyon, France, 2011.
- P. Baptiste, C. L. Pape, and W. Nuijten. Constraint-Based Scheduling: Applying Constraint Programming to Scheduling Problems. Kluwer Academic Publishers, 2001.
- L. Breiman. Random Forests. Machine Learning. pp. 5-32, 2001.