
Finding Probabilistic Rule Lists using the Minimum
Description Length Principle

John O.R. Aoga(�)1*, Tias Guns2, Siegfried Nijssen1, and Pierre Schaus1

1 UCLouvain, ICTEAM (Belgium)
{john.aoga,siegfried.nijssen,pierre.schaus}@uclouvain.be

2 VUB Brussels (Belgium) and KU Leuven (Belgium)
tias.guns@{vub.ac.be,cs.kuleuven.be}

Abstract. An important task in data mining is that of rule discovery in super-
vised data. Well-known examples include rule-based classification and subgroup
discovery. Motivated by the need to succinctly describe an entire labeled dataset,
rather than accurately classify the label, we propose an MDL-based supervised
rule discovery task. The task concerns the discovery of a small rule list where
each rule captures the probability of the Boolean target attribute being true. Our
approach is built on a novel combination of two main building blocks: (i) the use
of the Minimum Description Length (MDL) principle to characterize good-and-
small sets of probabilistic rules, (ii) the use of branch-and-bound with a best-first
search strategy to find better-than-greedy and optimal solutions for the proposed
task. We experimentally show the effectiveness of our approach, by providing a
comparison with other supervised rule learning algorithms on real-life datasets.

1 Introduction

Rule learning in supervised data is a well-established problem in data mining and ma-
chine learning. Compared to many other methods, a clear benefit of rule-based methods
is that the rule format is more easy to interpret, and hence is useful in knowledge dis-
covery. Well-known examples of rule learning are

Rule-based classification, in which the aim is to find a set of rules that predict the
class of examples well;

Subgroup discovery, in which the aim is to find a set of rules that describes subgroups
of examples in the data; in these subgroups, the distribution of the target attribute
is different from the overall population.

The main difference between subgroup discovery and rule-based classification is that
rule-based classification aims to find a set of rules that can be applied on any exam-
ple to obtain a prediction for that example. Subgroup discovery aims to characterize
subgroups of examples, but not necessarily all examples.

Similar to rule-based classification, in this work we are also interested in finding a
set of rules that describe a target attribute fully and in an interpretable manner. How-
ever, we make a specific assumption that is not common in rule-based classification:

*This author is supported by the FRIA-FNRS (Fonds pour la Formation à la Recherche dans
l’Industrie et dans l’Agriculture, Belgium).



Table 1: Probabilistic rule lists example
(a) From Door opening data

rule list Probability

IF WEDNESDAY and MORNING 0.879
ELSE IF HOLIDAY and THURSDAY 0.011
ELSE IF THURSDAY and AFTERNOON 0.987
ELSE IF SUNDAY 0.001

ELSE (default rule) 0.101

(b) From Mushroom Dataset

rule list Probability

IF Gill-spacing is closed and No odor 0.95
ELSE IF Gill-spacing is closed and Stalk-shape is tapering 0.0
ELSE IF Stalk-color-above-ring is white and Gill-size is broad 1.0
ELSE IF Gill-spacing is closed 0.0

ELSE (default rule) 0.56

we assume that the class attribute has a skewed distribution, and that exact prediction
is certainly not possible. The following example illustrates a problem that has these
characteristics.

Example 1. Assume that we characterize every minute in a year in terms of the follow-
ing attributes: the part of the day the minute belongs to (morning, afternoon), the day
the minute belongs to (Sunday, Monday, . . .), the month the minute belongs to (January,
...) and the minute on the day (1, 2, . . ., 24 × 60); furthermore, over a year we use a
sensor to monitor when an individual opens a specific door in his house. Can we use
rules to characterize when this individual opens her door?

In this example, the event of “opening a door” is expected to be a rare event; if we use
a classification algorithm on the above dataset, we will notice that the class attribute
is very unbalanced. Most classification algorithms will either prefer to always predict
the default label (the door is closed), or will construct very specific rules that cover the
small number of examples that are the exception. The reason for this is that many rule-
based classifiers find lists of rules; a rule that makes an error in its prediction, cannot be
corrected by a later rule. Hence, most classification rule learning algorithms favor rules
with lower recall but high precision.

In this paper, we propose a new algorithm for finding rule lists, designed to work
well in this specific setting. It identifies simple probabilistic rule lists, such as in Ta-
ble 1. Hence, the rule mining setting studied in this work can be characterized by these
properties:

– it learns rules with probabilities in the head; these probabilities represent the class
distribution for the examples covered by the rule, and should not be understood as
class prediction;

– the list of rules is intended to characterize the class distribution over the entire data,
in contrast to subgroup discovery;

– it favors smaller rule lists to ease interpretation.

Finding lists of rules that satisfy these requirements is not a straightforward task. To
address these challenges, this paper proposes the following contributions.

1. We propose a new optimization criterion based on the Minimum Description Length
(MDL) principle; this criterion aims to find rule lists that are small, yet characterize
the target distribution well.

2. We propose a new search algorithm based on branch-and-bound search; this search
algorithm aims to find the global optimum for the proposed optimization criterion
under given constraints.



The approach that we take in this work is a pattern set mining approach. We first use
itemset mining algorithms to find a candidate set of itemsets. From this set, we select a
subset that describes the target attribute well. From the pattern set mining perspective,
we propose a new supervised optimization criterion for selecting a set of patterns, and
a new search algorithm for finding a set of patterns that optimizes the criterion.

In the remainder of the paper, we first present related work in Section 2. In Sec-
tion 3 we present the problem of finding probabilistic rule lists. Then, we describe our
Minimum Description Length (MDL)-based approach in terms of the formalization and
algorithms for solving it. Finally, we show experiments in Section 5 before concluding.

2 Related Work

This work builds on a number of areas in the literature.
Rule-based classification. There is a large literature on rule-based classification; a good
overview of these algorithms, including classic algorithms such as CN2 and RIPPER,
can be found in a textbook by Fürnkranz et al. [4]. Two types of rule-based classifiers
can be distinguished: classifiers based on rule sets and on rule lists. In set-based classi-
fiers, all rules that match an example are used to obtain a prediction for that example. In
list-based classifiers, the first matching rule is used; we build on this class of methods.

Covering algorithms are the most popular type of rule learning algorithm. These
algorithms iteratively search for a rule to add to a rule set or list. Most often, in each
iteration a greedy algorithm is used, which constructs a rule by iteratively adding the
condition that improves the quality of the rule the most.

The main challenge faced by pure covering algorithms is that later rules cannot
correct errors made by earlier rules in a rule list. Such algorithms hence need to favor
precision over recall to obtain accurate classifiers. As a result rule lists may become
unnecessarily long. One way to solve this is using pruning: the rule set is reduced in a
post-processing step.
Pattern-based classification. Compared to traditional rule learning algorithm, pattern-
based classifiers use pattern mining algorithms, such as frequent itemset mining algo-
rithms, to identify candidate rules [12]. These frequent itemsets are post-processed to
construct rule sets or rule lists. Most of these post-processing approaches use heuristic
search algorithms, although also the use of exact search has been studied [6].
Pattern set mining. From a pattern mining perspective, selecting a small set of patterns
from a larger set of patterns can be seen as a pattern set mining problem [12]. In contrast
to unsupervised methods, supervised methods aim to find a balance between pattern
sets that are non-redundant and that are accurate. One popular approach for evaluating
the quality of a pattern set is based on the Minimum Description Length principe, as
pioneered in the unsupervised setting by the KRIMP algorithm [10]. Exact methods for
pattern set mining were studied by Guns et al. [6], among others, but these studies did
not consider scoring functions based on MDL or did not exploit freeness, as we do.
Subgroup discovery. Strongly related to both pattern mining and rule-based classifica-
tion is subgroup discovery. Subgroup discovery differs from classification in that it does
not aim to build a predictive model; rather, subgroup discovery algorithms are intended
to return small and interpretable sets of local patterns; subgroups are not necessarily



ordered in a specific manner. For this reason, traditional subgroup discovery algorithms
were modifications of covering based rule-learning algorithms to explicitly allow for
overlap between patterns [7].
Bayesian rule lists. Most related to this work is recent work by Yang et al. [11] on prob-
abilistic rule lists. This work also finds ordered lists of probabilistic rules. Contrary to
our work, however, the aim of the work of Yang et al. is to identify accurate classifiers,
and not to identify as small and interpretable representation of the class distribution as
possible. Furthermore, Yang et al. use a sampling based algorithm to identify good sets
of patterns. We propose an alternative algorithm in this work.

3 The probabilistic rule list mining problem

This work is motivated by the creation of a probabilistic rule list that summarizes la-
beled data well. In order to be easily interpretable, the rule list and the individual rules
should be concise.

We assume the data is described by a set of discrete attributes. These attributes can
be represented as a set of Boolean properties using a one-hot encoding. These properties
are referred to as items in the following, in line with the itemset mining literature.

More formally, let I = {1, · · · ,m} represent a set of m possible items and let
F ⊆ 2I be a set of itemsets built on those items. A probabilistic rule list (PRL) built on
F is a sequence of rules of the form R =

〈
(I(1), p(1)), (I(2), p(2)), · · · , (I(k), p(k))

〉
with pi being a probability and Ii ∈ F ,∀i = 1, . . . , k− 1 and Ik = ∅. This latter is the
default rule. The sequence of itemsets in the rule list can be expressed as membership
to the regular language: 〈I1, . . . , Ik〉 ∈ L(F∗ · ∅) with F∗ the Kleene operator on F .
Table 1 shows two example rule lists (generated from different data).

The rule list has a sequential interpretation, in that the set of data instances that
match the first rule I1 are assumed to have a positive label with probability p1. The
other data instances, those that do not match I1, that do match I2 have a probability
of p2 to be positive, etc. The final empty set Ik = ∅ hence captures all instances not
matched by the other rules.

We now formalize the problem of creating the probability rule list based on F and
a dataset D.

Definition 1. As input we receive a set of itemsets F that can be used to compose
the rule list, and a database D of instances, with for each a Boolean target attribute:
D = {(t, It, at) | t ∈ T , It ⊆ I, at ∈ {+,−}}. The set T is the set of instance or
transaction identifiers T = {1, . . . , n}. The database can be split into a positive D+

and negative D− database, based on the target attribute value (+ or −).

The problem of finding a probabilistic rule list is formalized as: argminR score(R,F ,D)
where R =

〈
(I(1), p(1)), (I(2), p(2)), · · · , (I(k), p(k))

〉
is a probabilistic rule list such

that 〈I(1), . . . , I(k)〉 ∈ L(F∗ · ∅) and score is an optimization criterion. Various crite-
ria can be defined, including criteria inspired by classification rule learning, subgroup
discovery and pattern set mining. Our aim in this work is to develop an optimization cri-
terion that explicitly favors smaller rule lists that describe the entire target distribution
well. For this purpose, we will develop a specific type of optimization criterion using
the Minimum Description Length principle, discussed in the next section.



4 Discovering probabilistic rule lists

4.1 Coverage and probability of a rule list

To evaluate the quality of a rule set on a given dataset, we will use a number of concepts
taken from the itemset mining literature [1].

Definition 2 (Coverage and support of an itemset). The set of transactions in a
database D containing an itemset I is called the cover: ϕ(D, I) = {(t, It, at) ∈ D |
I ⊆ It}. The size of the cover is called the support ψ(D, I) = |ϕ(D, I)|.

Example 2. An example itemset database is given in Fig.1a. I = {A,C} is an example
of an itemset its ϕ(D, I) has transaction identifiers {1, 2, 5} so ψ(D, I) = 3. The set of
frequent itemsets with support at least 4 is {∅, {A}, {B}, {C}, {E}, {B,E}} (Fig.1b).

In the remainder of this paper, for the sake of simplicity we denote ϕ(D, I) as ϕ(I)
when no ambiguity regarding D is possible. Similarly, we will use ϕ+(I) to denote
ϕ(D+, I) whereD+ = {(t, It, at) ∈ D | at = +} and likewise for ϕ−(I) with at = −.

We are interested in finding a list of rules. Each itemset in the list has a cover that is
defined as follows.

Definition 3 (Coverage of an itemset in a sequence). Assume the sequence of itemsets
〈I(1), . . . , I(k)〉, the coverage of an itemset I(j) over D is its cover in the database of
transactions not covered by the previous itemsets I(1), I(2), . . . , I(j−1):

Φ(D, 〈I(1), . . . , I(k)〉, j) = ϕ
(
D \

(
ϕ(I(1)) ∪ ϕ(I(2)) ∪ · · · ∪ ϕ(I(j−1))

)
, I(j)

)
(1)

with Φ(D, 〈I(1), . . . , I(k)〉, 1) = ϕ(D, I(1)).

Note that in a rule list R, the last itemset is always I(k) = ∅ which is the default
rule or final else-case. This empty set inherently covers all instances not covered by any
of the k − 1 previous rules since ϕ(D, ∅) = {(t, It, at) ∈ D | ∅ ⊆ It} = D for any D.

A B C E

1 1 1 1 1 +

2 1 1 1 1 −

3 1 1 0 1 +

4 0 1 1 1 −

5 1 0 1 0 −

D
Itemset Database

(a)

{
φ
}
: 5

{
A
}
: 4

{
B
}
: 4

{
C
}
: 4

{
E
}
: 4

{
A,B

}
: 3

{
A,C

}
: 3

{
A,E

}
: 3

{
B,C

}
: 3

{
B,E

}
: 4

{
C,E

}
: 3

{
A,B,C

}
: 2

{
A,B,E

}
: 3

{
A,C,E

}
: 2

{
B,C,E

}
: 3

{
A,B,C,E

}
: 2

Frequent Closed Free Equivalence Class Subset relation Shared cover

(b)

Fig. 1: a) Itemset Database with positive/negative classes; b) Powerset lattice of D with equiva-
lence classes.



Given a rule list R =
〈
(I(1), p(1)), (I(2), p(2)), · · · , (I(k), p(k))

〉
we will denote

by Φ(D,R, j) the cover of the jth itemset in the rule’s sequence of itemsets. If no
ambiguity is possible we simply write Φj . Similarly Φ+

j = Φ(D+,R, j) and Φ−j =

Φ(D−,R, j).
When creating a rule listR from a datasetD given F , we define the probability p(j)

of a rule I(j) as p(j) = P
(
at = +|(t, It, at) ∈ Φ(D,R, j)

)
=

|Φ+
j |

|Φ+
j |+|Φ

−
j |

.

Example 3. Assume the running example database (Fig.1a) and a rule list with corre-
sponding sequence of itemsets

〈
{A,B,C}, {C}, ∅

〉
the coverage of I(2) = {C} over

D is Φ2 = {4, 5} instead of {1, 2, 4, 5}, as the transactions 1 and 2 were already cov-

ered by I(1) = {A,B,C}. Its probability is hence p(2) = |Φ+
2 |

|Φ+
2 |+|Φ

−
2 |

= 0
0+2 = 0, which

indicates that no positive transaction was observed with the condition of the rule, after
observing the previous rules.

At this stage, an open question is how to evaluate the quality of a probabilistic rule
list R. In this work, we propose to evaluate how well the rule list allows to compress
the values for the class attribute observed in a training dataset. For this, we will use the
Minimum Description Length (MDL) principle.

4.2 Minimum Description Length encoding of rule lists
The Minimum Description Length (MDL) principle [5, 8] is a general method for in-
ductive inference, based on the idea that ‘the more we can compress the data, the more
there are regularities in it and the more we learn from it’ [5]. MDL allows making a
trade-off between the complexity of rules and their ability to capture the distribution of
the class attribute. To do this, we minimize the number of bits needed to encode the data
with a model, as well as the number of bits to encode the model itself. As stated in the
introduction, the focus in this work is on a code that favors simplicity.

LetM = M1,M2, . . . be a list of model candidates. The best model M ∈ M to
capture information in a given database D is the one which minimizes the code length
L(M) = Lmodel(M) + Ldata(D|M), where Lmodel(M) is the length, in bits, of the
description of the model itself and Ldata(D|M) the length of the data, in bits, when it
is encoded with this model.

In our case, models correspond to rule lists of the formR =
〈
(I(1), p(1)), (I(2), p(2)),

· · · , (I(k), p(k))
〉

with I(j) ∈ F ,∀j ∈ 1, . . . , k − 1, I(k) = ∅ and p(j) =
|Φ+

j |
|Φ+

j |+|Φ
−
j |

.

We thus need to define an encoding with Lmodel(R) an encoding of the rule list, and
Ldata(·|R) such that Ldata(D|R) can be interpreted as the coding length of the distri-
bution of +/−’s in D when it is encoded with R. The best rule list is then the one that
minimizes the total length L(R):

R∗ = argmin
R∈L(F∗·∅)

Ldata(D|R) + Lmodel(R), (2)

where we identified R by its sequence of itemsets to ease notation; each itemset has a
probability p(j) as defined earlier.

We now first discuss how we encode R when k ≤ 2 (i.e. R =
〈
(∅, p(1)

〉
or R =〈

(I(1), p(1)), (∅, p(2))
〉
) and then generalize to the case k > 2.



Case k = 2: To understand the computation of the coding length of R, we first show
how we can encode a target attribute if we have an itemset I and then a default rule.
Given a rule (I(1), p(1)), we assume that the positive and negative labels in ϕ(D, I(1))
follow a Bernoulli distribution, with a probability p(1) for the class label. The probabil-
ity density of the labels according to I is hence (omitting D from the notation):

Pr
(
at = + | ϕ(I)

)
= (p(1))|ϕ

+(I)|(1− p(1))|ϕ
−(I)|. (3)

Theorem 1 (Local Coding length of data). Using Shannon’s Noiseless Channel Cod-
ing Theorem [3] the number of bits needed to encode the class labels of D using I
is at least the logarithm3 of the probability density of the class labels in D given I:
Llocal data(D|I) = − logPr

(
at = + | ϕ(D, I)

)
. Using (3) we can hence encode each

positive label at a cost of

Llocal data(D|I) = Q(ϕ+(I), ϕ−(I)) +Q(ϕ−(I), ϕ+(I)), (4)

with Q(a, b) = −a log a
a+b .

We will use this bound, which can be approximated closely using arithmetic coding, as
the coding length for the class labels. Based on the above theorem and assuming a rule
list isR =

〈
(I(1), p(1)), (∅, p(2))

〉
, the coding length of Φ is

Ldata(D|R) = Llocal data(D|I(1)) + Llocal data(D \ ϕ(I(1))|∅) (5)

Example 4. Assume the rule list is R =
〈
({A,B,C}, 0.50), (∅, 0.33)

〉
and that our

databaseD (Fig. 1a) is duplicated 256 times. Llocal data(D|{A,B,C}) = −256 log 0.5
−256 log(1−0.5) = 512bits andLlocal data(D\ϕ(I1)|∅) = −256 log 0.33−512 log(1−
0.33) = 705bits then Ldata(D|R) = 1217bits.

When we encode the class label using this model, we do not only need to encode
the data, but also the model itself.

Definition 4 (Length of model). Assume a rule list R =
〈
(I(1), p(1)), (∅, p(2))

〉
, we

represent (I(1), p(1)) as a string “m1 I
(1)
1 . . . I

(1)
m1 n+1 ” where, m1 = |I(1)| is the

number of items in I(1), followed by the identifiers of each item in I(1) and finally the
number of positive labels in D: n+1 = |ϕ+(I(1))|. The length, in bits, to encode this
string is:

Llocalmodel(I
(1)) = logm︸ ︷︷ ︸

|I(1)|

+ |I(1)| logm︸ ︷︷ ︸
I
(1)
1 ... I

(1)

|I(1)|

+ log n︸︷︷︸
n+
1

, (6)

where logm bits are required to represent m1, as m1 ≤ m = |I|, and also logm
bits for each item identifier plus log n bits to encode n+1 . Coding n−1 is unnecessary
as it can be retrieved from the data using the itemset: n−1 = |ϕ(D, I1)| − n+1 . From
there, assuming that the itemset database D and the set of items I are known, one
can easily retrieve the coverage of I(1) and then compute the probability p(1) using
the number of positive labels n+1 . The coding length of the model R is Lmodel(R) =
Llocalmodel(I

(1)) + Llocalmodel(∅).
3All logarithms are to base 2 and by convention, we use 0 log 0 = 0.



Example 5. We continue on Example 4. To encode the model, the string “3 A B C 256”
is encoded: Llocalmodel({A,B,C}) = log 4 + 3 log 4 + log 1280 = 19bits similarly
Llocalmodel(∅) = log 4 + 0 log 4 + log 1280 = 13bits4 then Lmodel(R) = 32bits.
Together with Ldata(D|R) = 1217bits computed in Example 4, the total coding length
ofR is L(R) = 1217 + 32 = 1249bits.

Case k > 2: Assuming now a rule listR =
〈
(I(1), p(1)), (I(2), p(2)), · · · , (I(k), p(k))

〉
with k > 2. For k > 1 we need to modify the definition of Llocal data such that it does
not consider parts of the data covered by a previous itemset in the sequence. Hence,

Llocal data(D|I(j)) = Q(Φ+
j , Φ

−
j ) +Q(Φ

−
j , Φ

+
j ) (7)

and the total coding length is the summation of local lengths:

Ldata(D|R) = −
k∑
j=1

Llocal data(D|I(j)); (8)

the coding length of the model is:

Lmodel(R) = log n+

k−1∑
j=1

(
logm+mj logm+ log n

)
(9)

To encode the size of R itself, we need log n bits. Because all rule list include the
default rule, we omit these logm+ log n bits.

Example 6. Fig. 2 shows example rule lists with coding lengths.

4.3 Coding length related to likelihood and quality of rule lists

The coding length of the class labels given a model R is the number of bits needed to
encode the class labels withR. As a consequence of our choice to use Shannon’s theo-
rem, this coding length corresponds to the (-log) likelihood of the class labels according
to the model. In the other words, if we would minimize the coding length of the data
only, we would maximize the likelihood of the data under the model. However, as stated
earlier, in this work our aim is also to find small and interpretable rule lists. We choose
our code such that a relatively large weight is given to the complexity of the model.

Assuming the database of Example 4, the size of the original data is 5×256 = 1280.
Encoding this data withR1 =

〈
({A,B,C}, 0.50), (∅, 0.33)

〉
we obtainedLdata(D|R1)

= 1217bits, Lmodel(R1) = 32bits and in total L(R1) = 1249bits. Instead, when
we encode this data with R2 =

〈
(∅, 0.40)

〉
we obtain Ldata(D|R2) = 1243bits,

Lmodel(R2) = 6bits and in total L(R2) = 1249bits. Looking at likelihoods only,
one can see that R1 is a better model for representing this data, as it captures more
information than R2. However, in total, it is not preferable over R2, since it is more
complex to encode. The model coding length penalizes the likelihood and ensures a
simple model is preferred.

4Note that by convention the size of the default rule is m2 = 0.



For our example, the only way to improve R1 is to add (if possible) a new rule
that reduces the error made byR1 by assuming that the part non covered by {A,B,C}
is for the default rule. Thus, by adding the itemset {C} to R1, which covers all 0’s
still present, we obtain the best model R =

〈
({A,B,C}, 12 ), ({C},

0
2 ), (φ,

1
1 )
〉

with
L(R) = 546bits since the default rule now covers only remaining 1’s.

4.4 A Greedy algorithm

The probabilistic rule list that minimizes the MDL score (2) can be constructed greedily,
extended by one-rule at each step. The greedy algorithm is efficient and often approxi-
mates the optimal solution well.

Algorithm 1 shows a greedy algorithm that starts with empty rule list R, and then
iteratively finds the local rule that minimizes the coding length. The local best rule is
obtained by considering at each iteration the sub-problem of finding the optimal rule
list with k ≤ 2 on the remaining data. This corresponds to finding the itemset I(1) such
that the coding length is smallest (Line 3). Once the local best rule is selected the rule
list is updated in Line 6 and in Line 7; its coverage is removed from D. The process is
then run again until D is empty or the default rule is selected.

Example 7. Assuming our running example, at the first iteration of the greedy algo-
rithm, the minimum code-length L(〈{A,B}, ∅〉) = 722bits and then it is the greedy
solution (See Fig. 2).

The greedy algorithm may be sub-optimal. For instance it fails to discover the
L(〈{A,B,C}, {C}, ∅〉) = 546bits on our example.

4.5 Branch-and-Bound algorithm

For finding solutions that are better than the greedy solution, we propose a branch-and-
bound algorithm that can prune away candidates based on a lower-bound on the MDL
value. Each node in the search tree is a partial rule list, consisting of a sequence of
rules without the default rule. The children of each node correspond to appending one
additional rule from F to the partial rule list.

Algorithm 2 shows the pseudo-code of this branch-and-bound expansion search.
For clarity we omit the probabilities in the rule list representation. It receives as input a
list of rule candidates F and databaseD. A priority queue is used to store the set of rule

〈
(φ, 2

5
)
〉

1243bits

〈
({A}, 2

4
), (φ, 0

1
)
〉

1039 + 0bits

〈
({A,B,C}, 1

2
), (φ, 1

3
)
〉

531 + 706bits

〈
({C}, 1

4
), (φ, 1

1
)
〉

846 + 0bits

〈
({B,C}, 1

3
), (φ, 1

2
)
〉

722 + 512bits

〈
({B}, 2

4
), (φ, 0

1
)
〉

1039 + 0bits

〈
({A,B}, 2

3
), (φ, 0

2
)
〉

722 + 0bits

〈
({A,C}, 1

3
), (φ, 1

2
)
〉

722 + 512bits

〈
({A,B,C}, 1

2
), ({A}, 1

2
), (φ, 0

1
)
〉

531 + 527 + 0bits

〈
({A,B,C}, 1

2
), ({C}, 0

2
), (φ, 1

1
)
〉

531 + 15 + 0bits

〈
({A,B,C}, 1

2
), ({E}, 1

2
), (φ, 0

1
)
〉

531 + 527 + 0bits

Greedy Solution

Optimal Solution

Fig. 2: Finding greedy and optimal solution base on the example of Fig. 1



Algorithm 1: Greedy(F ,D)
1 R← 〈〉
2 do
3 I∗ ← argmin

I∈F∗
L(〈(I, p(1)), (∅, p(2))〉)

4 if L(〈(I, p(1)), (∅, p(2))〉) ≥ L(〈(∅, p(1))〉) then
5 I∗ ← ∅

6 R← R∪ (I∗, p(1)) . Add this rule to the rule list
7 D ← D \ ϕ(I∗)
8 while I∗ 6= ∅;
9 returnR

Algorithm 2: Branch-and-bound (F ,D)
1 PQ : PriorityQueue . Partial rule lists ordered by code-length when adding default rule
2 bestR← 〈∅〉, best← L(bestR)
3 PQ.enqueue-with-priority(〈〉, L(〈∅〉))
4 whileR← PQ.dequeue() do
5 for each I ∈ F \ R do
6 R′ ← 〈R, I〉
7 if L(〈R′, ∅〉) < best then
8 bestR = 〈R′, ∅〉, best← L(bestR)
9 if lower-bound(R′) < best then

10 PQ.enqueue-with-priority(R′, L(〈R′, ∅〉))

11 return bestR

lists not yet expanded, ordered by the code-length obtained when extending the partial
rule with the default rule (best-first strategy). The initial best rule is the default rule
(Line 2) and the empty rule list is added as initial search node. As long as the queue is
not empty, the priority queue is dequeued and the returned partial rule list is expanded
(Line 6). Each new partial rule list is evaluated as if it was completed with the default
rule (∅) and checked whether it is better than the current best rule list (Lines 7,8).

Before adding the new partial rule list to the queue, a lower-bound on the code
length is computed, that is, an optimistic estimate of the code length achievable (see
next section). Only if the lower-bound is better than the current best value is the rule list
added to the queue (Lines 9,10). If not, this part of the search tree is effectively pruned.

Lower-bound on a partial rule list A good lower-bound is difficult to compute since
there is an exponential number of rules that can be added to the list. Because the rule
list itself is already evaluated in the algorithm, we are seeking a lower-bound on any
expansion of the rule list. The coding length is determined by L(R) = Lmodel(R) +
Ldata(D|R) according to (8) and (9).

The most optimistic expansion is hence achieved with the smallest possible expan-
sion of the rule list yielding the greatest reduction of the coding length for the data.
In the best case, this is a rule of length one (|I(j+1)| = 1) that perfectly separates the
positives from the negatives. In this case, the additional code length of the rule list cor-



responds to a rule of length one: Llocalmodel(Ij+1) = logm + 1 logm + log n and
the addition to the code length of the data is: Llocal data(D|Ij+1) = Q(|Φ+

j+1|, 0) +
Q(0, |Φ−j+1|) = 0 with the data coding length of the default rule also being 0.

While such a rule expansion may not exist, the resulting value is a valid lower-
bound on the code length achievable by any expansion of the partial rule list. This is
because any expansion has to be greater than or equal in size to 1, and any expansion
will achieve at best a data compression of 0.

Implementation details Choice of F . The complexity of Algo. 2 is O(|F|d) where d
is the depth in the best-first search tree. The efficiency of the algorithm strongly depends
on |F| since in the worst case the number of nodes is in O(|F||F|).

To control the size of F one can consider all frequent itemsets with a given mini-
mum frequency threshold. Because we are interested in a small coding length, we pro-
pose to further restrict the set of patterns to the set of frequent free itemsets [9]. Known
also as generators, a free itemset is the smallest itemset (in size) that does not contain
a subset with the same cover: if I is free, @J ⊂ I s.t. ϕ(I) = ϕ(J). In fact, there may
be multiple free itemsets with the same cover and for our purposes just a single one of
them is sufficient. In Fig. 1, all the itemsets in a double bordered rectangle are free.

Set representation as bitvectors. Each candidate itemset in F is represented by the
tuple (set of items, set of covered transactions). Operations on sets such as union, inter-
section, count, ... being at the core of our implementation, they must be implemented
very effectively. For this, we represent each set by bitvectors and all the cover com-
putation are bitwise operations on bitvectors. A rule list is represented by an array
of itemset indices into F . From the index, one can identify the itemset and its cov-
erage. During the search process at each iteration, a new itemset I is added to the
partial rule list (Line 6 of Algo. 2). This operation involves updating the cover of
the rule list computed using (1) which depends on all the transactions already cov-
ered. To do it effectively, we keep the transactions already covered in a single bitvector
T

(j)
covered = ϕ(I(1)) ∪ ϕ(I(2)) ∪ · · · ∪ ϕ(I(j)). And then, the coverage of adding a new

itemset I(j+1) is

Φ(D,R∪ I(j+1), j + 1) = ¬T (j)
covered&ϕ(I(j+1)).

5 Experiments

We evaluate our approach from three perspectives: (i) the quality of obtained solutions:
how expressive and concise are the rule lists, and what is the log-likelihood of the data
given the lists; (ii) the accuracy and sensibility of our method under various parameters,
evaluated using area under ROC curves (AUC), (iii) the predictive power of our method,
using AUC as well.

Note that we add a comparison with other classification methods to properly posi-
tion our work; our aim is not to build a classification model that is more accurate on
commonly used datasets.



Table 2: Benchmark features
name anneal car australian-cr. heart-cl. krvskp mushroom primary-tu. dermatology gallup door soybean

|D| 812 1728 653 296 3196 8124 336 366 15734 3216 630
|I| 89 21 124 95 73 112 31 133 41 11 50
|D+|
|D| 0.77 0.7 0.55 0.54 0.52 0.52 0.24 0.2 0.19 0.16 0.15

Table 3: Total code lengths for several datasets (θ is the minimum support for F)
anneal car australian-cr. heart-cl. krvskp mushroom primary-tu. dermatology gallup door soybean

θ 20 5 20 20 5 20 20 20 10 1 1
|F| 1361 22 2495 2024 65 1145 214 763 15 35 49

PRLg 587 710 386 262 2594 1978 249 39 10327 1876 356
PRLc 532 628 380 249 845 967 249 39 10163 1876 314

Datasets. We use nine annotated datasets publicly available from the CP4IM5 and UCI6

repositories. We also used the door dataset as described in the introduction (Example1).
Furthermore, we used the Gallup dataset [2], from a project with the same name on mi-
gratory intentions. This data set is not publicly available, but can be purchased. Our
objective here is to understand the migratory intentions between two countries by con-
sidering the socio-parameters of education, health, security and age. All these datasets
have been preprocessed and their characteristics are given in Table 2.
Algorithms. We compare with popular tree-based classification methods such as Ran-
dom Forests (RF) and decision trees (CART) from the scikit-learn library, as well as the
rule-learning method SBRL [11] available in R CRAN (see Sect. 2). We run it with the
default setting (number of iterations set to 30.000, number of chains 10 and a lambda
parameter of 10).
Protocols. All experiments were run in the JVM with maximum memory set to 8GB on
PCs with Intel Core i5 64bits processor (2.7GHz) and 16GB of RAM running MAC OS
10.13.3. Our approach is called PRL (for probabilistic rule lists) and is implemented
in Scala. The candidate itemsets F are the frequent free itemsets. PRL name can be
followed by g for greedy or c for complete branch-and-bound. Evaluation of AUC is
done using stratified 10-fold cross-validation. For the reproducibility of results, all our
implementation is open source and available online7.

Compression power of PRL Table 3 gives the total code length obtained for the greedy
PRLg and the complete branch-and-bound PRLc approaches. As can be observed com-
pression ratio (total code length/size of the datasets) is substantial. For instance it is
of 10% for the dermatology dataset. For 8/11 instances PRLc discovers a probabilistic
rule list compressing better than the one obtained with PRLg. This gain obtained with
PRLc is sometimes substantial, for instance on the krvskp and mushroom data sets.
Impact of the parameters The set of possible itemsets F to create the rule list is com-
posed of the frequent free itemsets generated with a minimum support threshold θ.
Fig. 3a reports the compression ratio for decreasing values of θ. As expected the com-

5https://dtai.cs.kuleuven.be/CP4IM/datasets/
6http://archive.ics.uci.edu/ml/datasets.html
7https://projetsJOHN@bitbucket.org/projetsJOHN/mdlrulesets



pression ratio becomes smaller whenever θ decreases. The reason is that the set F is
growing monotonically, allowing more flexibility to discover a probabilistic rule list
that compresses well.

Both the greedy and the complete branch-and-bound algorithms can easily limit the
size of the probabilistic rule list they produce. This is done by stopping the expansion of
the list beyond a given size limit k. Fig. 3b reports the compression ratio for increasing
values of k. As expected the compression ratio becomes smaller whenever k increases
for PRLc and stabilizes at some point when the limit k becomes larger than the length of
the optimal rule list. Surprisingly this is not necessarily the case for the greedy approach
that is not able to take advantage of longer rule lists on this benchmark.

Regarding the execution time according to the size of the rules, as shown in Fig. 3c,
with a time limit of 10 minutes, we can see that greedy approach is more scalable. PRLc
and SBRL execution time evolves exponentially, PRLc being faster than SBRL though.
Note that as soon as the optimal solution is found, in the case of PRLc, the execution
time does not increase so much anymore. The reason is that most of the branches are
probably cut-off by the branch-and-bound tree exploration beyond that depth limit.
Comparison of PRL with existing rule learning algorithms We compare the rule list
produced by our approaches (PRLg and PRLc) and by SBRL [11]. Fig.4a gives the code
length for the model and for the data (class labels) for various datasets for the different
approaches. Note that the code length for the data corresponds to the log-likelihood of
the class labels under the rule list. From the rule lists obtained using the training set, the
probability (to be positive) of each transaction in the test set is predicted and the coding
lengths are computed using the (8) and (9). The reported values are averaged using 10-
folds. The model coding length represents the size of the encoding of the initial rule
list.

One can see that the PRL approaches are competitive with SBRL. On Fig.4a, it often
obtains the smallest data coding length except for the mushroom dataset. The reason is
that the test set of mushroom is classified perfectly with SBRL. The rule lists produced
are arguably shorter with PRLg and PRLc than with SBRL.

The mushroom dataset is investigated further in Fig.4b and 4b. The data coding
length and the area under the ROC curve are computed for increasing prefixes of the
lists. As we can see, at equal prefix size (k < 5) our approach obtains better likelihood
and is more accurate than SBRL. Then beyond k ≥ 5 SBRL continues to improve on
accuracy while PRLg and PRLc stagnates. The lists indeed have reached their optimal

335

340

345

350

10203040
Minimum support θ (%)

C
o
d
in

g
−

le
n
g
th

 (
b
it
s
)

Methods PRLc PRLg

(a) Soybean

1200

1500

1800

2100

1 2 3 4 5 6 7 8 9 10
Size of all rulej in rule−list

C
o
d
in

g
−

le
n
g
th

 (
b
it
s
)

Methods PRLc PRLg

(b) Mushroom (θ = 20%)

0

200

400

1 2 3 4 5 6 7 8 9 10
Size of all rulej in rule−list

T
im

e
 (

s
)

Methods PRLc PRLg SBRL

(c) Mushroom (θ = 20%)

Fig. 3: Sensibility of PRL for several settings using mushroom and soybean datasets



Ann. Derm. Gall. mush. pr−tu.

PRLc

PRLg

SBRL
PRLc

PRLg

SBRL
PRLc

PRLg

SBRL
PRLc

PRLg

SBRL
PRLc

PRLg

SBRL300

200

100

0

1200

1000

800

600

400

200

Methods

C
o

d
in

g
−

le
n

g
th

 (
b

it
s
)

Coding−length of: data model

(a)

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10
Size of Rule−lists

C
o
d
in

g
−

L
e
n
g
th

 o
f 
d
a
ta

 (
b
it
s
)

Methods PRLc PRLg SBRL

(b)

0.900

0.925

0.950

0.975

1.000

1 2 3 4 5 6 7 8 9 10
Size of Rule−lists

A
re

a
 u

n
d
e
r 

R
O

C

Methods PRLc PRLg SBRL

(c)

Fig. 4: a) Comparison of coding length in average among PRL (g,c) and SBRL for different test
datasets and b and c) evolution of the coding length of data only (top) and the AUC (bottom) for
several rule lists size, for mushroom dataset, for all 10-folds (θ = 10%, |I| = 2).

CART RF SBRL PRLc PRLg
Methods

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ar
ea

 U
nd

er
 R
OC

Mushroom

CART RF SBRL PRLc PRLg
Methods

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ar
ea
 U
nd
er
 R
OC

Primary-tu.

CART RF SBRL PRLc PRLg
Methods

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ar
ea
 U
nd

er
 R
OC

Krvskp

CART RF SBRL PRLc PRLg
Methods

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ar
ea
 U
nd

er
 R
OC

Gallup

Fig. 5: Comparison of Area under ROC among different methods and four datasets, for all 10-
folds (θ = 10%, |I| = 1).

length at k = 5. This evolution is a clear illustration of the difference between the
type of rule lists produced by SBRL and our approach. While SBRL lists are more fo-
cused on classification, MDL-based lists are a trade-off between the data-coding length
(classification) and the complexity of lists (model code length).

Prediction power of PRL and other supervised learning approaches Although our ap-
proach is not designed to generate the best rule list for classification, we evaluate its
prediction power in the light of well-known classification methods: CART and RF but
also SBRL using a 10-folds cross-validation and default settings. For PRL the classifica-
tion is done by associating with each transaction the probability that its label is positive.
This probability is that of the first rule of the rule list (obtaining from the training set)
that matches with this transaction. The results are shown in Fig.5.



In general, the AUC of our methods are greater than 0.6 and the optimal solution
always has a greater or equal accuracy compared to the greedy approach. The difference
becomes significant on databases like Krvskp where the difference in compression ratio
is also high (Fig.3).

State-of-the-art methods are often more accurate, except in unbalanced datasets
(Gallup, primary-tu.) where our approaches are very competitive. One can see that rule
based methods do better on very unbalanced databases like Gallup.

6 Conclusion

This work proposed a supervised rule discovery task to find probabilistic rule list in an
item-set database which can concisely summarize a boolean target attribute, rather than
accurately classify it. Our method is particularly suited when the target attribute corre-
sponds to rare event. Our approach is based on two ingredients namely the Minimum
Description Length (MDL) principle which allows measuring the quality of the discov-
ered rule list as a code length and a branch-and-bound with a best-first search strategy
to find small and informative rule-list which characterizes the target data best. We have
experimentally proved that obtained rule lists are compact and expressive. Future work
will investigate the support of multivariate target attribute (> 2) and the exploration of
new languages such as sequences.

References
1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in

large databases. International Conference on Management of Data (SIGMOD) 22(2), 207–
216 (Jun 1993)

2. Esipova, N., Ray, J., Pugliese, A.: Number of potential migrants worldwide tops 700 million.
Gallup (2018)

3. Fano, R.M.: The transmission of information. Massachusetts Institute of Technology, Re-
search Laboratory of Electronics Cambridge, Mass, USA (1949)

4. Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Springer Publishing
Company, Incorporated (2014)

5. Grünwald, P.D.: The minimum description length principle. MIT press (2007)
6. Guns, T., Nijssen, S., De Raedt, L.: k-Pattern set mining under constraints. IEEE Transac-

tions on Knowl. and Data Eng. 25(2), 402–418 (Feb 2013)
7. Lavrac, N., Kavsek, B., Flach, P.A., Todorovski, L.: Subgroup discovery with CN2-SD. Jour-

nal of Machine Learning Research 5, 153–188 (2004)
8. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471 (1978)
9. Szathmary, L., Napoli, A., Kuznetsov, S.O.: ZART: A multifunctional itemset mining algo-

rithm. In: Eklund, P.W., Diatta, J., Liquiere, M. (eds.) Proceedings of the 5th International
Conference on Concept Lattices and Their Applications, CLA 2007. vol. 331 (2007)

10. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress. Data Min.
Knowl. Discov. 23(1), 169–214 (2011)

11. Yang, H., Rudin, C., Seltzer, M.: Scalable bayesian rule lists. In: Precup, D., Teh, Y.W. (eds.)
Proceedings of the 34th International Conference on Machine Learning, ICML’17. Proceed-
ings of Machine Learning Research, vol. 70, pp. 3921–3930. PMLR (2017)

12. Zimmermann, A., Nijssen, S.: Supervised pattern mining and applications to classification.
In: Frequent Pattern Mining, pp. 425–442 (2014)


