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Abstract. Existing algorithms for learning optimal decision trees can
be put into two categories: algorithms based on the use of Mixed Integer
Programming (MIP) solvers and algorithms based on dynamic program-
ming (DP) on itemsets. While the algorithms based on DP are the fastest,
their main disadvantage compared to MIP-based approaches is that the
amount of memory these algorithms may require to find an optimal so-
lution is not bounded. Consequently, for some datasets these algorithms
can only be executed on machines with large amounts of memory. In this
paper, we propose the first DP-based algorithm for learning optimal de-
cision trees that operates under memory constraints. Core contributions
of this work include: (1) strategies for freeing memory when too much
memory is used by the algorithm; (2) an effective approach for recovering
the optimal decision tree when parts of the memory are freed. Our ex-
periments demonstrate a favorable trade-off between memory constraints
and the run times of our algorithm.

Keywords: Decision trees · Optimization · Memory management.

1 Introduction

Decision trees (DTs) are among the most popular predictive machine learning
models. They consist of tree structures in which internal nodes are labeled with
tests and leaves are labeled with predictions. A key characteristic of DTs is
their interpretability. A DT can be used to perform a prediction for an instance
by performing a top-down traversal of the tree: the outcome of a test on an
instance determines in which child node the traversal continues; the tests on the
path towards a leaf explain why the model performs the prediction in that leaf.

Recent years have witnessed an increasing interest in explainable predictive
models: in some crucial applications, such as medicine, bank loan repayment
prediction or criminal recidivism prediction tools, it is important that the pre-
dictions of the models are understood in order to trust them.

One measure of the complexity of a DT model is its depth: the maximum
number of tests performed to reach a leaf. Arguably, a DT model is easier to
⋆ This work was supported by bpost
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interpret if its depth is limited. Traditionally, such trees would be learned using
heuristic algorithms such as CART. However, in 2017, Bertsimas et al. [5] showed
that depth-limited optimal decision trees (ODTs) generalize better to unseen
data than heuristic DTs. In this context, ODTs are decision trees that obtain
the best possible accuracy on training data under a depth constraint.

Finding decision trees that optimize accuracy is not a trivial problem. For
instance, [8] showed that the problem of identifying a DT under a size con-
straint is NP-complete. This has led to a renewed interest in developing efficient
algorithms for finding optimal decision trees.

Approaches for finding ODTs can be put into two categories: (1) the cate-
gory of approaches based on the use of mixed integer programming (MIP) solvers
[13, 1]; (2) the category of specialized search algorithms that use some form of
dynamic programming (DP) or caching [10, 11, 2, 12, 7, 9, 6]. Among these two
categories, the specialized DP approaches have been demonstrated to be signif-
icantly faster [2, 6]. Unfortunately, however, an important drawback of the DP
approaches is their high memory consumption: in the worst case their memory
consumption is exponential in the number of features. MIP approaches, at least
theoretically, do not have this weakness.

The key aim of this paper is to address this situation. We propose a new
DP-based approach that allows a user to determine the trade-off between time
and space, by introducing a parameter that determines the amount of memory
the algorithm is allowed to use.

The intuition for the good run time performance of DP approaches is that
these approaches do not perform a search for trees, but a search for paths. As
the number of paths is smaller than the number of trees, this reduces the size
of search space in DP algorithms significantly. Their high memory consumption
derives from the fact that the DP-based algorithms store information about
paths in a cache, from which they construct ODTs.

The contributions of this work are the following:

C0 We study several caching strategies proposed in the literature, identifying
which has the best characteristics when focusing on memory consumption.

C1 We propose a simple modification of existing DP-based approaches that
amounts to removing, from time to time, elements from the cache if the
cache becomes too large.

However, removing elements from the cache can have two undesirable conse-
quences: (1) an ODT can no longer be recovered from the cache, and (2) search
can become slower, as we can no longer use results in the cache. Our next con-
tributions address these critical problems.

C2 We propose strategies for the order in which elements are deleted from the
cache.

C3 We present a strategy to recover deleted elements if these are required to
output the ODT.

In the resulting approach, a parameter determines the trade-off between run
time and memory consumption. Our final contribution (C4) is an experimental
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evaluation of this trade-off, as well as other dimensions important for the memory
consumption of DP-based algorithms.

This paper is structured as follows. Section 2 presents the state of the art
of different caching architectures used for ODTs learning and some search tech-
niques used to reduce memory consumption. Then, Section 3 presents the tech-
nical details of caching systems implemented as a trie and a hash table. We
present in Section 4 our new size-limited cache. Finally, present experimental
results before concluding.

2 Related Work

There are two classes of approaches for finding ODTs: (1) approaches that rely
on solvers, such as MIP solvers [13, 1], and (2) approaches that rely on dynamic
programming [10, 11, 2, 12, 7, 9, 6]. The first class of methods relies on solvers of
which the memory use is bounded; however, recent studies on DP-based ap-
proaches showed that the run time performance of these methods is significantly
better. On the other hand, they suffer from a memory problem related to the use
of a cache. Indeed, the size of the cache increases with the number of features
and the depth of the ODT that needs to be found. For these algorithms it is
hence important to minimize the amount of memory used. In the literature, two
types of memory-based optimization have been studied. The first one focuses on
the caching system itself and concerns the data structure used to implement the
cache and the representation of the stored elements. The second optimization is
related to the search and mainly consists in reducing the number of cache entries
that are stored. Below we provide a high-level perspective on these optimizations;
their details will be discussed in the next section.

2.1 Caching optimizations

In principle to identify an ODT, some form of exhaustive search needs to be
performed. A core idea underlying the DP-based approaches is to store interme-
diate results during this exhaustive search. Using a cache key, these intermediate
results are then used later on to avoid repeating the same search twice.

A key distinguishing factor between various approaches is the key that is
used to associate intermediate results in the cache to.

The first algorithm to take this approach was DL8 [10, 11]. In DL8, a cache
is built in which itemsets serve as the key to which information is associated.
Here, every path in a decision tree corresponds to an itemset: an itemset is
essentially the set of conditions on a path. For trees of limited depths, these keys
are short. This technique is also used by the authors of an optimized version of
DL8, DL8.5 [2], and works in the presence of depth constraints.

An optimisation was presented in DL8, in which closed itemsets were used.
A closed itemset in this context is obtained by adding to an itemset I all other
conditions that hold in the same instances in which the conditions of I are true.
It was shown that this leads to more cache reuse; however, calculating this key
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takes more time and the key cannot be used in the presence of depth constraints,
and hence was not used in DL8.5.

Keys based on instances were used in the GOSDT [9] and Murtree algo-
rithms [6]. In particular, MurTree proposes to use as key a combination of in-
stance identifiers and path length (of which more details will be provided in the
next section). In particular for large datasets, this leads to much larger keys than
a representation based on itemsets, but there are more opportunities for cache
reuse.

Other differences between these algorithms concern the data structures used
to store the cache and the keys within the cache. GOSDT and Murtree rely on
the use of hash tables; GODST uses bit vectors to represent the sets of identifiers,
while Murtree uses a list of IDs of instances.

DL8 and DL8.5, on the other hand, use a trie, aiming to exploit the overlap
between itemsets that are stored in the cache.

None of these systems allow the user to impose a limit on the size of the
cache.

2.2 Search optimization

The higher the number of elements to be stored, the larger the cache. Hence it is
important to minimize the number of elements that need to be stored as much
as possible. Various improvements have been studied to reduce the size of the
search space and hence the number of elements in the cache.

One core is to use a form of branch-and-bound search to limit which parts
of the search need to be considered. Aglin et al. [2] proposed a hierarchical
upper bound and an infeasibility lower bound to avoid exploring some nodes of
a search tree over paths. [7] proposes a similarity lower bound. In particular, a
lower bound is derived for a path on the basis of the error found for another
path. This is computed based on common and distinct instances of both paths.
This bound is inspired by [4] and is also used in [6].

Using better bounds can effectively reduce the number of elements that need
to be stored in the cache, and hence can have an impact on the memory used by
the algorithm; however, while better bounds can make the search more feasible
for larger datasets, they do not resolve the problem that for some datasets, the
search algorithms will run out of memory.

An additional strategy for reducing the size of the cache was taken in the
Murtree algorithm [6], which proposes a specialized algorithm for finding depth-2
ODTs without creating any cache entries. This reduces the number of elements
needed to be stored to find an ODT.

The memory reduction technique proposed in this paper is not a search al-
gorithm optimization. Rather, we propose an improvement to the cache system
that allows to set an upper bound on the maximum number of cache entries.
Hence, our optimizations are orthogonal to possible bounds used during the
search, and we skip over most of the details of how bounds are used in these
algorithms, even though also in our algorithm we use state-of-the-art bounds.
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3 Caching in DP-based ODT learning

In this section, we describe how the trie and hash table are used to cache sub-
problem solutions when learning ODTs in existing algorithms; while doing so,
we also contribute a comparison that will motivate our choices in this paper.

3.1 Caching in DP-based algorithms

Let D = {x, y}n be a binary dataset of n instances and F = {F1, . . . , Fm} be the
set of m features that describe D. For each instance x = (x1, . . . , xm) in D, xi

takes value in {0, 1}. A decision tree recursively partitions a dataset into different
groups following paths p ∈ P. A decision tree can be seen as a collection DT ⊆ P
of paths, where each path starts at the root of the tree. While in decision tree,
features are tested in a given order, it is the set of tests that determines which
instances end up in a given node in the decision tree. For this reason, we will
see a path as a set of tests on features. In the context of binary decision trees, a
path p is a set of tests over binary features, p ⊆

⋃
F∈F tests(F ), where tests(F )

returns the two possible tests for the feature F , F = 1 (abbreviated with f) and
F = 0 (abbreviated with f); we assume |p ∩ tests(F )| ≤ 1 for all F .

At a high level, dynamic programming-based approaches for solving the ODT
problem are based on recursive equations. For approaches that use itemsets as
keys, this is the recursive equation in its simplest form:

min_error(p) =

{
minF∈F

∑
t∈tests(F ) min_error(p ∪ {t}) if |p| < maxdepth;

leaf _error(p) if |p| = maxdepth,

where the recursion starts at min_error(∅). In other words, to determine the
error made by a decision tree of minimal error, we need to pick the feature in
the root of the tree that minimizes error, when summing up the lowest possible
errors for the left-hand and right-hand subtrees. Note that in a tree the tests are
ordered; in a tree we can first test A = 1 followed by B = 1, or, alternatively,
first test B = 1 and then A = 1. This order is not important when determining
min_error({A = 1, B = 1}). DP approaches are based on the idea of storing
information for p, such as min_error(p), such that we can reuse the information
for all possible orders in which the tests can be put in a tree.

For the leafs of the tree, we assume a prediction is made, and a class is asso-
ciated. In the case of our paper, the associated class is the majority class, while
the associated error is the misclassification error defined by leaf _error(p) =
|D| −maxc∈C |D : c|, where D is the set of instances falling in the leaf p.

In its more complex form, the recursive equation can take into account other
constraints, and can be rephrased to return the optimal tree itself as well.

DP-based algorithms perform a depth-first search using the recursive equa-
tion, reusing information that is stored already, and using bounds to limit the
cases for which the recursion is executed.

For approaches that use instances as keys, the recursive equation is slightly
different:
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min_error(D, d) =

{
minF∈F

∑
t∈tests(F ) min_error(σt(D), d+ 1) if d < maxdepth;

leaf _error(D) if d = maxdepth,

where D is a dataset and σt(D) selects the instances of D which satisfy the
condition in test t. The recursion starts for the full dataset and depth d = 0. In
other words, to determine the error of an optimal tree for a dataset D, we need
to determine which test to put in the root of the tree, such that error for the
datasets resulting from the split is minimal. Compared to using paths as keys,
instances can allow for more reuse, as multiple paths may select the same set of
instances.

In this work our aim is to strictly monitor the memory consumption of DP-
based algorithms. Hence it is important to understand which of these two ap-
proaches leads to better memory use; however, earlier studies did not address
this question. We study this in the next subsection.

3.2 Comparison of Caching Strategies

Figure 1 shows a comparison of the memory consumption for different cache
implementations for some datasets, when implemented in a state-of-the-art DP-
based algorithm. The red curves represent the cache implementation that uses
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Fig. 1: Comparison of memory use given the cache type

the set of instances as key. The other curves denote the cache implementation
that uses paths as key. The difference between the green and blue curves will be
explained in the next subsection. Notice that the number of cache entries for the
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instance-based representation is indeed low compared to the other approach. At
the same time, it consumes much more memory as a key that consists of instance
identifiers is much longer than a key that consists of tests. The rest of the paper
focuses on the test-based representation, as it requires less memory than the
instance-based one.

3.3 Caching data structure

To store the cache, DP-based algorithms require a data structure. Two imple-
mentations of the cache have been used in the literature. Most algorithms use a
hash table, while DL8 and DL8.5 use a trie (or prefix tree).

The difference between these two data structures is illustrated in the following
example, where a path is used as key; here we sort the tests in the path to obtain
an ordered representation for the path. Let us assume a dataset with at least
four (4) features and an ODT learning algorithm for trees of depth 3. Figure 2
shows a part of the search space to explore to find the ODT. Table 1 and Figure 3
show cache implementations based on a hash table and a trie, respectively. In
the hash data structure, the path is passed through a hash function, but to avoid
collisions, every path needs to be stored with its associated information. In the
trie, nodes are created for every prefix of a path.

The size of these data structures can differ, as illustrated by the example.
Consider the path abc (in red) during the search; this path is reached in the
search by first considering two other paths: {a, ab}. To save these three paths
{a, ab, abc} in the cache, in the case of a hash table, an entry is created for each
path, and all tests in each path are saved. This is represented by red entries in
Table 1: Six (6) tests must be saved to store the paths leading to abc. In the case
of trie, the tests in common for parent paths are shared in such a way to avoid
saving duplicate tests. To store abc and its parent paths, only three (3) tests are
necessary for a trie data structure, as the trie uses a compressed way to store
paths. In practice, this is beneficial: the memory consumption in Figure 1 of the
trie data structure (in blue) is lower than that of the hash table (in green), and
motivates our choice for a trie in our experiments. However, note that in terms of
the number of paths stored in the cache, the trie can be larger. For instance, this
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is the case for the paths leading to ec in Figure 2. While the hash table stores
them using two cache entries, the trie needs three nodes for this operation. This
explains why the number of cache entries in the trie is higher than in the hash
table in Figure 1; however, as per entry in the hash table a complete path needs
to be stored, memory consumption is higher; we prefer the representation with
the lower memory consumption.

4 Learning ODTs with limited memory resources

In this section, we present our proposal to limit the memory consumption of
DP-based learning algorithms.

Our core objective is to make sure the size of the cache is limited, while mak-
ing sure that the performance of the search is not affected too much. Moreover,
we wish to do so in a manner that can be integrated in DP-based algorithms
with minimal modifications.

The core idea of our approach is simple: instead of keeping all elements in
the cache, when necessary we will remove elements from the cache; when the
search algorithm encounters these elements later, it will recalculate the results.

Hence, limiting the memory size will certainly impact the run time of the
search algorithm, as its speed depends mainly on the reusability of the cache.
The fewer entries in the cache, the less likely it is to find an existing solution.
However, a good strategy specifying the order in which entries are deleted can
limit the impact on the overall run time. In the next subsection, we will present
our proposal for a bounded cache based on one deletion strategy. Subsequently,
we will introduce additional deletion strategies and how to integrate them in the
maintenance of the cache.

4.1 Implementation of a bounded cache

As the modifications of the DP-based systems we propose only concern the
maintenance of the cache, we focus the description of our contribution to the
maintenance of the cache. Pseudo-code for this can be found in Algorithm 1, for
the trie data structure. Later, we explain how the pseudocode can be adapted to
the simpler case of hash tables. Compared to the cache used by other systems, our
new cache system requires two parameters. The first, maxcachesize, specifies
the maximum number of entries that the cache can store. The second parameter;
wipeFactor defines the percentage of the cache that will be cleared when the
cache is full.

Any DP-based algorithm requires functionality that for a given key returns
the data associated to the key, and if no such information is available, will add
information to the cache; this is the function insertOrGetEntry in Algorithm 1.
This function traverses the tests in a path, and either finds back the path in the
trie, or adds the necessary nodes. Compared to the original trie-based system
DL8.5, there are two differences in the insertion method. First, there is a con-
dition (line 14) that checks that there is enough place in the cache to insert the
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Algorithm 1: Class Bounded_Cache(maxcachesize, wipeFactor)
1 struct PathEntry{ useful: bool ; curFeat: int ; nDscPaths: int ; solution:

BestTree; childEntries: HashSet<int , PathEntry>}
2 struct BestTree {lb : float ; feat : int ; error : float }

// list of pairs <pathEntry, parentPathEntry>
3 deletionQueue← pair<PathEntry , PathEntry> [maxcachesize]
4 rootEntry, cachesize← newEntry(), 0
5 Method newEntry()
6 return PathEntry(false,0,−1, (0, NO_FEAT,+∞), {})
7 Method insertOrGetEntry(p : array of int) // p: path
8 pEntry← rootEntry
9 for t ∈ p do // foreach test in path

10 if t ∈ pEntry.childEntries then
11 pEntry← pEntry.childEntries.get(t)
12 else // remainingTests() returns the number of tests in
13 // the path which are not in the cache
14 if cachesize+ remainingTests() > maxcachesize then wipe()
15 childEntry← newEntry()
16 pEntry.childEntries.push({t, childEntry})
17 deletionQueue.push({childEntry, pEntry})
18 cachesize, pEntry← cachesize+ 1, childEntry

19 return pEntry

20 Method wipe()
// mark nodes that required by the current state of the search

21 setCurUsefulTag(rootEntry, {})
22 countDscpaths(rootEntry)
23 setOptiUsefulTag(rootEntry, {})
24 sortDeletionQueue() // desc order with useful nodes at beginning
25 nDel, counter← (int)(maxcachesize ∗ wipeFactor), 0
26 for path, parPath ∈ reverse(deletionQueue) do
27 if counter = nDel or path.useful is true then break
28 parPath.childEntries.remove(path); delete(path)
29 counter, cachesize← counter+ 1, cachesize− 1

30 unSetUsefulTag() // Remove tags

31 Method countDscpaths(pE : PathEntry)
32 pE.nDscPaths← 0
33 for t ∈ pE.childEntries do
34 pE.nDscPaths← pE.nDscPaths+countDscpaths(pE.childEntries.get(t))+1

35 return pE.nDscPaths

36 Method getChildPathEntries(p : array of int, feat : int)
37 t1, t2 ← tests(feat)
38 return {getEntry(sort(p∪t1)), p∪t1}, {getEntry(sort(p∪t2)), p∪t2}
39 Method setCurUsefulTag(pEntry : PathEntry, p : array of int)
40 for pE, p ∈ getChildPathEntries(p, pEntry.curFeat) do
41 pE.useful← true; setCurUsefulTag(pE, p)

42 Method setOptiUsefulTag(pEntry : PathEntry, p : array of int)
43 pEntry.useful← true
44 for pE, p ∈ getChildPathEntries(p, pEntry.solution.feat) do
45 setOptiUsefulTag(pE, p)
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path being created, otherwise the wipe function is called; this wipe function is
responsible for removing elements from the cache. Second, each path added to
the trie is also added to a deletion queue (line 17). This queue is maintained to
keep track of the nodes in the cache, which is used when wiping the cache.

Since a node in a trie has a parent that links to it, when a path is deleted,
it is necessary to delete the edge from the parent in the trie. For this reason, its
parent path entry in the trie is stored to perform the edge deletion.

A critical part of our contribution is the wipe function. At its core, this func-
tion sorts the nodes in the cache, and subsequently deletes the desired number
of nodes from the cache according to this order. Of critical importance is here
how the nodes are sorted for removal. To determine this order, our wipe function
first calls a number of functions to compute necessary information for the entries
in the cache. This information is subsequently used when sorting the nodes. The
remaining steps of the wipe function are straightforward. The deletion queue is
traversed from the end to the beginning, and each path entry is deleted (line 26)
until the number of entries to be deleted is reached, or all possible paths have
been deleted (line 27). Note that the number of entries to delete is calculated
according to the percentage provided by the wipeFactor parameter (line 25).
Before deleting a path, the edge that connects it to its parent path is deleted
(line 28) to inform the parent path that its child path no longer exists.

The information that is collected for elements in the cache is the following.
(1) Information concerning which paths the search is currently considering.

Please remember that DP-based approaches perform a recursive search over
paths, by adding tests to paths. In the process of calculating the result for the
path p, they assume that path p is present in the cache. The setCurUsefulTag

method is used to mark the paths p that are currently under evaluation. These
paths will be put first in the order, and will never be deleted. Please note that
the number of such nodes is very small. The setCurUsefulTag method uses
a curFeat field in the entries in the cache. This field is initialized by a small
modification of the recursive search function. For DL8.5 this is illustrated in
Algorithm 2, where in green the code is indicated that is added in the recursive
search function of DL8.5; parts of the code of DL8.5 that are not modified are
skipped.

(2) Statistics concerning nodes in the cache. One such statistic which can be
used to order elements, illustrated in our pseudo-code, is the number of descen-
dants a node has in the trie. In the trie case, when we delete a node in a trie,
we also need to delete its children in the trie. This implies that each path must
be deleted before its parent path. As a parent has more descendants than its
children, by ordering nodes on the number of descendants, we can assure chil-
dren are deleted before their parents. Moreover, an intuition is that paths with
numerous descendants are more expensive to evaluate than those with fewer de-
scendant paths, and hence should be removed less quickly. To count the number
of descendant paths per path, a simple post-order traversal is performed through
the trie using the countDscpaths method. The result is stored in the variable
nDscPaths (line 1).
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(3) Information concerning which paths are part of the current optimal so-
lution; we will return to this issue later on.

4.2 Different wipe strategies

In the pseudo-code above, the statistic we used to order nodes was the number of
descendant path entries in the cache. We also consider the following alternatives.

Number of reuses of solutions The intuition behind the number of reuses of
elements is that a path that has been reused many times is more likely to be
needed again. This strategy removes the less frequently reused solutions before
the more frequently used ones. To calculate the number of times a path solution
has been reused, a variable initialized to 0 must be added to the path entry
structure. Whenever in the method insertOrGetEntry, when an existing path
is returned, the variable must be incremented for the path. Note that this deletion
criterion does not satisfy the requirement of deleting the deepest nodes first in
a trie. To enforce this behavior, there are two possibilities. The first is to set
the method sortDeletionQueue so that the sort is performed according to two
parameters. First, the length of the path and then the number of reuses. Another
possibility is to increment the number of reuses for each ancestor of a path as
well. In this work, we use the second option because it is based solely on the
number of reuses, rather than using an additional criterion. Note that for this
strategy, the statistic is not computed in the wipe method.

All not required paths This strategy, as the name implies, deletes all paths except
from the useful ones, as defined by criterion (1) and (3) above. No variables
need to be added to the path entry structure, and the deletion queue is not
required. When the cache is full, after setting useful nodes, a post-order traversal
is sufficient to delete all nodes without the useful tag.

4.3 Returning an ODT that relies on deleted elements

Until now, our recursive equations focused on returning the error of the most
accurate tree. However, in practice we also wish to return the tree that obtains
this error. In DL8 an approach was proposed that allows to do so with minimal
additional memory use: for every path p, only the feature F is stored in the
cache that should be used to split optimally for p. The observation is that the
optimal split for p ∪ {f} and p ∪ {f} can also be found in the cache.

Unfortunately, if we wipe part of the cache, this strategy can no longer be
used: if the optimal tree relies on a path that is no longer in the cache, we can
no longer recover this tree from the cache.

One solution could be to associate a complete optimal tree to every path in
the cache, but this would blow up the memory required for the cache, which we
would like to avoid. Hence, a critical contribution of this work is an alternative
solution that works well in practice: it avoids the use of large amounts of memory,
while being fast at the same time. This solution consists of two components.
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Algorithm 2: Bounded-DL8.5(maxdepth, maxcachesize, wipeFactor)
1 cache← Bounded_Cache(maxcachesize, wipeFactor)
2 bestSolution← DL8.5−Recurse({},+∞)
3 while tree(bestSolution) is incomplete do reconstituteWipedNodes({})
4 return tree(bestSolution)

// p is the path whose solution must be found
5 Procedure DL8.5−Recurse(p : array of int, ub : int)
6 pEntry← cache.insertOrGetEntry(sort(p))
7 . . . // if entry exists and has been solved, return its solution
8 for each feature F in a well-chosen order and split in tests f and f do
9 pEntry.curFeat← F

10 . . . // compute error of best tree rooted by F

11 pEntry.curFeat← −1
12 . . . // return error and root of the tree with the lowest error

13 Procedure reconstituteWipedNodes(p : array of int, ub : int)
14 pSol← cache.insertOrGetEntry(sort(p)).solution
15 if pSol.feat = NO_FEAT then return void
16 (pE1, p1), (pE2, p2)← cache.getChildPathEntries(p, pSol.feat)
17 foundpE1 ← pE1 ̸= NULL and pE1.solution.feat ̸= NO_FEAT

18 foundpE2 ← pE2 ̸= NULL and pE2.solution.feat ̸= NO_FEAT

19 if foundpE1 is false or foundpE2 is false then
20 if foundpE1 is false and foundpE2 is true then
21 pE1.solution.lb← pSol.error− pE2.solution.error
22 DL8.5−Recurse(p1, pE1.solution.lb+ 1)
23 reconstituteWipedNodes(p2)
24 else if foundpE2 is false and foundpE1 is true then
25 pE2.solution.lb← pSol.error− pE2.solution.error
26 DL8.5−Recurse(p2, pE2.solution.lb+ 1)
27 reconstituteWipedNodes(p1)
28 else
29 pE1.solution.lb← 0
30 DL8.5−Recurse(p1, pSol.error+ 1)
31 pE2.solution.lb← pSol.error− pE1.solution.error
32 DL8.5−Recurse(p2, pE2.solution.error+ 1)

33 else
34 reconstituteWipedNodes(p1)
35 reconstituteWipedNodes(p2)

First, at the moment that we wipe the cache, using the setOptiUsefulTag

function we determine which paths in the cache are part of the currently optimal
solution; we do not remove these paths from the cache. In the best case, this
optimal solution does not change any more and hence we can recover (most of)
the solution from the cache.
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Unfortunately it cannot be excluded that when the search continues, we find
that a tree with a better quality exists that relies on paths that have been re-
moved from the cache. In this case, we propose to recalculate the optimal tree
for these paths. This algorithm is executed at the end of the original search to
avoid making calculations for paths that later in the search may no longer be
considered part of the final solution. This algorithm is described by the proce-
dure reconstituteWipedNodes in the Algorithm 2. For each existing path, an
attempt is made to obtain its two children paths from the cache (lines 16-18).
If they exist (line 19), the DFS traversal continues (lines 34-35). Otherwise, the
search is restarted. However, an important difference with the original search is
that from the known errors (including the error of the optimal tree), much better
bounds can be deduced than in the original search. In the case where a right
child path exists but a search must be rerun for the left child path (lines 20-23),
a simple subtraction between the errors of the parent path and the right child
path provides the exact error of the left child path to be found. This error is used
as a lower bound and a small value ϵ is added to it to define the upper bound.
In the context of the misclassification rate, ϵ = 1 is used. The same process is
performed in the case of an existing left child path and a non-existing right child
path (lines 24-27). When both child paths are nonexisting (lines 29-32), a search
is performed for a first child path and the bounds for the second are derived from
its solution. For the first path, the unknown lower bound is set to 0 while the
upper bound is at most the error of the parent path added to ϵ. This procedure
to reconstruct the wiped paths of the final ODT is very efficient in practice.

4.4 Adapting to hash tables

The implementation of the bounded trie-based cache can easily be adapted to
a hash table and is even simpler in this case. In order to sort and delete paths
in a specific order, the deletion queue no longer needs to store pointers towards
parents. Moreover, non-useful cache entries can be deleted in any order without
hierarchy constraints, leading to a greater freedom in the choice of deletion
criteria. For example, for the reuses number strategy that we propose, in the
case of a hash table, we can rely only on this number to define the deletion order
of paths without having to increment the reuses number of ancestor paths.

5 Results

In this section we answer five main questions:

Q1 Which of the wipe strategies proposed has the lowest impact on the run
time?

Q2 What is the impact of the memory usage when using a bounded cache?
Q3 What is the impact of a bounded cache on the run time?
Q4 How fast is the algorithm to recover removed nodes from the ODT?
Q5 How does the use of a bounded cache compare to a MIP approach?
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The implementation of the learning algorithm without cache size restriction
that we use in our experiments is DL8.5 [2, 3]. This means that the cache system
used is a trie. However, we add some improvements to this DL8.5 implementa-
tion to reduce the baseline memory consumption. These are the specialized algo-
rithm proposed in MurTree to find depth-2 ODTs and the similarity lower bound
introduced by OSDT. We call the final algorithm DL8.5 in our experiments
because the main search features originate from DL8.5. Bounded-DL8.5 is the
DL8.5 version using our bounded cache. It is available at https://github.com/aia-
uclouvain/pydl8.5. Experiments were run on a Linux Rocky 8.4 server with an
Intel Xeon Platinum 8160 CPU @ 2.10Ghz and 320GB of memory.

In the first experiment, we use 20 binary datasets from CP4IM1. We run
DL8.5 on these datasets with a time limit of 5 minutes. To avoid comparing too
easy instances, we learned ODTs of depth 5. Then we run Bounded-DL8.5 with
the same parameters until we find the ODT, or we reach the same point in the
search as DL8.5 when the timeout was raised. We show in Figure 4 two ratios
of Bounded-DL8.5 over DL8.5: the run time and the total number of entries
(including those created after they have been removed). Each wipe strategy is
considered for Bounded-DL8.5. For the wipe parameters, we consider 75% and
50% of the memory as value for the maxcachesize parameter and a wipe factor
of 40% and of 30%. Note that the results shown are representative for the results
for other choices of the parameters. It is interesting to notice that the time spent
by the algorithm is proportional to the number of cache entries created. It can
also be seen that the number of cache entries and the run time increase as the
bound of the cache is restricted. On the other hand, it is difficult to observe
a concrete trend in these values when a change is applied to the percentage
of memory to free at each cache wipe. Note, however, that it becomes easy to
answer Q1 thanks to the Figure 4. As expected, the strategy of removing all
non useful entries from the cache is the one increasing the most the run time of
Bounded-DL8.5. Instead, the intuition of keeping as long as possible the entries
often reused shows the best reduction of time impact. It performs better than
removing the paths based on the number of descendants.

After this experiment, we select the best wipe strategy (number of reuses)
to evaluate how Bounded-DL8.5 can impact the memory usage on situations
in which DL8.5 requires a lot of memory to find the ODTs. To highlight these
cases while ensuring reasonable run times, we experimentally select five specific
datasets and depths. In the same way, we limited the cache size of Bounded-DL8.5
to 30 million (30M) entries at most and set the percentage of entries to wipe
to 40%. The impact of these values is already discussed above. The results are
reported in Table 2. The memory usages are obtained by using the program top
available on Unix operating systems. Notice that the memory needed to solve
the problems using Bounded-DL8.5 never reaches 10GB while up to 78GB is
required using DL8.5. Regarding the dataset anneal, more than 600 million of
entries are created with DL8.5 to find an ODT of depth 8. The advantage of
using Bounded-DL8.5 is that this number can be reduced to a desired quan-

1 https://dtai.cs.kuleuven.be/CP4IM/datasets/
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Fig. 4: Time factor of Bounded-DL8.5 per wipe strategy

tity, here 30 million. As an answer to Q2, this reduces significantly the memory
needed to find an ODT. Note, however, that this reduction depends on the limit
on the number of cache entries. Moreover, it also has an impact on the run time.
The time factor is recorded in Table 2. To answer Q3, notice that our strategy
managed to achieve a time factor less than 1.5 on an instance that lasts over 3
hours with DL8.5. In the worst case, it almost reaches a time factor of 3 on an
instance that originally required 78GB, which it reduces to 9GB. Regarding our
algorithm to recover the nodes of the ODT that have been removed during the
search, the time used by our algorithm is reported in milliseconds in the column
rTime. Notice that for all instances, our algorithm uses less than 5 milliseconds
to recover the removed nodes from the ODT. This answers the question Q4.

To answer Q5, we finally compare Bounded-DL8.5 to a MIP approach. For
this, we use BinOCT2 model. The model is solved using CPLEX3 22.1.0. As MIP
approaches are time consuming, we set a time limit to 70000 seconds, which is
greater than the maximum time used by Bounded-DL8.5 to solve an instance.
Notice in Table 2 that BinOCT does not manage to solve any instance in the
allocated time. This is represented by TO (timeout). Moreover, notice that the
memory used by BinOCT is greater than Bounded-DL8.5 for all instances.

2 https://github.com/SiccoVerwer/binoct
3 https://www.ibm.com/analytics/cplex-optimizer
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Table 2: Comparison of unbounded and bounded caches

Dataset

nF
ea

ts

nI
ns

ts

D
ep

th DL8.5 Bounded−DL8.5 BinOCT

|Cache| Time(s) Mem
(GB) Time(s) Time

factor
Mem
(GB)

rTime
(ms) Time Mem

(GB)
Anneal 93 812 8 648M 21907.28 78.5 65453.05 2.99 9 2.63 TO 9.8
Diabetes 112 768 7 238M 18890.09 28 31534.13 1.67 6.3 0.21 TO 10.5
German-credit 112 1000 6 92M 15198.32 11 21898.92 1.44 5.1 0.10 TO 10.1
Kr-vs-Kp 73 3196 8 136M 3865.28 16.1 6365.04 1.65 5.3 4.68 TO 35.8
Yeast 89 1484 7 419M 34977.98 50.5 62483.77 1.79 7.8 4.70 TO 17.5

6 Conclusions

In this paper, we address the problem of the huge memory consumption required
by caching based algorithms for learning ODTs. We propose a technique that can
be added to existing caches to wipe a desired number of entries from the cache.
This leads to a significant reduction in memory consumption, with a smaller
impact on run time. We propose strategies to reduce the impact of the wipe
on the overall run time. Finally, we show that our approach finds ODTs more
quickly than MIP approaches, while also consuming less memory.
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